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Ripplocations: A universal deformation mechanism in layered solids
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Layered solids are ubiquitous in nature: from subnanometer graphene and mica layers, to wood, laminated
composites, and paperboard at the centimeter scale, to geologic formations at the kilometer range. And while
the similarities between the latter two have been recognized [Budd et al., Philos. Trans. R. Soc. A 370, 1723
(2012)], what has not is that the same physics applies at the atomic-layer scale of crystalline solids. Herein, using
a combination of atomistic simulations of graphite and simple instrumented cylindrical indentation experiments
on various layered solids—plastic cards, thin steel, and Al sheets—we show that in all cases, confined buckling
results in an instability that leads to the nucleation of multiple, oppositely signed ripplocation boundaries
that rapidly propagate away from under the indenter in a wavelike manner. Crucially, upon unloading, they
disappear, after dissipating considerable amounts of frictional energy. Understanding ripplocation nucleation,
self-assembly, and propagation is fundamental to understanding the deformation of most layered solids.
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I. INTRODUCTION

Layered solids—defined herein as solids in which the
deformation, at least initially, is confined to two dimensions—
are ubiquitous in nature and span more than 13 orders of mag-
nitude in scale: from subnanometer graphene layers, to wood,
laminated composites, and paperboard, at the centimeter
scale, to geologic formations at the 100 km, or greater, range.
And while historically these very different systems have been
studied by their respective communities with little crosstalk,
more recently their commonalities have been appreciated
(see Ref. [1] and papers therein). In these systems, buckling,
delaminations, and nonlinearities are common themes.

In layered crystalline solids, such as graphite, mica, and
the MAX phases [2] (layered transition-metal ternary carbides
and nitrides), among many others, basal dislocations (BDs)
have long been assumed to be the operational micromech-
anism in their deformation [3–10]. In all other domains
[1]—geology [11,12], layered composites [13–15], wood
[16], laminated paperboard [17], and rubber layers [18,19]—
BDs are not invoked. Instead it has also long been appreciated
that a buckling mechanism—that typically results in kink
bands comprised of two, or more, kink boundaries (KBs)—
occurs. It follows that the fact that many crystalline layered
solids fail in compression, but not tension, by forming KBs,
which are quite similar to those seen in other fields, should
have been the first clue that perhaps invoking BDs—as some
of us [8] and others [3–10] have done—may not have been the
most fruitful avenue. Said otherwise, failure of layered solids
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is agnostic as to whether the layers are crystalline or amor-
phous. This observation alone, together with the sharpness of
Occam’s razor, suggest that BDs, whose existence requires
crystallinity, are not involved. BDs were, however, until quite
recently, “the only game in town.”

Another serious disconnect has been the one between
researchers studying crystalline layered geologic solids such
as micas, where it was assumed that BDs are the operative
micromechanism, and those working on geologic formations
that totally ignore the microscopic aspects. If BDs are impor-
tant at the microstructural level, should they not also feature
in the “big picture”? This work attempts to address some of
these discrepancies and paradoxes.

Recently, we argued that layered crystalline solids do not
deform by BDs, as commonly assumed [20–22], but rather
via the nucleation and propagation of ripplocations—a term
coined in 2015 by Kushima et al. [23] to explain near-surface
deformations in van der Waals solids. In 2016, using a com-
bination of molecular dynamics (MD) on graphite at 10 K
and transmission electron microscopy (TEM) observations on
Ti3SiC2—a MAX phase—we made the case that ripplocations
were a new micromechanism in the deformation of layered
solids. In 2017, we presented nanoindentation and TEM re-
sults obtained on Ti3SiC2 and argued that they only made
sense in a ripplocations framework [20]. Quite recently, we
also studied the nucleation of ripplocations in graphite and
defined ripplocation boundaries (RBs) to be boundaries that
are fully and spontaneously reversible. We also showed that
these RBs—that nucleate by the alignment of ripplocations
on adjacent layers—are exceedingly nonlocal, and propagate,
wavelike, away from the indented surface [22]. RBs feature
prominently in this work.

Since BDs cannot result in c-axis strain, clear evidence for
the latter rules them out [20,24]. The dilemma is best seen in
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FIG. 1. (a) Kinking of a deck of unconstrained cards loaded edge-on in compression. (b) Experimental setup used. Snapshots of
ripplocations formed when a cylindrical indenter is loaded edge-on into (c) plastic cards, (d) steel plates, and (e) graphite. The latter is a
result of a MD simulation.

