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Universality of point defect structure in body-centered cubic metals
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Formation and migration energies, elastic dipole, and relaxation volume tensors of nanodefects are the
parameters determining the rates of evolution of microstructure under irradiation as well as macroscopic elastic
stresses and strains resulting from the accumulation of defects in materials. To find the accurate values of these
parameters, we have performed density functional theory simulations of self-interstitial and vacancy defects in
all the body-centred cubic metals, including alkaline metals (Li, Na, K, Rb and Cs), alkaline-earth metal (Ba),
nonmagnetic transition metals (V, Nb, Mo, Ta and W), and magnetic transition metals (Cr and Fe), correcting the
computed values for the effect of finite cell size and periodic boundary conditions. The lowest energy structure
of a self-interstitial atom defect is universal to all the nonmagnetic bcc metals, including metals of groups 1
and 2 of the periodic table, and has the 〈111〉 symmetry. The only exceptions are the 〈110〉 self-interstitial
defect configuration in Fe, and a 〈11ξ〉 configuration in Cr. We have also computed elastic dipole tensors
and relaxation volumes of self-interstitial and vacancy defects in all the bcc metals and explored how elastic
relaxation parameters vary along the defect migration pathways.
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I. INTRODUCTION

Dislocations and point defects in crystalline materials are
created by mechanical deformation or by irradiation, followed
by the relaxation of locally distorted atomic configurations
[1]. A Frenkel pair is a commonly occurring type of radi-
ation defect. In a Frenkel pair, an atom is removed from
a lattice site and placed elsewhere in the lattice, forming a
pair of a vacancy and a self-interstitial atom (SIA) defect.
In elasticity theory, the strain field associated with a defect
can be described by its elastic dipole tensor [2–7]. Matrix
elements of elastic dipole tensor can be derived from atomic
scale simulations, where interatomic forces are evaluated us-
ing empirical potentials or ab initio methods. Using elastic
dipole tensors, discrete atomic configurations of defects can
be treated as objects of continuum elasticity, enabling simu-
lations of evolution of large ensembles of defects on the time
and spatial scales many orders of magnitude larger than those
accessible to molecular dynamics or electronic structure based
methods [8].

The dipole tensor of a defect Pij fully defines its properties
within the theory of elasticity [9]. The energy of elastic
interaction between a defect and an external strain field
εext
ij is

Eext
int = −Pij ε

ext
ij , (1)

whereas the energy of interaction between two defects sepa-
rated by a distance many times their size is

Eab
int = P a

ijP
b
kl

∂2

∂xj ∂xl

Gik (r), (2)
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where P a
ij and P b

kl are the dipole tensors of defects a and b, r
is the relative position vector of the defects, and Gik is the
elastic Green’s function. Gik can be evaluated numerically
for an arbitrary elastically anisotropic material [10] from
the matrix elements of the stiffness tensor. Using Eq. (2),
the energy of elastic interaction can be computed for any
configuration of defects, which otherwise is difficult to treat
using atomistic or electronic structure based methods due to
the limitations imposed by the simulation cell size.

Domain and Becquart [11] computed the dipole tensor of
a vacancy (using an ab initio approach) and an SIA (using
empirical potentials) in iron using the Kanzaki force formal-
ism. Varvenne and Clouet [6] showed how to evaluate the
dipole tensor of a defect from average macrostresses in a
simulation cell and investigated the numerical convergence
of calculations as a function of cell size. Treating point
defects in zirconium, they compared the rate of convergence
of the two methods and showed that the Kanzaki force and
macrostress approaches produced similar results in the limit
where simulation cells were sufficiently large.

Sivak et al. [12] investigated elastic interactions between
point defects and dislocations in iron, computing them using
molecular statics and linear elasticity. Matrix elements of
dipole tensors of defects were derived from atomistic calcula-
tions, where interaction between the atoms was described by
empirical interatomic potentials. They found that the elasticity
approximation described the energy of interaction fairly well
if a defect and a dislocation line were separated by a distance
just a little over three lattice constants, in agreement with
the analysis of dislocation core effects by Boleininger et al.
[13]. Sivak et al. [12] also evaluated elastic dipole tensors of
vacancies and SIA defects in iron at equilibrium and at saddle
points.

Since the elastic energy of interaction between a defect and
external strain field can be readily evaluated using the dipole
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tensor formalism, elastic interaction effects can be included in
coarse-grained models, for example in object kinetic Monte
Carlo (kMC). By performing kMC simulations, Sivak et al.
estimated the effect of elastic interactions on the diffusion
of defects in bcc iron and vanadium [14], and also on the
diffusion of hydrogen in bcc iron [15,16]. They concluded,
in agreement with the earlier works by Margvelashvili and
Saralidze [17], Wolfer and Ashkin [18], and Brailsford and
Bullough [19] that dislocations were more efficient sinks for
SIA defects than for vacancies. The sink strength of an edge
dislocation was several times larger than that of a screw dislo-
cation for both SIA and vacancy defects in Fe and V. Assess-
ing the effect of elastic field of a dislocation on the diffusion
of a hydrogen interstitial, they showed that the predicted sink
strength efficiency was relatively high for an edge dislocation,
but was significantly lower for a screw dislocation.

This brings into focus the question about the structure of
a defect in a metal. Paneth [20] suggested that in an alkaline
metal, an SIA defect would adopt a 〈111〉 configuration. He
evaluated the formation energy of a 〈111〉 crowdion in sodium
using a model where a positive point charge was embedded
in a uniform field of negative charge density, and found the
formation energy of the defect to be close to 0.3 eV. Below,
we show that a more reliable value can now be derived from
density functional theory (DFT) calculations.

Other researchers later argued that it was the 〈110〉 dumb-
bell that represented the most stable SIA defect configuration
in Fe and Mo [3,21]. This assertion was based on the data
derived from the analysis of diffuse x-ray scattering experi-
ments. Interpreting diffuse x-ray diffraction data in definitive
terms is difficult since even at cryogenic temperatures radia-
tion induced defects diffuse [22], interact and can form fairly
complex clusters.

Depending on the structure of an SIA configuration, SIA
defects have different mobilities. A 〈111〉 defect can easily
translate itself through the lattice in the direction parallel to
its axis, suggesting that a 〈111〉 crowdion should be highly
mobile even at fairly low temperatures [22,23]. This explains
the high diffusivity of SIAs observed in resistivity recov-
ery experiments performed on electron irradiated bcc metals
[24–26]. Experimental observations, confirmed by theoretical
analysis [22], show that in many bcc metals SIA defects
still move at temperatures below 6 K. High-voltage electron
microscope experiments [27] also show that the activation
energy characterizing long-range migration of SIA defects
in tungsten is low. On the other hand, a 〈110〉 dumbbell in
Fe migrates through a sequence of translation and rotational
jumps [3,28], and its three-dimensional diffusion is strongly
thermally activated. Ab initio DFT calculations have been
recently applied to the evaluation of formation and migration
energies of defects in bcc metals and to the calculation of
relaxation volumes of defects [29–38]. In all the nonmag-
netic (NM) bcc transition metals, the most stable SIA defect
structure was found to have the 〈111〉 symmetry [30,31].
Swinburne et al. [22] showed that the migration energy of a
〈111〉 dumbbell in tungsten is close to 2 meV, and that the
saddle point configuration on a defect migration pathway is
a 〈111〉 crowdion. Quantum fluctuations of atomic positions
make the 〈111〉 SIA defects extremely mobile at temperatures
as low as 1 K [22].

The only ab initio study of SIA defects in alkaline metals
carried out so far was performed by Breier et al. [32]. They
evaluated the formation energies of 〈111〉, 〈110〉, and 〈100〉
SIA dumbbells in sodium, computing them using DFT in the
local density approximation (LDA). The 〈110〉 dumbbell was
found to have the lowest energy, although it was only 0.01eV
lower than that of the 〈111〉 dumbbell configuration. Calcula-
tions in Ref. [32] were performed using a relatively small 55-
atom cell. Below, we compare these results with calculations
performed using more accurate density functionals and larger
simulation cells. We also investigate the structure of defects in
all the other bcc metals in the periodic table, including alkaline
metals. In iron, the 〈110〉 dumbbell is the most stable SIA
configuration [11,30,31]. The three-dimensional translation-
rotation migration pathway of the defect [29] explains the rel-
atively high activation temperature for the onset of diffusion
of SIAs in iron [24,25,28], which is close to 120 K.