Fig. 1(a); that the cards can slide relative to each other is not a
stretch. In a typical layered, hexagonal crystalline solid, such
sliding would be mediated by BDs. Such slip, however, cannot
account for the all-important c-axis strain that is observed.
Said otherwise, while BDs can explain the relative sliding of
the layers, they cannot explain what actually happens wherein
cards move normal to their planes. The leitmotiv of this paper
is that for the all-important motion normal to the layers to
occur, the cards have to buckle.

Before proceeding further, another characteristic of layered
solids that, until recently, has resisted a correct interpre-
tation is the response of kinking nonlinear elastic (KNE)
solids to compression [8,25–28]. KNE solids are character-
ized by stress-strain curves that are fully and spontaneously
reversible—not unlike the ones shown in Figs. 4(a)–4(c)—
and during which considerable energy can be dissipated per
cycle. Such behavior has been observed in the MAX phases
[28], mica [29], and graphite [30], among many other layered
solids.

The purpose of this work is to present direct macroscopic
evidence for ripplocations. Our results also finally explain
the origin of the aforementioned energy dissipation and full
reversibility observed in KNE solids. To that effect, we
loaded—edge-on with a cylindrical indenter [Fig. 1(b)]—and
filmed a deck of plastic playing cards, thin aluminum, Al,
and steel sheets. Both the loads on the indenter, P , and those
normal to the layers, PN [viz., along z in Fig. 1(b)], were
measured as a function of penetration of the indenter, h,
into the layers. Figures 1(c) and 1(d), respectively, show the
configurations obtained when the thin steel sheets and cards
were loaded. Figure 1(e) shows the results of a molecular dy-
namics (MD) simulation when 60 graphite layers are confined
and loaded with a 5-nm-diameter cylindrical indenter. The
similarity between the three configurations is obvious. What
is also undeniable is that for the most part, the wavelengths
of the ripplocations, λ, are of the same order as the indenter
diameter, δ. In some cases, λ is several times that of the
indenter radius [see Fig. 1(d)]. Note that this is only true
when the indenter diameter δ is of the same order as the layer
thicknesses t . If δ � t , the situation is different and quite
complex microstructures rapidly evolve [20,21].

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS

A. Mechanical tests

Figure 1(b) shows a schematic of the setup used in which
a set of layers is loaded edge-on with a 2.00 mm or 2.34-
mm-diameter cylindrical indenter, with its axis parallel to the
layers to be indented [the chosen coordinate axes are shown at
the bottom left of Fig. 1(b)]. The layers to be loaded are placed
between a fixed and a translating block that is equipped with a
load cell that measures the initial confining load, PN,0, as well
as the load that develops, PN,—along z—as a result of the
indenter penetrating into the layers. In a typical experiment,
40 to 60 layers are placed between the fixed and moveable
blocks [Fig. 1(b)] and a load, along z, corresponding to a PN,0

of 400, 1200, or 2400 N is applied. The indenter is then thrust,
from the top, and both the penetration or displacement, d,
and load, on the indenter, P , are recorded. Concomitantly, PN

is also recorded. Three different materials were tested: 0.3-
mm-thick plastic playing cards, 0.17-mm-thick steel sheets,
and 0.17-mm-thick Al sheets. These materials were chosen to
cover a wide range of elastic and plastic properties. Further-
more, to explore the effect of friction, a few experiments were
conducted on steel sheets that were precoated with a layer of
MoS2.

The indentations were carried out in displacement control
mode. Two types of experiments were carried out. In the first,
the indenter was thrust into the layers up to a given maximum
indentation depth, hmax, fully unloaded and reloaded to pro-
gressively higher h values (see Fig. S4 in SM [31]). In the
second, the indenter was loaded to hmax, retracted to a h <

hmax, reloaded to hmax, and unloaded to progressively lower
h values [see Figs. 4(a) and 4(b)]. All experiments ended
with the total retraction of the indenter. More details on the
mechanical tests can be found in the Supplemental Material
[31]. We also used the inclined plane method to measure
the friction between the plastic cards and the steel sheets
before and after coating the latter with MoS2. The results
are shown in Table S1. The geometries of the various setups
are summarized in Table S2 of the Supplemental Material
(SM) [31].
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FIG. 2. (a) Schematic of system used to analyze critical buckling
load on a confined layer simulating ripplocation formation at the
continuum scale. Elastic restraints modeled as springs, along the
length, act as the confinement load and neighboring layers. (b)
Comparison of measured and calculated [Eq. (2)] buckling loads for
the cards, Al, and steel sheets.

B. Buckling analysis

To demonstrate that the behavior of the indenter experi-
ments on confined layers of various materials can be mod-
eled using elastic buckling theory, and is thus instability
driven, we present a first-order approximation of the critical
buckling loads, PBk, which lead to ripplocation nucleation. To
simplify, a single layer that acts as a Euler column, loaded
axially with load, P , with a continuous elastic restraint along
its length (Fig. 2) is analyzed. L is the original length of
the layers.

The following approach is used to model the indenter load
pushing on layers, which feel the resistance laterally due
to friction from neighboring layers, and indirectly from the
confinement load restraining lateral motion. We consider the
loaded material layers to act in a homogeneous manner with
a flexural rigidity EI of the base material (e.g., plastic, alu-
minum, or steel), where E is the Young’s modulus and I is the
second moment of inertia. Here, I is assumed to be given by

I = 1
12 (nt )3b,

where t is the thickness of a single layer, n is the total number
of layers indented, and b is the width of the layers, i.e., along
the y direction (Fig. S1 in the SM). Using this expression
assumes the n layers are welded together and thus ignores
layer parallel shear. This is valid here since the confined layers
remain in contact and there is little to no relative slip observed
between the layers (as shown by images and movies in the SM
[31]). This is especially true just before the nucleation of the
ripplocations. The fact that the maxima and minima locations
of highest curvature, of the n-buckled layers, are happening in
phase also shows that the n layers can be thought to behave,
or act, as a single unit, at least for the sake of a first-order
approximation of the buckling behavior assumed herein.

The continuous restraints along the length act as the con-
finement load and neighboring layers, and are modeled by
springs of equivalent stiffness c. We assume the latter is the
measured confinement force, PN, at experimental critical load,
PN,crit , divided by the deflection of the springs (wl ). The latter
is the deflection of the layers along z, measured by the image

processing software IMAGEJ. For unit consistency with the
presented solution, we divide c by the length of the beam to
get a stiffness per unit length or N/m2. In other words,

c = PN,crit

Lwl

.

The governing buckling equation for this idealized case is
given by [32]

d4w

dx4
+ α

d2w

dx2
+ ξw = 0, (1)

where x = xi/L, w = wi/L, α = PL2/(EI ), and ξ =
cL4/(EI ).

The general solution of Eq. (1) is

w = C1 cos(Sx) + C2 sin(Sx) + C3 cos(Tx) + C4 sin(Tx),

where
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√√√√α

2
−
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α

2

)2
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2
+
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α

2

)2

− ξ .

The smallest critical load for a periodic solution is given by
[32]

PBk = 2
√

cEI . (2)

The Young’s moduli E of the Al and steel sheets were
assumed to be 69 and 200 GPa, respectively. E of the plastic
cards was measured in tension and found to be ≈0.5 GPa. Fur-
ther, the assumption of linear elasticity made for the analysis
may not hold as strongly for the plastic playing cards as for
the Al and steel.

C. Computational details

To model the indentation of graphite, we employed molec-
ular dynamics at 10 K and an adaptive intermolecular reactive
empirical bond order (AIREBO) interatomic potential [33]
to govern atomic interactions using the atomistic simulation
software package LAMMPS [34]. The simulated graphite
structure is composed of 60 layers and is approximately 50 ×
1 × 20 nm3 containing 150 000 atoms. Free surfaces were em-
ployed in the x direction, while periodic boundary conditions
were employed in the y and z directions. A 1-nm-thick region
of atoms at the bottom free surface in the x direction was held
fixed during the indentation simulation. The indentation was
performed along the negative x direction from the top free sur-
face and followed a sinusoidal path to a maximum depth of 2.5
nm and period of 100 000 time steps. Indentation of a 60-layer
graphite system was modeled using a cylindrical repulsive
potential acting along the y-direction, on all atoms within
25 Å of the indenter center. The indenter diameter was 5 nm.