The structure of an SIA defect in chromium remains
somewhat uncertain. Calculations assuming a NM electronic
ground state [30,31] or an antiferromagnetic (AFM) state
[39,40] showed that the difference between the formation
energies of 〈111〉 and 〈110〉 dumbbells was within the margin
of error of ab initio calculations. Recently, we found [41]
that the most stable configuration of an SIA defect in Cr has
the 〈11ξ 〉 orientation, where ξ varies from 0.355 to 0.405,
regardless of magnetic order.

In this paper, in addition to determining the structure and
energies of various defect configurations, we have also eval-
uated their elastic properties needed for large-scale dynamic
simulations of microstructure [42]. We start by computing
the formation and migration energies of defects, treating
interactions with periodic images in the linear elasticity ap-
proximation. Then, we evaluate dipole tensors and relaxation
volume tensors of all the defect structures in all the bcc metals,
including alkaline metals Li, Na, K, Rb, and Cs, alkaline-earth
metal Ba, NM transition metals V, Nb, Mo, Ta, and W, and
magnetic transition metals Cr and Fe. Thermal migration of
a 〈111〉 SIA defect proceeds through a sequence of 〈111〉
crowdion ↔ 〈111〉 dumbbell transformations. This involves
almost no variation of the elastic dipole tensor. On the other
hand, when investigating the migration of a 〈110〉 defect
configuration in Fe, we find that it involves some significant
variation of the dipole tensor along the migration pathway.

II. THEORY

We start by briefly reviewing the methodology for comput-
ing the formation and migration energies of defects, dipole,
and relaxation volume tensors, and the variation of these
quantities along defect migration pathways.

The formation energy of a defect EF
def is

EF
def = Edef(Ndef) − Ndef

Nbulk
Ebulk(Nbulk), (3)

where Edef is the energy of a simulation cell containing a
defect, Ebulk is the energy of a reference defect-free cell, and
Ndef and Nbulk are the numbers of atoms in the respective cells.

Equation (3) leaves open the question about whether the
simulation cell should be fully relaxed or the relaxation of
ion positions should be performed in a constrained manner,

013605-2



UNIVERSALITY OF POINT DEFECT STRUCTURE IN … PHYSICAL REVIEW MATERIALS 3, 013605 (2019)

leaving the boundaries of the cell fixed. The subtlety of Eq. (3)
is also associated with the fact that it implicitly assumes the
limit Ndef, Nbulk → ∞. Equation (3) defines the formation
energy of a defect, assuming that the defect is embedded
in an infinite medium, an approximation that is not satisfied
in a practical simulation. To circumvent the need to treat
the surface termination effect, simulations of defects are per-
formed using periodic boundary conditions. This is equivalent
to evaluating the energy associated with embedding an infinite
number of defects in an infinite medium. Naturally, to relate
the formation energy defined by Eq. (3) to a calculation
performed using periodic boundary conditions, it is necessary
to subtract from the result of an ab initio calculation the
energy of interaction between a defect and all its periodic
images, and estimate the contribution associated with the
lattice deformation generated by the infinite number of images
of the defect.

An alternative approach is to relax the orientation and
position of boundaries of the cell to arrive at a stress-free state
of the material. Varvenne et al. [5,6] noted that the stress-
free approach exhibited better numerical convergence as a
function of the simulation cell size, and produced lower values
of formation energies. Relaxing positions and orientations
of boundaries of the simulation cell containing a defect is
equivalent to applying a homogeneous elastic strain εapp. The
elastic energy associated with this strain Eapp contributes to
the formation energy of the defect.

The strain tensor εapp associated with the relaxation of
boundaries of the simulation cell satisfies the condition

Vref(I + εapp) = Vdef, (4)

where I is the identity matrix, Vref = {Lref
1 , Lref

2 , Lref
3 } is the

matrix of translation vectors of the reference cell and Vdef =
{Ldef

1 , Ldef
2 , Ldef

3 } is the matrix of translation vectors of the cell
containing a defect. The elastic energy associated with the
applied strain εapp is [5]

Eapp = V ref

2
Cijklε

app
ij ε

app
kl − Pij ε

app
ij , (5)

where V ref is the volume of the simulation cell and Cijkl is
the elastic constant tensor. The quadratic term in Eq. (5) is the
elastic energy associated with the deformation of the simula-
tion box, whereas the second term is the energy of interaction
between the defect and the applied strain. Since Eq. (5) is valid
in the limit ‖εapp‖ � 1, we neglect the difference between the
volume of the reference cell and the cell containing a defect.

Equation (3) for the formation energy of a defect now has
the form

EF
def = [Edef(Ndef) − Eapp] − Ndef

Nbulk
Ebulk(Nbulk) − Ecorr

el ,

(6)

where Ecorr
el is a term taking into account the elastic field of

the defect and its interaction with its periodically translated
images. This elastic correction is a sum of two parts,

Ecorr
el = Eint + Ecorr

strain, (7)

where Eint is the elastic energy of interaction with periodic
images of the defect. Eint can be computed in the elastic dipole

approximation. Ecorr
strain is the self-strain correction energy as-

sociated with the regularization of strain εD
ij (r) produced by

the defect in the simulation cell itself. This regularization is
required to make εD

ij (r) compatible with the fact that under
the condition of no overall relaxation of the simulation cell,
the total macroscopic strain must vanish [7].

The above consideration also applies to any configuration
related to the lowest energy defect structure through an adia-
batic transformation. Equation (6) remains valid at any point
on a migration pathway of a defect found using an NEB
calculation.

Numerical values of Eint can be computed from the dipole
tensor of the defect and the anisotropic elastic Green’s func-
tion of the crystal [4–7]. The regularized energy of elastic in-
teraction between a defect and its periodic images, compatible
with the condition of zero average elastic strain, is [7]

Eint = Etotal
int + Ecorr

int , (8)

where

Etotal
int = 1

2

∑
n	=0

PijPkl

∂

∂xj

∂

∂xl

Gik (Rn) (9)

= 1

2

∑
n	=0

PijPklGik,j l (Rn) (10)

is a conditionally convergent sum of pairwise elastic interac-
tions between a defect and its periodic images situated at Rn.
The term

Ecorr
int = − 1

2Vcell

∑
n	=0

∫
Vcell

PijPklGik,j l (Rn − r)d3r (11)

regularizes the strain produced by the periodic images and
ensures the absolute convergence of the sum Eq. (10). The
self-strain correction energy is

Ecorr
strain = −1

2
Pij

(−ε̄D
ij

) = Pij

2Vcell

∫
Vcell

εD
ij (r)d3r. (12)

Since in a DFT calculation we do not explicitly compute
εD
ij (r), and only need to correct the elastic part of the strain

field of the defect, we again use the dipole tensor approxima-
tion and write

Ecorr
strain = − 1

2Vcell

∫
Vcell

PijPklGik,j l (r)d3r. (13)

This term corrects the total energy for the effect of elastic
strain produced by the defect itself. The correction has the
same form as Eq. (11), and corresponds to the first term of the
series n = 0.

Numerically, Eqs. (11) and (13) can be conveniently repre-
sented by surface integrals through the use of the divergence
theorem [43], namely∫

Vcell

PklGik,j l (r)d3r =
∮

Scell

PkαGik,j (r)nαdS. (14)

Here n is the unit vector of external surface normal, and α de-
notes a Cartesian component of this vector. Evaluating the first
derivative of Green’s function Gik,j (r) is numerically more
expedient than the second derivative Gik,j l (r). Numerical tests
show that the results obtained using the above equations are in

013605-3



PUI-WAI MA AND S. L. DUDAREV PHYSICAL REVIEW MATERIALS 3, 013605 (2019)

TABLE I. Elastic constants (in GPa units) calculated using the Le
Page and Saxe [59] method for a two-atom cell, using a 30 × 30 ×
30 k-points mesh, and GGA-PBE exchange-correlation functional.
Atomic volumes (Å3) and lattice constants (Å) were taken from
relaxed 128 atoms perfect lattice simulations. Numbers in italic are
experimental values. Numbers in bold were computed using the
AM05 exchange-correlation functional.