To study the influence of confining pressure on the system,
various target pressures were applied in the lateral z direction,
relative to the indentation, in the x direction. The system
was equilibrated under the isothermal-isobaric ensemble to
a target normal pressure in the z direction ranging from 0
to 5000 bars. Once the target lateral pressure was achieved
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during the equilibration phase, the simulation cell length in
that direction was held fixed during the indentation phase of
the simulation. Periodic boundary conditions in the z direction
were maintained throughout equilibration and indentation in
all cases.

III. RESULTS AND DISCUSSION

Movies of indentation into the cards, steel, and Al sheets
can be found in Movies S1 to S3, respectively, in the Supple-
mental Material [31]. From these movies, it is obvious that,
in all cases, what is occurring is confined buckling. Crucially,
and despite the very different materials tested, these movies
are quite similar in that in all cases, the sequence of events
is as follows: (i) Upon initial loading, the indenter pushes the
layers more or less straight down. (ii) At a critical indentation
depth, hcrit , a very rapid nucleation of multiple, and oppositely
signed, collection of ripplocations—that are not sharp but
curved—occurs. To distinguish these from KBs, which are
irreversible, we label these ripplocation boundaries, RBs [22].
It follows that RBs, that are neither sharp nor irreversible
like KBs, are their precursors. RBs have a wavelike quality
and quite rapidly propagate to the bottom of the stacked
layers. (iii) Increasing h increases the amplitudes, but not the
wavelengths, of the RBs. (iv) With the notable exception of
the Al layers indented to a h of 3 mm (see below), all of the
other layers recovered spontaneously and almost fully upon
retraction of the indenter.

In a typical experiment, the layers are placed edge-on be-
tween the fixed and movable blocks in Fig. 1(b) and an initial
confining load, PN,0, is applied. The indenter is then thrust
into the layers while recording P , PN and the displacement.
Still frames, taken from Movie S1 of the SM [31] made
when the cards, constrained initially by a PN,0 of 400 N,
were loaded with an indenter with δ = 2 mm, are shown in
Figs. 3(a), 3(b), and 3(c). Figure 3(a) shows the cards just
before the nucleation of the RBs; Fig. 3(b) shows the cards
0.5 s later, showing the nucleation of RBs of alternating
orientations [depicted by red arrows in Fig. 3(b)], starting
at the top. Figures 3(c) and 3(d) show the configuration at
hmax = 2.5 mm for PN,0 of 400 and 2400 N, respectively. Note
that the RBs penetrate deeper for lower PN,0. The story these
frames tell is in total accord with points (i) to (iv) made above.

Still frames taken from Movie S2 of the SM [31] made
when the steel sheets—constrained by a PN,0 of 400 N—were
loaded are shown in Fig. S2 of the SM [31]. Despite the vastly
different elastic properties of these layers, compared to the
cards, the response was qualitatively identical. Here again,
RBs (red arrows in Fig. S2b of the SM [31]) nucleate at a Pcrit .
An examination of these still frames, and others (not shown),
is also in total accord with points (i) to (iv) made above.

Still frames from the movie made when the Al sheets—
constrained by a PN,0 of 400 N—were indented, before
and just after the RBs (denoted by red arrows), nucleated
are shown in Fig. S3a and S3b, respectively, of the SM
[31]. Figure S3c is the same as Fig. S3a, but at hmax ≈
2.5 mm. Figure S3d shows the configuration after total
unloading, where it is obvious that the initial configuration
was more or less restored [31]. Here again these frames are
in total accord with points (i) to (iv) made above. Figure S3e

FIG. 3. Still frames from movie (see movie 1 in SM [31]) made
when 0.31-mm-thick cards—PN,0 = 400 N—were loaded with a 2-
mm-diameter cylindrical indenter (top): (a) Just before nucleation of
RBs, (b) 0.5 s later showing RBs (red arrows) starting at the top, and
(c) at hmax of 2.5 mm. (d) Same as (c), but for PN,0 of 2400 N. Note
shallower penetration of ripplocations in (d).