C11 (GPa) C12 (GPa) C44 (GPa) �0 (Å3) a0 (Å)

Li 18.14 11.85 11.43 20.24 3.434
14.85a 12.53a 10.80a 21.27b 3.491b

Na 9.34 7.44 5.96 36.94 4.196
8.57c 7.11c 5.87c 37.71b 4.225b

K 3.91 3.44 2.70 73.63 5.281
4.17d 3.41d 2.86d 71.32b 5.225b

Rb 3.07 2.65 1.99 90.92 5.665
3.25e 2.73e 1.98e 87.10b 5.585b

Cs 2.16 1.85 1.38 116.74 6.158
2.47f 2.06f 1.48f 110.45b 6.045b

Ba 12.06 7.31 10.39 63.55 5.028
13.0g 7.6g 11.8g 63.25b 5.02b

V 279.59 142.02 26.72 13.40 2.993
308.53 147.96 31.31 12.91 2.955
227.9h 118.7h 42.6h 13.91b 3.03b

Nb 248.76 135.24 19.46 18.33 3.322
273.54 143.06 23.62 17.68 3.282
246.6h 133.2h 28.1h 17.97b 3.30b

Mo 469.07 157.72 99.71 15.77 3.160
505.43 175.26 108.04 15.24 3.124
464.7h 161.5h 108.9h 15.63h 3.15b

Ta 266.28 161.36 76.75 18.29 3.320
293.44 168.18 82.08 17.62 3.278
266.0h 161.2h 82.4h 17.97b 3.30b

W 518.26 199.77 142.09 16.14 3.184
569.73 211.52 157.16 15.61 3.149
522.4h 204.4h 160.6h 15.78b 3.16b

Cr 448.12 62.03 102.13 11.72 2.862
394.1i 88.5i 103.75i 11.94b 2.88b

Fe 289.34 152.34 107.43 11.34 2.831
243.1j 138.1j 121.9j 11.82b 2.87b

aRef. [64].
bRef. [65].
cRef. [66].
dRef. [67].
eRef. [68].
fRef. [69].
gRef. [70].
hRef. [71].
iRef. [72].
jRef. [73].

agreement with calculations performed using code ANETO
developed by Varvenne et al. [5].

The dipole tensor of a localized defect can be calculated
from macrostresses developing in a simulation box due to
the presence of a defect [5,7]. The calculation is exact if
all the nonlinear deformations associated with the defect
structure are contained entirely within the cell [7], even if
the cell size is relatively small. The dipole tensor is computed

TABLE II. The total energy Edef of a simulation cell containing
a defect, the applied strain energy Eapp, the elastic correction energy
Ecorr

el , and the formation energy EF
def of a defect in W, where the

total energy of a perfect lattice cell is Ebulk = −1658.68112eV.
The values are computed using 4×4×4 unit cells. The shape and the
volume of simulation cells containing defects are the same as those
of the perfect lattice cell, with no relaxation of boundary conditions.
All the values are given in eV units.

W Edef Eapp Ecorr
el EF

def

〈111〉d −1661.142709 0.0000 0.2101 10.2867
〈111〉c −1661.140788 0.0000 0.2100 10.2888
〈110〉d −1660.823317 0.0000 0.2401 10.5761
Tetra −1659.652937 0.0000 0.2697 11.7169
〈100〉d −1659.149546 0.0000 0.2941 12.1959
Octa −1659.074298 0.0000 0.3001 12.2652
Vac −1642.491107 0.0000 0.0083 3.2233

using the equation [4–7]

Pij = Vcell
(
Cijklε

app
kl − σ̄ij

)
, (15)

where

σ̄ij = 1

Vcell

∫
Vcell

σij dV (16)

is the average macroscopic stress in the simulation box. The
relaxation volume tensor of a defect, proportional to the so-
called λ-tensor [2], is defined as

�ij = SijklPkl, (17)

where S = C−1 is the elastic compliance tensor, satisfying
the condition CijklSklmn = 1

2 (δimδjn + δinδjm). The relaxation
volume of the defect can be computed by taking the trace of
tensor �ij , namely

�rel = T r�ij = �11 + �22 + �33. (18)

In the next section, we summarize the results of ab initio
calculations of energies and elastic properties of defects in

TABLE III. The total energy Edef of a simulation cell containing
a defect, the applied strain energy Eapp, the elastic correction energy
Ecorr

el , and the formation energy EF
def of a defect in W, where the

total energy of a perfect lattice cell is Ebulk = −1658.68112eV.
The values are computed using 4×4×4 unit cells. The shape and
the volume of simulation cells containing defects are relaxed to the
stress-free condition. All the values are given in eV units.

W Edef Eapp Ecorr
el EF

def

〈111〉d −1661.631853 −0.4825 0.2063 10.2839
〈111〉c −1661.630294 −0.4832 0.2060 10.2864
〈110〉d −1661.226956 −0.3991 0.2319 10.5798
Tetra −1660.049231 −0.3938 0.2652 11.7190
〈100〉d −1659.579432 −0.4271 0.2861 12.2012
Octa −1659.509293 −0.4320 0.2930 12.2693
Vac −1642.502871 −0.0130 0.0085 3.2242
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TABLE IV. Formation energies EF (in eV units) of various self-interstitial atom (SIA) configurations and a vacancy in bcc metals,
computed using the GGA-PBE functional. An SIA defect may adopt a 〈111〉 dumbbell, 〈111〉 crowdion, 〈110〉 dumbbell, tetrahedral site
interstitial, 〈100〉 dumbbell, and octahedral site interstitial configuration. In antiferromagnetic chromium, a 〈11ξ〉 (ξ ≈ 0.355) dumbbell is the
most stable SIA configuration.

PBE Li Na K Rb Cs Ba V Nb Mo Ta W Cr Fe

〈111〉d 0.573 0.510 0.458 0.423 0.426 1.518 2.407 3.949 7.475 4.773 10.287 6.617 5.090
〈111〉c 0.575 0.510 0.451 0.430 0.427 1.518 2.412 3.948 7.479 4.774 10.289 6.555 5.093
〈110〉d 0.637 0.540 0.483 0.464 0.446 1.765 2.676 4.204 7.580 5.479 10.576 6.515 4.321
Tetra 0.696 0.582 0.520 0.492 0.480 1.724 2.898 4.422 8.358 5.770 11.717 6.918 4.790
〈100〉d 0.782 0.667 0.606 0.564 0.556 1.831 2.833 4.502 8.890 5.889 12.196 7.275 5.463
Octa 0.785 0.663 0.612 0.566 0.560 1.858 2.895 4.618 8.916 5.946 12.265 7.354 5.555
Vac 0.488 0.341 0.305 0.269 0.255 1.019 2.036 2.646 2.787 2.864 3.223 3.004 2.190

〈11ξ〉d 6.361

all the bcc metals in the Periodic table, including alkaline,
alkaline-earth, and transition 3d, 4d, and 5d metals.

III. EQUILIBRIUM CONFIGURATIONS OF DEFECTS

The ab initio calculations described below were performed
using Vienna ab initio Simulation Package (VASP) [44–47].
We use supercells containing 4 × 4 × 4 bcc unit cells and
a 5 × 5 × 5 k-point mesh. The plane wave energy cutoff for
Li was chosen at 1500 eV, for Na and K at 780 eV, for Rb
and Cs at 660 eV, for Ba at 560 eV, and for all the other
elements at 450 eV. We used the projector augmented-wave
method potentials [48,49] and the GGA-PBE [50] exchange-
correlation functional. Defects in NM transition metals were
also explored using the AM05 exchange-correlation func-
tional [51–53]. There are 3, 7, 9, 9, 9, and 10 valence electrons
per atom in Li, Na, K, Rb, Cs, and Ba, and 11, 12, 14, 11, 12,
11, and 12 valence electrons per atom in V, Cr, Fe, Nb, Mo,
Ta, and W, respectively.