shows the configuration after total retraction of the indenter
indented to hmax of 3 mm shown in Movie S3 of the SM
[31]. In this case, the stress at the crests/troughs of the
RBs exceeded the yield point of the Al sheets, resulting in
plastic deformation as evidenced by the fact that upon the
indenter’s retraction, the RBs do not return to their initial,
flat state, but are now replaced by KBs denoted by dashed
lines. This is best seen by comparing Figs. S3d and S3e, both
taken after total retraction of the indenter from different hmax

values [31].
We now turn our attention to the indentation stress-strain

(ISS) curves. Figure 4(a) shows the results for the cards. Here
three sets of nested curves are shown: The ones depicted
by red diamonds, black crosses, and solid blue lines were
obtained with PN,0 of 400, 1200, and 2400 N, respectively.
(The 1200 N results are truncated for clarity’s sake.) In all
cases, the stress initially increases quasilinearly with strain. At
a critical stress, σcrit , denoted by x in Fig. 4(a), the stress more
or less levels off. Note that σcrit increases with increasing PN,0.
When the indenter is partially retracted, the stress follows
the trajectory labeled AB in Fig. 4(a). Upon reloading, the
stress-strain curves follow the trajectory BA, thus delineating
the fully reversible loop ABA. When the process is repeated to
lower stresses, a series of nested loops, with a single unloading
but different reloading, trajectories are traced. When the same
stresses are normalized, as shown in Fig. S5 of the SM [31],
the universality of the unloading trajectory is obvious. These
ISS curves are qualitatively the same as those that we, and
others, have previously observed when loading different MAX
and other phases in cyclic uniaxial compression and spherical
nanoindentations [8,35,36].
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FIG. 4. Mechanical response of indented layers. (a) Indentation stress-strain curves obtained when plastic cards were loaded with a 2.34-
mm-diameter cylindrical indenter edge-on for three values of PN,0 indicated. (b) Same as (a), but for steel sheets. Loops denoted with open
black circles were obtained with PN,0 = 400 N, after every sheet was coated with a solid lubricant. Arrows show direction of loops. (c) Same as
(a), except with Al sheets loaded to two different hmax and PN,0 indicated. (d) Energy dissipated per unit volume per cycle, Wd vs ripplocation
strain. (e) PN as a function of h for cards. (f) same as (e), but for the MD simulations of graphite layers.

Figure 4(b) plots ISS curves for the steel sheets. Like
the cards, the loops depicted by solid blue lines, black
open diamonds, and red checkered squares were obtained
at PN,0 of 2400, 1200, and 400 N, respectively. The
loops depicted by black circles were obtained at PN,0 =
400 N, but, prior to testing, each steel sheet was brushed

with the solid lubricant MoS2. Two full loading cy-
cles, depicted by arrows, were implemented: the first is
the larger in area and the second is enclosed by the
first. A permanent strain of ≈0.01 was recorded in the
first cycle; the second and subsequent cycles are fully
reversible.
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Figure S4a of the SM shows the nested loops obtained
when the indenter was fully retracted first, and then progres-
sively loaded to larger h values [31]. And while the shapes
of these nested loops are qualitatively similar to those shown
in Fig. 4(a), they are not as well defined and reproducible as
the ones obtained upon partial unloading; viz., Figs. 4(a) or
4(b). The stress-strain curves shown in Figs. 4(a) and 4(b)
were therefore used for further analysis.

Figure 4(c) shows the ISS curves obtained when the Al
sheets were indented between hmax and a fully unloaded state
three times when PN,0 was 1200 and 2400 N, depicted by red
open diamonds and blue diamonds in Fig. 4(c), respectively.
For PN,0 = 1200 N, up to a strain of ≈0.02, the response
was, for the second and subsequent cycles, near fully and
spontaneously reversible. When hmax was increased to 3 mm
[blue diamonds in Fig. 4(c)], however, the loops were no
longer fully reversible on account of the layer’s plastic de-
formation, as shown in Fig. S3e of the SM [31].

When PN vs h is plotted for the cards [Fig. 4(e)], in all
cases, PN first increases slowly and then more rapidly with
increasing h. At hmax, the three curves converge to PN values
between 3200 and 4000 N. To understand these observations,
it is imperative to understand the nature of the fully reversible
loops (see below).

The results of our elastic buckling analysis are presented
in Table S2 of the SM [31], in which PBk calculated from
Eq. (2) is compared to the measured indenter load, PBk,exper

(compare columns 9 and 10 in Table S2 [31]) at the time of
ripplocation nucleation. Figure 2(b) compares the two graph-
ically. The agreement has to be considered excellent since
the problem solved is that of a column, while experimentally
we tested plates. Furthermore, in the theory, we assume the
indented layers are fused together, when in fact they are not.
These calculations are thus consistent with our conjecture that
buckling is the operative mechanism.

A. Fully reversible nested loops

Before proceeding further, it is important to establish the
relationship between the energy dissipated per unit volume per
cycle, Wd—given by the area enclosed by the fully reversible
loops—and the strain associated with these loops. As Wd is
clearly related to the formation of the RBs (Figs. S6–S8 of
the SM [31]), we label that strain εRB. Note that since the
reversible loops were obtained on unloading, εRB and the
stresses are calculated assuming the origin is at the point of
maximum stress, viz., point A in Figs. 4(a) and 4(b). For
example, in Fig. 4(a), εRB and σmax for the fifth loop are given
by horizontal and vertical arrows, respectively. Under these
conditions, the following relationship is valid [37]:

Wd = 2τRBγRB ≈ (1 + ν) σRBεRB, (3)

where τRB and σRB are the shear and normal stresses needed
to nucleate and move the RBs. It follows that τRB can be
considered a critical resolved shear stress for RBs. γRB and
εRB are the applied shear and normal strains; ν is Poisson’s
ratio assumed to be 0.3. The factor of 2 accounts for energy
dissipated during loading and unloading. If we further assume
Coulombic friction, then PS = μPN, where μ is the friction

coefficient between the layers, and PN and PS are the loads
acting normal and parallel to the layers, respectively.

When Wd is plotted vs εRB for the cards and steel sheets
[Fig. 4(d)], the results fall into two regimes. For the cards
(lower right), Wd is low and increases monotonically with
increasing PN,0. Least-squares fits of these results with, in all
cases, R2 > 0.95 yield slopes of 16.0, 18.1, and 22.9 MPa for
PN,0 of 400, 1200, and 2400 N, respectively. It follows from
Eq. (3), assuming ν to be 0.3, that the respective σRB values
are 12.3, 13.9, and 17.6 MPa.

Least-squares fits of the results with, in all cases, R2 >

0.96, labeled steel in Fig. 4(d), resulted in slopes of 71.2, 71.2,
and 72.4 MPa for PN,0 of 400, 1200, and 2400 N, respectively.
Again, making use of Eq. (3), σRB ≈ 55 MPa. When the sheets
were lubricated, at 51.5 MPa, the slope was significantly lower
and the corresponding σRB value is ≈39.6 MPa. It follows, not
surprisingly, that Wd in the presence of a solid lubricant is
75% the value in its absence. Coincidentally or not, the ratio
of μ’s with (0.12) and without (0.2) lubrication is 0.6 (see
Table S1 in the SM and related discussion [31] for details of
measurements of μ).

Note that Wd is essentially a product of μ and PN. Since
the RBs in the cards nucleate at significantly lower stresses
than the steel sheets (see Table S2 of the SM [31]), it is not
surprising that the σRB’s for the former are lower than the
latter, despite the fact that their µ’s—0.25 for the cards and
0.2 for the steel (see Table S1)—are comparable.

B. RBs nucleation stresses

The results shown in Figs. 4(a)–4(c) make it amply clear
that the RB nucleation stresses not only depend on PN,0, but
as importantly on µ between the layers. For example, for
the same PN,0, the solid lubricant reduced the RB nucleation
stresses from ≈220 to ≈150 MPa [compare red and black
results in Fig. 4(b)].

Lastly, in this section, when the PBk values calculated
from Eq. (2) and the experimentally measured buckling loads
are compared [Fig. 2(b)], it is reasonable to conclude that
despite its simplicity, our model captures the physics of what
is occurring.

C. Molecular dynamics modeling of graphite

To further make the case that confined buckling is the
operative mechanism and to convincingly show that this
mechanism is operative over multiple orders of lengths scales,
we use MD simulations on graphite—at 10 K—to show
that most of the observations made herein also occur at the
atomic level. We chose graphite because (i) the potentials are
well known and proven, (ii) graphite is known to form kink
bands—that have been ascribed to BDs—when compressed
[30,38], and (iii) the weak interlayer bonds in graphite are
a good model for the experiments we carried out. In our
experiments, especially at low confining pressures, there is
a sizable amount of “empty” space between the layers that
is easily compressible when the RBs are nucleated. Said
otherwise, both graphite and our indented layers are, at least
initially, easily compressible along z, which, as discussed
below, is critical to RB nucleation.
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FIG. 5. MD modeling of graphite. Still frames taken from a MD simulation made when a 5-nm-diameter cylinder is loaded, edge-on, into
60 graphite layers—PN,0 = 100 bar—at (a) ½hmax and (b) hmax of 2.5 nm. (c) Nanoindentation force-strain results for two PN,0 values, showing
the initial linear elastic response followed by the formation of spontaneously and fully reversible loops. Color scale in (a) quantifies atomic
motion along the z axis, in Å, to the right (blue) or left (red). Dashed yellow lines in (b) denote RBs of opposite signs. Red arrows point to
regions where the deformation is accommodated without delamination; black arrows point to delaminations.