Calculations of defect structures in Cr and Fe were per-
formed in the collinear magnetic approximation. Otherwise,
we assumed the metals to be NM, in agreement with experi-
mental observations. The ground state of Cr was assumed to
be AFM. A detailed analysis shows that the true electronic
ground state of Cr has the form of a spin density wave (SDW)
[54], but within the error margin of ab initio calculations
the energy of this SDW state is practically indistinguishable
from that of the AFM state [55]. All the calculations for
Fe were performed assuming a collinear ferromagnetic (FM)
electronic ground state [56,57]. We note that in principle,
noncollinear magnetic configurations may form, due to the
spin-orbit coupling effect, in the vicinity of defects where
the atomic lattice is strongly distorted. The magnitude of
spin-orbit coupling increases rapidly as a function of atomic
number [58], and does not play a significant part in the
relatively light elements like Fe. On the other hand, heavier
metals like tungsten are NM, which justifies neglecting the
spin-orbit coupling effect in density functional calculations
performed here.

Calculations were performed as follows. For each metal,
we relaxed a simulation cell containing 128 atoms arranged in
a perfect bcc lattice structure, and computed the equilibrium
lattice constant. Then, by inserting an extra atom in the simu-
lation cell, we formed various SIA configurations, including a

〈111〉 dumbbell, a 〈111〉 crowdion, a 〈110〉 dumbbell, a tetra-
hedral site interstitial, a 〈100〉 dumbbell, and an octahedral
site interstitial, or created a vacancy by removing an atom
from a lattice site. Ion positions were then relaxed without
altering the shape and volume of the simulation cell. The
convergence condition was defined by the maximum force
acting on any atom in the cell, which was set to be less than
0.01 eV/Å.

To evaluate the relaxation volume tensor of a defect, we
require the compliance tensor Sklmn, which can be computed
from the elastic constant tensor Cijkl . Elastic constant tensors
Cijkl for various metals were computed using the Le Page
and Saxe method [59], using a two-atom simulation cell
and a 30 × 30 × 30 k-point mesh. The atomic volume �0

and the equilibrium lattice constant a0 for each metal were
derived from a 128 atom cell perfect lattice calculation. The
results are summarized in Table I together with experimental
data. The calculated values are generally in agreement with
experimental data.

To verify the validity of Eq. (6), we use tungsten as an ex-
ample. We compute Edef, Eapp, Ecorr

el , and EF
def for a vacancy

and various SIA configurations, using relaxed and unrelaxed
simulation cells. Tables II and III show that the computed
formation energies of point defects EF

def are compatible with
each other. The values of Edef can vary significantly if the sim-
ulation cell is relaxed arbitrarily without considering elastic
corrections. On the other hand, the values of defect formation
energies EF

def in tungsten, computed using the relaxed and
unrelaxed cell approaches, differ by less than 0.1%.

TABLE V. Formation energies EF (in eV units) of various self-
interstitial atom configurations and a vacancy in bcc nonmagnetic
transition metals, computed using the AM05 functional.

AM05 V Nb Mo Ta W

〈111〉d 2.905 4.256 7.866 5.086 10.810
〈111〉c 2.913 4.255 7.869 5.088 10.812
〈110〉d 3.158 4.517 7.993 5.749 11.118
Tetra 3.421 4.768 8.808 6.085 12.302
〈100〉d 3.378 4.910 9.405 6.262 12.858
Octa 3.444 5.029 9.434 6.330 12.931
Vac 2.610 2.944 3.105 3.172 3.619
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FIG. 1. Sketch of the atomic structure of a 〈111〉 self-interstitial atom dumbbell defect in a bcc metal.

In Tables IV and V, we summarize the computed formation
energies of all the point defects in all the bcc metals. With
the exception of magnetic transition metals Cr and Fe, self-
interstitial defects in all the bcc metals universally adopt
the 〈111〉 dumbbell or crowdion lowest energy configuration.
A sketch of this universal 〈111〉-type self-interstitial defect
structure is shown in Fig. 1.

The formation energies of defects given in Tables IV and
V show that the difference between energies of the 〈111〉
dumbbell and crowdion configurations is in the meV range. A
similar pattern of stability of defects was found by Nguyen-
Manh et al. [30] and Derlet et al. [31] in NM transition
metals. Our results for these metals agree with earlier calcu-
lations, and this is also confirmed by additional calculations
performed using the AM05 functional. Furthermore, we find
that the trend exhibited by configurations of defects in bcc
alkaline and alkaline-earth metals remains the same as in
NM bcc transition metals. The fact that the lowest energy

configuration of a defect depends only on the crystal structure
and does not depend, for example, on the directionality of
bonding between the atoms in a metal is unexpected, and is
one of the key findings of this paper.

Figure 2 shows a two-dimensional plot of electron charge
density difference in sodium and tungsten, computed for a
〈111〉 dumbbell SIA defect in the (2̄11) plane. Electron charge
density difference equals the fully convergent electron density
computed ab initio minus the superposition of atomic charge
densities. The two-dimensional plots show that interatomic
bonding in the two metals differs significantly, and is mediated
by s and d electrons, respectively. Still, the lowest-energy
structure of the defect is the same in both metals. A defect
forms an area of strong local deformation extended in the
〈111〉 direction. The distance between the atoms in a 〈111〉
strings is the shortest in bcc lattice. It appears that in W the
defect structure is stabilized by the increase of electron density
between atoms in the 〈111〉 string containing an extra atom,

FIG. 2. Two-dimensional plots of electron charge density difference in sodium (left) and tungsten (right), computed for a 〈111〉 dumbbell
SIA defect in the (2̄11) plane. Electron charge density difference equals the fully convergent electron density computed ab initio minus the
superposition of atomic charge densities.
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FIG. 3. Formation energies of various self-interstitial atom (SIA) defect configurations in bcc metals. Formation energies are given taking
the formation energy of a 〈111〉 dumbbell as a reference for a given metal.

similar to bonds forming in a molecule [60]. In sodium, the
charge density difference shows no evidence of directional or
covalent molecular bonding, and the electronic phenomenon
responsible for the anomalously high stability of the 〈111〉
defect structure appears elusive.

Figure 3 illustrates, in a graphical form, the data listed in
Table IV. In the figure, all the values are shown relative to
the 〈111〉 dumbbell formation energy. Figure 3 shows that in
all the NM bcc metals, an SIA defect adopts either a 〈111〉
dumbbell or a 〈111〉 crowdion configuration as the lowest
energy state. Swinburne et al. [22], using DFT and the nudge
elastic band (NEB) method, showed that a 〈111〉 SIA in tung-
sten migrates through a sequence of dumbbell↔crowdion↔
dumbbell steps with a barrier that is as low as 2 meV.
Given such a low migration barrier, it is hardly surprising
that quantum fluctuations of atomic positions are able to
assist the movement of an SIA through the lattice at very
low temperatures [27]. The data given in Table IV explain
why in many bcc metals, SIA defects are able to migrate at
temperatures lower than 6 K, in agreement with resistivity
recovery experiments [24].

Magnetic transition metals Cr and Fe are the exceptions.
In Fe, a 〈110〉 dumbbell is the most stable configuration of an
SIA defect [29–31]. Fu et al. [29] showed that this explains
the origin of the relatively high temperature of stage I of
resistivity recovery in electron irradiated iron, which is close

to 120 K [24]. For a long time, the structure of defects in
Cr remained uncertain. We have found [41] that the most
stable SIA configuration in Cr is a 〈11ξ 〉 dumbbell, where
ξ = 0.355 for the AFM state and ξ = 0.405 for the NM state.
Calculations suggest that the defect migration pathway in Cr
follows a translation-rotation pattern, changing from a 〈11ξ 〉
to an adjacent 〈ξ11〉 dumbbell configuration [41].