Movie S4 of the SM [31] shows what occurs when 60
graphite layers are loaded edge-on—with a 5-nm-diameter
cylindrical indenter—in the same orientation as in our macro
experiments. Snapshots, at roughly ½hmax and hmax of 2.5 nm,
are shown in Figs. 5(a) and 5(b), respectively. The red and blue
regions designate planes that moved to the left or right relative
to their original position, respectively. In Figs. 5(a) and 5(b),
PN,0 was 100 bar. Figures S9a and S9b of the SM [31] show
snapshots at hmax of 2.5 nm for PN,0 of 0 and 1000 bar.
Figure 4(f) plots PN as a function of h and PN,0.

From these results, the following is clear: (i) RBs nucleate
at the top, near the indenter, first [Fig. 5(a)], and then quite
rapidly indeed propagate, in a wavelike manner, to the end of
the sample. (ii) Here again, confined buckling is the operative
mechanism. (iii) Based on this picture, we define RBs as the
locus that connects the points of highest curvature in each
layer, shown by the dotted yellow lines in Fig. 5(b). In our
perfect model, they are parallel to the surface and alternate
in sign. (iv) If the RBs amplitudes are not too large, the
curvature is accommodated without delaminations [red arrows
in Figs. 5(a) and 5(b)]. At higher amplitudes, delamination
cracks [black arrows in Figs. 5(a) and 5(b)]—such as the ones
observed throughout this work—nucleate. (v) When Figs. 4(f)
and 4(e) are compared, it is obvious that at least qualitatively,
the relationship between PN for the cards and for graphite is
similar despite the fact that one is at the centimeter scale and
the other at the subnanometer scale.

Figure 5(c) plots P vs h as a function of cycling with a rate
of 5 m/s. Here again, increasing PN,0 increases the BR nucle-
ation stress. From the movie in the SM [31] and Fig. 5(c), it
is clear that the process is fully and spontaneously reversible.
However, is contrast to the other stress-strain curves shown in
Figs. 4(a)–4(c), in this case, Wd is quite small. Interestingly,
when the loading rate was increased to 50 m/s, Wd increased
substantially (see Fig. S9c of the SM [31]). At this time,
it is neither clear why the rate has such a significant effect

on Wd nor why Wd is so small at relatively slower loading
rates.

These comments notwithstanding and based on the re-
sults obtained herein, the driving force for reversibility is
crystal clear: it is the energy stored in the curvature of the
crests/troughs of the RBs and the energy stored in the layers
compressed along z by the RBs. Friction between the layers
results in Wd. These observations are crucial in understanding
RB formation: Upon RB nucleation, not only is the strain mas-
sively delocalized, but strong in-plane bonds are replaced by
weaker out-of-plane bonds. That is the essence of deformation
by ripplocations.

With this insight, the reason why increasing PN,0 increases
the nucleation stress is clear: Rendering the out-of-plane
deformation more expensive retards nucleation. This result is
not new, but is well established in the geologic literature. For
example, Kronenberg, co-workers, and others have shown that
the kinking or failure stresses of micaceous single crystals are
a strong function of confinement [3–5,39]. The same is true of
layered composites [15], sheets of paper [17], and others.

D. RB wavelengths

In his work on the folding and buckling of layered geologic
formations, Biot [12] derived this remarkably simple expres-
sion for the wavelength λ of buckled confined thin sheets:

λ

t
= 1.9

√
n. (4)

Here, n is the number of folded layers and t is their thickness.
Biot emphasized that the expression is only valid if sufficient
lubrication is retained at the interfaces between the layers,
a good assumption here given the weak bonding between
graphene layers. Assuming t for graphite to be ½ its c-lattice
parameter, viz., 0.338 nm, Fig. S9d of the SM plots λ/t vs
n0.5 [31]. The linearity of the curve and its passing through the
origin implies that Eq. (4) is remarkably well adhered to, even
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at the atomic scale. This is especially true and appears to be
valid even for a single graphene sheet (point near origin in Fig.
S9d [31] obtained by buckling a single layer [21]). For reasons
that are not clear, the slope in our case is not 1.9, but 3.5. This
discrepancy notwithstanding, here again our results appear to
capture the essence of the buckling physics that was originally
derived for layered, viscous, geologic formations. Note that
in contrast to geologic formations, where there is no control
on the systems observed, here the use of perfect graphite
layers allows for a clean and unambiguous measurement of
all variables in Eq. (4).