The elements of dipole tensors Pij and relaxation volume
tensors �ij for all the defects in all the bcc metals are given in
Tables VI–XXIV. We have also determined the eigenvalues
�(i) of relaxation volume tensors, and the total relaxation
volumes of defects �rel that are required as input for finite
element calculations of macroscopic stresses and strains [42].
The eigenvectors of �ij are given in Table XXV. Using
these parameters, one can evaluate the strength of elastic
interaction between points defects, and between a point defect
and any strain field in a material. The quantities given in
Tables VI–XXV relate parameters of defects, derived from
simulations performed on the electronic scale, to continuum
elasticity. In general, it is necessary to define three parame-
ters, namely the eigenvalues of tensors Pij or �ij , to fully
characterize the elastic field of a point defect. The eigen-
vectors reflect the symmetry of a particular configuration of
a defect. They remain the same for the same defect config-
uration, whereas the eigenvalues vary from one material to
another.

TABLE VI. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Li.

Li P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 2.071 2.071 2.071 0.796 0.796 0.796 7.930 7.930 7.930 5.577 5.577 5.577 2.353 2.353 19.084 1.175
〈111〉c 2.063 2.063 2.063 0.761 0.761 0.761 7.899 7.899 7.899 5.334 5.334 5.334 2.566 2.566 18.567 1.171
〈110〉d 2.109 2.188 2.188 0.000 0.727 0.000 6.936 8.947 8.947 0.000 5.096 0.000 6.936 3.851 14.043 1.227
Tetra 2.196 2.160 2.160 0.000 0.000 0.000 8.923 8.011 8.011 0.000 0.000 0.000 8.923 8.011 8.011 1.232
〈100〉d 2.764 1.911 1.911 0.000 0.000 0.000 22.893 1.164 1.164 0.000 0.000 0.000 22.893 1.164 1.164 1.246
Octa 1.898 1.898 2.754 0.000 0.000 0.000 1.094 1.094 22.892 0.000 0.000 0.000 1.094 1.094 22.892 1.239
Vac −0.937 −0.937 −0.937 0.000 0.000 0.000 −3.589 −3.589 −3.589 0.000 0.000 0.000 −3.589 −3.589 −3.589 −0.532
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TABLE VII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Na.

Na P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 2.468 2.468 2.468 0.889 0.889 0.889 16.326 16.326 16.326 11.946 11.946 11.946 4.380 4.380 40.219 1.326
〈111〉c 2.461 2.461 2.461 0.882 0.882 0.882 16.279 16.279 16.279 11.851 11.851 11.851 4.428 4.428 39.982 1.322
〈110〉d 2.575 2.478 2.478 0.000 0.738 0.000 22.068 13.871 13.871 0.000 9.924 0.000 22.068 3.947 23.794 1.348
Tetra 2.583 2.559 2.559 0.000 0.000 0.000 18.345 16.292 16.292 0.000 0.000 0.000 18.345 16.292 16.292 1.379
〈100〉d 3.160 2.299 2.299 0.000 0.000 0.000 65.698 −7.190 −7.190 0.000 0.000 0.000 65.698 −7.190 −7.190 1.389
Octa 2.389 2.389 3.127 0.000 0.000 0.000 −3.403 −3.403 59.092 0.000 0.000 0.000 −3.403 −3.403 59.092 1.416
Vac −0.824 −0.824 −0.824 0.000 0.000 0.000 −5.451 −5.451 −5.451 0.000 0.000 0.000 −5.451 −5.451 −5.451 −0.443

TABLE VIII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for K.

K P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 2.260 2.260 2.260 0.793 0.793 0.793 33.581 33.581 33.581 23.572 23.572 23.572 10.009 10.009 80.725 1.368
〈111〉c 2.272 2.272 2.272 0.760 0.760 0.760 33.761 33.761 33.761 22.588 22.588 22.588 11.174 11.174 78.937 1.376
〈110〉d 2.316 2.293 2.293 0.000 0.743 0.000 39.646 31.461 31.461 0.000 22.085 0.000 39.646 9.376 53.546 1.393
Tetra 2.347 2.356 2.356 0.000 0.000 0.000 32.914 35.995 35.995 0.000 0.000 0.000 32.914 35.995 35.995 1.425
〈100〉d 2.875 2.144 2.144 0.000 0.000 0.000 201.895 −47.715 −47.715 0.000 0.000 0.000 201.895 −47.715 −47.715 1.446
Octa 2.167 2.167 2.846 0.000 0.000 0.000 −41.774 −41.774 190.251 0.000 0.000 0.000 −41.774 −41.774 190.251 1.449
Vac −0.656 −0.656 −0.656 0.000 0.000 0.000 −9.744 −9.744 −9.744 0.000 0.000 0.000 −9.744 −9.744 −9.744 −0.397

TABLE IX. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Rb.

Rb P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 2.232 2.232 2.232 0.774 0.774 0.774 42.696 42.696 42.696 31.146 31.146 31.146 11.550 11.550 104.987 1.409
〈111〉c 2.235 2.235 2.235 0.782 0.782 0.782 42.745 42.745 42.745 31.448 31.448 31.448 11.297 11.297 105.641 1.410
〈110〉d 2.244 2.274 2.274 0.000 0.794 0.000 35.517 47.187 47.187 0.000 31.965 0.000 35.517 15.222 79.151 1.429
Tetra 2.248 2.354 2.354 0.000 0.000 0.000 17.093 57.968 57.968 0.000 0.000 0.000 17.093 57.968 57.968 1.463
〈100〉d 2.826 2.146 2.146 0.000 0.000 0.000 221.461 −42.670 −42.670 0.000 0.000 0.000 221.461 −42.670 −42.670 1.497
Octa 2.148 2.148 2.824 0.000 0.000 0.000 −42.227 −42.227 220.622 0.000 0.000 0.000 −42.227 −42.227 220.622 1.498
Vac −0.625 −0.625 −0.625 0.000 0.000 0.000 −11.945 −11.945 −11.945 0.000 0.000 0.000 −11.945 −11.945 −11.945 −0.394

TABLE X. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Cs.

Cs P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 2.066 2.066 2.066 0.722 0.722 0.722 56.556 56.556 56.556 41.921 41.921 41.921 14.635 14.635 140.399 1.453
〈111〉c 2.066 2.066 2.066 0.725 0.725 0.725 56.572 56.572 56.572 42.084 42.084 42.084 14.488 14.488 140.740 1.454
〈110〉d 2.072 2.057 2.057 0.000 0.698 0.000 61.527 53.917 53.917 0.000 40.547 0.000 61.527 13.371 94.464 1.451
Tetra 2.083 2.151 2.151 0.000 0.000 0.000 34.847 69.993 69.993 0.000 0.000 0.000 34.847 69.993 69.993 1.498
〈100〉d 2.656 1.971 1.971 0.000 0.000 0.000 294.306 −56.839 −56.839 0.000 0.000 0.000 294.306 −56.839 −56.839 1.547
Octa 2.002 2.002 2.616 0.000 0.000 0.000 −44.451 −44.451 270.159 0.000 0.000 0.000 −44.451 −44.451 270.159 1.553
Vac −0.501 −0.501 −0.501 0.000 0.000 0.000 −13.726 −13.726 −13.726 0.000 0.000 0.000 −13.726 −13.726 −13.726 −0.353

TABLE XI. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Ba.

Ba P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 4.098 4.098 4.098 2.226 2.226 2.226 24.611 24.611 24.611 17.171 17.171 17.171 7.440 7.440 58.953 1.162
〈111〉c 4.083 4.083 4.083 2.260 2.260 2.260 24.519 24.519 24.519 17.432 17.432 17.432 7.087 7.087 59.382 1.157
〈110〉d 4.061 3.822 3.822 0.000 2.176 0.000 28.805 20.742 20.742 0.000 16.786 0.000 28.805 3.956 37.527 1.106
Tetra 3.064 3.843 3.843 0.000 0.000 0.000 3.980 30.286 30.286 0.000 0.000 0.000 3.980 30.286 30.286 1.016
〈100〉d 4.396 2.872 2.872 0.000 0.000 0.000 54.604 3.143 3.143 0.000 0.000 0.000 54.604 3.143 3.143 0.958
Octa 2.706 2.706 4.165 0.000 0.000 0.000 2.750 2.750 52.014 0.000 0.000 0.000 2.750 2.750 52.014 0.905
Vac −1.208 −1.208 −1.208 0.000 0.000 0.000 −7.256 −7.256 −7.256 0.000 0.000 0.000 −7.256 −7.256 −7.256 −0.343
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TABLE XII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for V.

V P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 23.140 23.140 23.140 −0.029 −0.029 −0.029 6.578 6.578 6.578 −0.086 −0.086 −0.086 6.664 6.664 6.406 1.472
〈111〉c 23.143 23.143 23.143 −0.081 −0.081 −0.081 6.579 6.579 6.579 −0.244 −0.244 −0.244 6.822 6.822 6.092 1.473
〈110〉d 19.264 24.929 24.929 0.000 −0.003 0.000 2.152 8.748 8.748 0.000 −0.009 0.000 2.152 8.757 8.739 1.466
Tetra 24.501 22.993 22.993 0.000 0.000 0.000 7.850 6.093 6.093 0.000 0.000 0.000 7.850 6.093 6.093 1.495
〈100〉d 26.444 22.815 22.815 0.000 0.000 0.000 9.647 5.421 5.421 0.000 0.000 0.000 9.647 5.421 5.421 1.529
Octa 22.761 22.761 26.618 0.000 0.000 0.000 5.338 5.338 9.830 0.000 0.000 0.000 5.338 5.338 9.830 1.530
Vac −5.515 −5.515 −5.515 0.000 0.000 0.000 −1.568 −1.568 −1.568 0.000 0.000 0.000 −1.568 −1.568 −1.568 −0.351

TABLE XIII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for V using the AM05
exchange-correlation functional.

V P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 21.261 21.261 21.261 −0.022 −0.022 −0.022 5.636 5.636 5.636 −0.055 −0.055 −0.055 5.691 5.691 5.525 1.310
〈111〉c 21.222 21.222 21.222 −0.078 −0.078 −0.078 5.625 5.625 5.625 −0.201 −0.201 −0.201 5.826 5.826 5.224 1.307
〈110〉d 17.189 23.148 23.148 0.000 0.066 0.000 1.645 7.591 7.591 0.000 0.169 0.000 1.645 7.423 7.760 1.304
Tetra 22.560 20.897 20.897 0.000 0.000 0.000 6.792 5.133 5.133 0.000 0.000 0.000 6.792 5.133 5.133 1.322
〈100〉d 24.699 20.707 20.707 0.000 0.000 0.000 8.497 4.514 4.514 0.000 0.000 0.000 8.497 4.514 4.514 1.358
Octa 20.695 20.695 24.907 0.000 0.000 0.000 4.457 4.457 8.660 0.000 0.000 0.000 4.457 4.457 8.660 1.361
Vac −7.791 −7.791 −7.791 0.000 0.000 0.000 −2.065 −2.065 −2.065 0.000 0.000 0.000 −2.065 −2.065 −2.065 −0.480

TABLE XIV. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Nb.

Nb P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 30.772 30.772 30.772 2.994 2.994 2.994 9.495 9.495 9.495 12.324 12.324 12.324 −2.829 −2.829 34.143 1.554
〈111〉c 30.758 30.758 30.758 2.959 2.959 2.959 9.491 9.491 9.491 12.181 12.181 12.181 −2.690 −2.690 33.852 1.553
〈110〉d 29.739 30.813 30.813 0.000 1.443 0.000 8.387 9.902 9.902 0.000 5.938 0.000 8.387 3.964 15.841 1.538
Tetra 31.916 30.687 30.687 0.000 0.000 0.000 10.752 9.017 9.017 0.000 0.000 0.000 10.752 9.017 9.017 1.571
〈100〉d 37.069 30.512 30.512 0.000 0.000 0.000 16.259 7.005 7.005 0.000 0.000 0.000 16.259 7.005 7.005 1.651
Octa 31.153 31.153 35.689 0.000 0.000 0.000 7.945 7.945 14.347 0.000 0.000 0.000 7.945 7.945 14.347 1.650
Vac −8.805 −8.805 −8.805 0.000 0.000 0.000 −2.717 −2.717 −2.717 0.000 0.000 0.000 −2.717 −2.717 −2.717 −0.445

TABLE XV. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Nb using the AM05
exchange-correlation functional.

Nb P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 31.698 31.698 31.698 3.004 3.004 3.004 9.074 9.074 9.074 10.191 10.191 10.191 −1.117 −1.117 29.456 1.540
〈111〉c 31.681 31.681 31.681 2.964 2.964 2.964 9.070 9.070 9.070 10.054 10.054 10.054 −0.985 −0.985 29.178 1.539
〈110〉d 30.455 31.552 31.552 0.000 1.256 0.000 8.030 9.377 9.377 0.000 4.261 0.000 8.030 5.116 13.638 1.515
Tetra 32.739 31.201 31.201 0.000 0.000 0.000 10.338 8.450 8.450 0.000 0.000 0.000 10.338 8.450 8.450 1.541
〈100〉d 37.685 31.168 31.168 0.000 0.000 0.000 14.879 6.878 6.878 0.000 0.000 0.000 14.879 6.878 6.878 1.620
Octa 31.823 31.823 36.123 0.000 0.000 0.000 7.761 7.761 13.040 0.000 0.000 0.000 7.761 7.761 13.040 1.616
Vac −9.175 −9.175 −9.175 0.000 0.000 0.000 −2.627 −2.627 −2.627 0.000 0.000 0.000 −2.627 −2.627 −2.627 −0.446
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TABLE XVI. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Mo.

Mo P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 39.601 39.601 39.601 7.609 7.609 7.609 8.087 8.087 8.087 6.113 6.113 6.113 1.975 1.975 20.313 1.538
〈111〉c 39.597 39.597 39.597 7.599 7.599 7.599 8.087 8.087 8.087 6.105 6.105 6.105 1.982 1.982 20.297 1.538
〈110〉d 42.470 39.944 39.944 0.000 6.757 0.000 9.196 7.896 7.896 0.000 5.429 0.000 9.196 2.468 13.325 1.584
Tetra 37.531 43.685 43.685 0.000 0.000 0.000 6.391 9.558 9.558 0.000 0.000 0.000 6.391 9.558 9.558 1.617
〈100〉d 48.989 40.370 40.370 0.000 0.000 0.000 11.788 7.353 7.353 0.000 0.000 0.000 11.788 7.353 7.353 1.680
Octa 39.601 39.601 50.174 0.000 0.000 0.000 6.994 6.994 12.435 0.000 0.000 0.000 6.994 6.994 12.435 1.675
Vac −9.576 −9.576 −9.576 0.000 0.000 0.000 −1.956 −1.956 −1.956 0.000 0.000 0.000 −1.956 −1.956 −1.956 −0.372

TABLE XVII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Mo using the AM05
exchange-correlation functional.

Mo P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 40.358 40.358 40.358 7.777 7.777 7.777 7.554 7.554 7.554 5.767 5.767 5.767 1.787 1.787 19.088 1.487
〈111〉c 40.352 40.352 40.352 7.771 7.771 7.771 7.553 7.553 7.553 5.762 5.762 5.762 1.791 1.791 19.076 1.487
〈110〉d 43.230 40.736 40.736 0.000 7.015 0.000 8.588 7.377 7.377 0.000 5.201 0.000 8.588 2.176 12.578 1.532
Tetra 38.319 44.282 44.282 0.000 0.000 0.000 5.987 8.881 8.881 0.000 0.000 0.000 5.987 8.881 8.881 1.558
〈100〉d 49.636 41.001 41.001 0.000 0.000 0.000 11.007 6.817 6.817 0.000 0.000 0.000 11.007 6.817 6.817 1.617
Octa 40.239 40.239 50.956 0.000 0.000 0.000 6.467 6.467 11.668 0.000 0.000 0.000 6.467 6.467 11.668 1.614
Vac −10.442 −10.442 −10.442 0.000 0.000 0.000 −1.955 −1.955 −1.955 0.000 0.000 0.000 −1.955 −1.955 −1.955 −0.385

TABLE XVIII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Ta.