The situation for the macroscopic experiments is different
since as discussed above in our model, we assume—and the
results confirm—that the n layers act as one with a thickness
of T = nt . In that case, n in Eq. (4) is 1, and λ/T should
be a constant ≈1.9. Table S3 in the Supplemental Material
summarizes our results [31]. A perusal of these results shows
that the cards are more or less in accord with Eq. (4). The
situation for the steel depends on the friction coefficients. As
noted above, Biot emphasized that Eq. (4) was only valid if the
layers were well lubricated, and so it follows that the fact that
the λ/nt ratio for the lubricated steel sheets was significantly
lower than the unlubricated ones is consistent with this idea.
Why the values are as high as they are is not clear at this
time and more work is needed to understand the range and
limitations of Biot’s expression.

Based on the totality of our results, the sequence of events
is as follows: First, ripplocations nucleate en masse, self-
assembling into RBs that are mobile and fully reversible. With
increasing load, the amplitudes of the RBs increase and the
radii of their crests decrease. This cannot occur indefinitely; at
a critical strain, the RBs will transform to the ubiquitous KBs
found when most layered solids are compressed to failure [1].
It is worth repeating that this deformation/failure mechanism
is totally agnostic as to whether the deformed layers are
crystalline or amorphous. As shown here, even metals will
deform by this mechanism if their aspect ratios are amenable
to confined buckling (e.g., Figs. S2 and S3 of the SM [31]).

Figure S10 of the SM shows a Cr2AlC single crystal that
was deformed at high temperatures with minimal constraints
[31]. The inset in this same figure shows what occurs to
graphite layers that are compressed with no side constraints
(i.e., allowing the layers to move freely in the z direction).
Clearly the very convoluted structures obtained experimen-
tally are readily generated in our MD models. This is im-
portant because it shows, once again, that our atomic level
model is capable of producing features seen at the centimeter
level. The similarity should persuade even the most hardened
opposition as to the validity of the ideas promulgated here.
This is not unique to the MAX phases. For example, Suematsu

et al. [40] compressed SiC single crystals at 1500 °C and
observed many of the features seen in Fig. S10. Along the
same lines, and while this work deals with 2D systems, there
is little doubt that these ideas also apply to one dimensional
systems such as fibers, nanobrushes, etc., and should also
apply to some polymers. In short any system in which the
aspect ratios favor buckling.

It is important to note that the relationship between a single
ripplocation and a RB is the same as that between a single-
edge basal dislocation and a low-angle grain boundary. In the
extreme case wherein an edge basal dislocation nucleates at
every lattice plane, the boundary is indistinguishable from
a 112̄1 twin boundary (see Fig. S11 of the SM [31]) [41].
This is important because some have invoked the existence
of KBs as evidence for the existence of BDs in layered
solids.

The research on the deformation of layered systems in gen-
eral has been on their failure [1]. In this work, we show that
there is an important, nonlinear elastic regime that precedes
failure that has, as far as we are aware, been almost totally
neglected. The case can be made, however, that understanding
this regime is crucial and fundamental for understanding all
others.

In conclusions, layered solids—at all length scales—
deform by confined buckling. The buckling nucleates RBs that
rapidly propagate, wavelike, into the bulk. Before permanent
and irreversible KBs form, a regime exists where RBs, that
are, by definition, fully and spontaneously reversible, form.
The driving force for this reversibility is the elastic energy
stored in the crests of the ripplocations and that stored in
the compression of layers adjacent to the RBs. The move-
ment of the layers relative to each other is responsible for
the energy that is dissipated. Nature’s solution to the im-
possibility of c-axis strain in layered solids is remarkably
simple and universal: buckling. By doing so, “expensive”
in-plane strain is converted to much “cheaper” out-of-plane
strain and delocalized over distances that are much longer
than the size of the indenter. The fact that one can learn
something about an earthquake from studying the deformation
of graphite, or vice versa, is quite astonishing and remarkable
indeed.
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