Ta P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 34.153 34.153 34.153 6.518 6.518 6.518 9.290 9.290 9.290 6.803 6.803 6.803 2.487 2.487 22.896 1.524
〈111〉c 34.155 34.155 34.155 6.493 6.493 6.493 9.291 9.291 9.291 6.777 6.777 6.777 2.514 2.514 22.845 1.524
〈110〉d 31.793 34.491 34.491 0.000 5.451 0.000 6.391 10.511 10.511 0.000 5.690 0.000 6.391 4.821 16.200 1.499
Tetra 34.739 34.989 34.989 0.000 0.000 0.000 9.241 9.622 9.622 0.000 0.000 0.000 9.241 9.622 9.622 1.557
〈100〉d 42.520 33.765 33.765 0.000 0.000 0.000 18.891 5.522 5.522 0.000 0.000 0.000 18.891 5.522 5.522 1.636
Octa 34.134 34.134 42.378 0.000 0.000 0.000 5.836 5.836 18.425 0.000 0.000 0.000 5.836 5.836 18.425 1.645
Vac −10.119 −10.119 −10.119 0.000 0.000 0.000 −2.753 −2.753 −2.753 0.000 0.000 0.000 −2.753 −2.753 −2.753 −0.451

TABLE XIX. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Ta using the AM05
exchange-correlation functional.

Ta P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 34.672 34.672 34.672 6.634 6.634 6.634 8.820 8.820 8.820 6.475 6.475 6.475 2.346 2.346 21.770 1.502
〈111〉c 34.669 34.669 34.669 6.617 6.617 6.617 8.820 8.820 8.820 6.458 6.458 6.458 2.361 2.361 21.736 1.502
〈110〉d 32.291 34.687 34.687 0.000 5.389 0.000 6.578 9.642 9.642 0.000 5.259 0.000 6.578 4.383 14.902 1.468
Tetra 34.868 35.361 35.361 0.000 0.000 0.000 8.533 9.164 9.164 0.000 0.000 0.000 8.533 9.164 9.164 1.525
〈100〉d 43.261 33.980 33.980 0.000 0.000 0.000 17.345 5.475 5.475 0.000 0.000 0.000 17.345 5.475 5.475 1.606
Octa 34.482 34.482 43.268 0.000 0.000 0.000 5.771 5.771 17.009 0.000 0.000 0.000 5.771 5.771 17.009 1.621
Vac −10.703 −10.703 −10.703 0.000 0.000 0.000 −2.723 −2.723 −2.723 0.000 0.000 0.000 −2.723 −2.723 −2.723 −0.464
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TABLE XX. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for W.

W P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 52.754 52.754 52.754 13.128 13.128 13.128 9.209 9.209 9.209 7.402 7.402 7.402 1.808 1.808 24.012 1.712
〈111〉c 52.745 52.745 52.745 13.151 13.151 13.151 9.207 9.207 9.207 7.414 7.414 7.414 1.793 1.793 24.036 1.711
〈110〉d 56.960 52.557 52.557 0.000 11.277 0.000 10.908 8.693 8.693 0.000 6.358 0.000 10.908 2.335 15.050 1.753
Tetra 47.359 59.114 59.114 0.000 0.000 0.000 5.693 11.606 11.606 0.000 0.000 0.000 5.693 11.606 11.606 1.791
〈100〉d 65.920 53.379 53.379 0.000 0.000 0.000 14.254 7.945 7.945 0.000 0.000 0.000 14.254 7.945 7.945 1.868
Octa 52.741 52.741 67.209 0.000 0.000 0.000 7.623 7.623 14.901 0.000 0.000 0.000 7.623 7.623 14.901 1.868
Vac −9.984 −9.984 −9.984 0.000 0.000 0.000 −1.743 −1.743 −1.743 0.000 0.000 0.000 −1.743 −1.743 −1.743 −0.324

TABLE XXI. Elements of elastic dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume �0 units) computed for W. Simulation cells
containing defects were relaxed to the stress-free condition.

W P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 52.340 52.340 52.340 12.854 12.854 12.854 9.137 9.137 9.137 7.247 7.247 7.247 1.890 1.890 23.630 1.698
〈111〉c 52.325 52.325 52.325 12.897 12.897 12.897 9.134 9.134 9.134 7.271 7.271 7.271 1.863 1.863 23.676 1.698
〈110〉d 56.199 52.115 52.115 0.000 11.361 0.000 10.705 8.650 8.650 0.000 6.405 0.000 10.705 2.245 15.055 1.735
Tetra 45.940 59.120 59.120 0.000 0.000 0.000 5.133 11.764 11.764 0.000 0.000 0.000 5.133 11.764 11.764 1.776
〈100〉d 65.719 52.807 52.807 0.000 0.000 0.000 14.300 7.805 7.805 0.000 0.000 0.000 14.300 7.805 7.805 1.853
Octa 51.994 51.994 67.258 0.000 0.000 0.000 7.405 7.405 15.084 0.000 0.000 0.000 7.405 7.405 15.084 1.852
Vac −10.112 −10.112 −10.112 0.000 0.000 0.000 −1.765 −1.765 −1.765 0.000 0.000 0.000 −1.765 −1.765 −1.765 −0.328

TABLE XXII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for W using the AM05
exchange-correlation functional.

W P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 53.843 53.843 53.843 13.218 13.218 13.218 8.689 8.689 8.689 6.738 6.738 6.738 1.952 1.952 22.164 1.669
〈111〉c 53.843 53.843 53.843 13.243 13.243 13.243 8.689 8.689 8.689 6.750 6.750 6.750 1.939 1.939 22.190 1.669
〈110〉d 57.374 53.705 53.705 0.000 11.768 0.000 9.958 8.318 8.318 0.000 5.999 0.000 9.958 2.319 14.316 1.703
Tetra 48.127 59.932 59.932 0.000 0.000 0.000 5.517 10.797 10.797 0.000 0.000 0.000 5.517 10.797 10.797 1.736
〈100〉d 66.337 53.846 53.846 0.000 0.000 0.000 13.086 7.500 7.500 0.000 0.000 0.000 13.086 7.500 7.500 1.799
Octa 53.259 53.259 68.305 0.000 0.000 0.000 7.161 7.161 13.891 0.000 0.000 0.000 7.161 7.161 13.891 1.807
Vac −10.951 −10.951 −10.951 0.000 0.000 0.000 −1.767 −1.767 −1.767 0.000 0.000 0.000 −1.767 −1.767 −1.767 −0.340

TABLE XXIII. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Cr.

Cr P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 18.728 18.728 18.728 4.617 4.617 4.617 5.244 5.244 5.244 3.622 3.622 3.622 1.622 1.622 12.487 1.343
〈111〉c 19.630 19.630 19.630 4.882 4.882 4.882 5.497 5.497 5.497 3.830 3.830 3.830 1.667 1.667 13.156 1.407
〈110〉d 18.955 20.530 20.530 0.000 4.790 0.000 5.166 5.820 5.820 0.000 3.757 0.000 5.166 2.062 9.577 1.434
Tetra 16.255 25.473 25.474 0.000 0.000 0.000 3.722 7.547 7.548 0.000 0.000 0.000 3.722 7.547 7.548 1.606
〈100〉d 29.090 19.150 19.150 0.000 0.000 0.000 9.040 4.915 4.915 0.000 0.000 0.000 9.040 4.915 4.915 1.610
Octa 17.321 17.321 32.707 0.000 0.000 0.000 4.158 4.158 10.543 0.000 0.000 0.000 4.158 4.158 10.543 1.609
Vac −5.777 −5.777 −5.777 0.000 0.000 0.000 −1.618 −1.618 −1.618 0.000 0.000 0.000 −1.618 −1.618 −1.618 −0.414

〈11ξ〉d 18.389 18.389 21.882 4.040 2.058 2.058 4.987 4.987 6.436 3.168 1.614 1.614 1.819 4.856 9.734 1.400
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TABLE XXIV. Elements of the dipole tensor Pij (in eV units), the relaxation volume tensor �ij (in Å3 units), eigenvalues of the relaxation
volume tensor �(i ) (in Å3 units), and the relaxation volume of the defect �rel (in atomic volume units �0) computed for Fe.

Fe P11 P22 P33 P12 P23 P31 �11 �22 �33 �12 �23 �31 �(1) �(2) �(3) �rel

〈111〉d 23.465 23.465 23.472 5.850 5.851 5.851 6.327 6.327 6.335 4.362 4.363 4.363 1.964 1.964 15.051 1.673
〈111〉c 23.186 23.186 23.193 5.903 5.904 5.904 6.252 6.252 6.259 4.402 4.402 4.402 1.850 1.850 15.056 1.653
〈110〉d 25.832 21.143 21.150 0.000 5.122 0.000 9.777 4.294 4.302 0.000 3.819 0.000 9.777 0.475 8.122 1.620
Tetra 21.396 23.331 23.339 0.000 0.001 0.000 4.607 6.871 6.880 0.000 0.000 0.000 4.607 6.871 6.880 1.619
〈100〉d 32.284 22.931 22.937 0.000 0.000 0.000 14.316 3.378 3.385 0.000 0.000 0.000 14.316 3.378 3.385 1.858
Octa 23.273 23.273 31.302 0.000 0.000 0.000 3.869 3.869 13.258 0.000 0.000 0.000 3.869 3.869 13.258 1.851
Vac −3.081 −3.081 −3.081 0.000 0.000 0.000 −0.831 −0.831 −0.831 0.000 0.000 0.000 −0.831 −0.831 −0.831 −0.220

Defects in the NM transition metals were studied using the
PBE and AM05 functionals, which produce slightly different
results. If we use the relaxation volume �rel of a defect as a
criterion to compare the values obtained using PBE and AM05
functionals then, with the exception of vanadium, the differ-
ence is smaller than 5%. This 5% error is in fact compatible
with the error margin of the linear elasticity approximation
resulting from the ratio of sizes of the core of the defect
and the simulation cell [7]. Using semiempirical potentials
and molecular statics calculations, we found that obtaining
a converged value of the dipole tensor requires using a cell
containing at least a few thousand atoms [7]. For vanadium,
the difference between the values computed using the two
functionals is greater. At this point, it is difficult to establish
what exchange-correlation functional is more suitable for
quantitative simulations of elastic properties of defects in
vanadium.

We have also computed elastic parameters of defects in
tungsten, using zero stress simulations. Tables XX and XXI
show values computed using fixed and relaxed boundary con-
ditions. The values computed using the two different methods
are comparable, and the difference between them is due to
the fact that a finite value of applied strain was used when
computing the elastic correction, whereas linear elasticity is
valid only in the limit of infinitesimally small strain.

IV. MIGRATION OF A SELF-INTERSTITIAL ATOM
DEFECT IN IRON AND CHROMIUM

The translation-rotation migration step of a 〈110〉 dumbbell
in Fe was examined using the NEB method calculations

TABLE XXV. Eigenvectors corresponding to the eigenvalues
of the relaxation volume tensor of various defect configurations.
Eigenvectors for the relaxation volume tensor of a 〈11ξ〉 dumbbell
are given only for Cr.

e(1) e(2) e(3)

〈111〉d (1 1 −2) (−1 1 0) (1 1 1)
〈111〉c (1 1 −2) (−1 1 0) (1 1 1)
〈110〉d (1 0 0) (0 −1 1) (0 1 1)
Tetra (1 0 0) (0 1 0) (0 0 1)
〈100〉d (1 0 0) (0 1 0) (0 0 1)
Octa (1 0 0) (0 1 0) (0 0 1)
Vac (1 0 0) (0 1 0) (0 0 1)

〈11ξ〉d (−1 1 0) (−0.4893 −0.4893 1) (1.0218 1.0218 1)

[61,62]. Eleven images were used to represent the trajectory
linking the initial and final equilibrium positions of the de-
fect. Figure 4 shows how the energy of the defect varies
when a 〈110〉 dumbbell migrates along its transition pathway.
All the data points are corrected according to Eq. (6). The
saddle point energy of 0.34 eV for migration of an SIA
defect in Fe agrees with the value computed by Fu et al.
[29].

Since Fe is FM, it is interesting to study its magnetic
configuration. During defect migration, the magnetic config-
uration changes according to the position of the core of the
〈110〉 dumbbell. Changes of magnetic moments are shown in
Figs. 5 and 6. At the core of the 〈110〉 dumbbell, magnetic
moments of the two atoms are ordered antiferromagnetically
with respect to the lattice. When the core migrates, one of
the two core atoms replaces an adjacent atom. The mag-
netic configuration remains the same at the two equilibrium
positions, whereas at the saddle point we observe that the
magnetic moment of only one atom is antiferromagnetically
ordered with respect to the surrounding lattice. Given that
migration of the defect can occur at a relatively low tem-
perature, well below the Curie temperature of iron, it would
be interesting to explore whether the magnetic dynamics of
atomic moments has an effect on the migration pathway. In
Fig. 5, we also plot the Voronoi volume of atoms in the core
of the defect. The data exhibit a positive magneto-volume
correlation, i.e., a smaller value of the Voronoi volume of an

FIG. 4. Variation of energy along the migration pathway of a
〈110〉 dumbbell in Fe.
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FIG. 5. Magnetic moments and the Voronoi volume of the three
atoms undergoing the greatest displacement during the migration of
a 〈110〉 dumbbell in Fe. Atoms 1 and 2 are the two atoms that are
initially at the center of the SIA configuration, whereas atoms 2 and
3 form of the center of the defect at its final position.

atom is associated with a smaller atomic magnetic moment.
The Voronoi volume was calculated using program Voro++
[63].

Variation of the elements of elastic dipole tensor of a
〈110〉 dumbbell in Fe along the defect migration pathway is
illustrated in Fig. 7. The evolution of the relaxation volume
tensor along the same pathway is shown in Fig. 8. The figures
show that elements P11 and P33 change due to the change
of orientation of the 〈110〉 defect from its initial position in
the x − y plane to its final position in the y − z plane. A
similar variation is observed for the off-diagonal elements
of tensor Pij , and for the elements of the relaxation volume
tensor.

The above results pose an interesting question, related to
the timescale of the process of migration, and the validity
of static elastic approximation for the treatment of defect
configurations along the migration pathway. The static elastic
approximation remains valid if the process of migration is
slow in comparison with the time required for the sound
waves to propagate to the object with which a migrating defect
interacts. At larger distances between any two interacting

FIG. 6. Migration of a 〈110〉 dumbbell in Fe. Top: The initial
atomic configuration; Middle: The saddle point; Bottom: The final
configuration. The color of atoms refers to the magnitude of atomic
magnetic moments given in Bohr magneton units μB .

and moving defects, one expects to observe delayed elastic
interaction, mediated by sound waves propagating through the
material slower than the time required for a defect to complete
its translation-rotation jump. Retarded time-dependent elas-
tic interactions between dislocations have been recently ex-
plored in Refs. [74,75]. Also, thermal fluctuations contribute
to the force acting between elastically interacting defects
[76].
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FIG. 7. Variation of elements of the dipole tensor of a 〈110〉
dumbbell in Fe along the defect migration pathway.

V. CONCLUSIONS

In this paper, we have investigated formation and migration
energies, elastic dipole, and relaxation volume tensors of
self-interstitial and vacancy defects in all the bcc metals in
the periodic table. In all these metals, including metals of
groups 1 and 2, the lowest energy structure of an SIA defect
is universal and has the 〈111〉 symmetry. In FM Fe, an SIA
defect adopts the 〈110〉 dumbbell configuration. We have also
computed elastic dipole tensors and relaxation volumes of
self-interstitial and vacancy defects in all the bcc metals and
explored how elastic relaxation parameters evolve along the
defect migration pathways.

FIG. 8. Variation of the relaxation volume tensor of a 〈110〉
dumbbell in Fe along the defect migration pathway. The values are
given in atomic volume units.
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