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Multiple timescale contact charging
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Contact charging between insulators is one of the most basic, yet least well understood, of physical processes.
For example we have no clear theory for how insulators recruit enough charge carriers to deposit charge but not
enough to discharge. In this paper we note that charging and discharging kinetics may be distinct, and from this
observation we develop a mathematical model. The model surprisingly predicts that charging can decrease as
contact frequency increases: We confirm this prediction experimentally and propose future steps.
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I. INTRODUCTION

The most basic observation of static electrification, dating
to Gilbert’s work in the 16th century [1], is that the materials
that most readily acquire contact charge are insulators. We
all know this: We get a shock when walking with rubber
soles on a nylon carpet, on dry days when there are no free
charge carriers to be found. Based on experiments with as
many materials as he could lay his hands on, Gilbert termed
materials that develop static charge “electrics”: silk, amber,
glass, and the like. These are what we today call insulators:
materials that have no free charge carriers.

This is undeniably very odd: If charges are bound they
should not transfer between materials, and if they are free they
should conduct charges away. Insulators manage to mobilize
sufficient free charges to transfer charge, but not enough
to discharge. In this paper we focus on a particular, and
revealing, feature of this oddity.

Consider Fig. 1, described in detail in Ref. [3]. The inset
depicts an experiment in which a celluloid (ping-pong) ball
attached to an insulating post is vibrated so as to contact a
synthetic rubber ball beneath, also attached to an insulating
post. No conductors are within 10 cm of the experiment,
and after vibrating at 10 Hz for 30 s, the ping-pong ball is
exposed to a cloud of bipolar toner [2], which reveals the
charge patterns shown in the main plot of Fig. 1. The red toner
is positively charged, and so it sticks to negative regions on
the ball, and the black toner is negative and so it highlights
positive charges. Prior to contact, very little toner sticks to the
ball (see Ref. [3]).

In the present paper, we seek to understand one aspect of
the mechanism that produces charging of insulators in this
way. Figure 1 provides two significant clues to this mecha-
nism. First, following repeated contact this insulating ball has
indeed liberated enough charge carriers to electrify its surface,
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but the process has also liberated enough charge carriers to
neutralize a sizable region near the point of contact. So, both
charging and discharging appear to be at work. Second, the
ultimate charge transported exhibits multiple spatial scales:
the positive, black, halo is on the order of centimeters across,
and the irregular boundary separating positive and negative
regions is on the order of millimeters across. So apparently
the charging process has transported charges a distance of
centimeters, but that process cannot transport charges across a
gap of millimeters to neutralize the final charge pattern.

We therefore propose that charging and discharging may
involve different processes, and, critically, that the charac-
teristic timescales of these processes may differ as well.
For our purposes we are agnostic concerning details of the
charge carriers involved, but we remark that it would not

FIG. 1. Example of contact charge pattern, from Ref. [3]. Inset
summarizes experiment in which a celluloid ball mounted on a
wooden post is contacted with a synthetic rubber ball on a wooden
post. Main plot shows charge patterns made visible by exposing
the celluloid ball to a cloud of bipolar toner [2]: the red (black)
toner sticks to negatively (positively) charged areas. Note that charge
remains on the ball centimeters away from the contact point, and
that point retains minimal charge. This suggests different spatial and
temporal scales for charging and discharging.
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be unreasonable to speculate that surface-adsorbed ions [4]
could transfer charge with low mobility in response to surface
potential differences or applied fields [5], while bulk electrons
raised to the conduction band by large electric fields could
mediate discharges at high mobility.

This notion by itself is not sufficient to explain charging,
because if discharging is much faster than charging, charges
will not grow, whereas if charging is much faster than dis-
charging, a single contact will produce charge separation,
but multiple contacts will build no additional charge (by
contrast, charge growth is observed experimentally [2,6,7]).
Between these extremes, if charging is somewhat faster than
discharging, we will show that charge growth can occur.

II. MODEL

To construct a concrete model, we note that existing studies
[3,8–10] have provided evidence that contact charging be-
tween particles may be mediated by two separate processes:
polarization and neutralization. That is, an insulating particle
can acquire an induced polarization due to the electric field of
a neighboring particle—and when these particles come into
contact, neutralization of part of that polarization can occur,
leaving both particles with a residual charge.

Using this proposition as a starting point, we consider a
simple, 1D, system, in which the magnitude of polarization
p = | �p| of a particle can be written as

dp

dt
= r · [χE − p], (1)

where r is the rate of polarization due to surface ion mobility,
χ is the electric susceptibility, and E = | �E| is the electric field
due to contact potentials or external charges. Here a particle
will approach polarization p = χE with exponential rate r ,
and to allow charging and discharging to proceed at different
rates, we set

r = α if |p| < χ |E|
r = β otherwise. (2)

Thus α defines the rate of growth of polarization, and β

defines the rate of its relaxation.
In other words, we consider here a scalar polarization that

grows at rate α when the applied field is large enough to drive
further polarization, and decays at rate β when the applied
field is smaller than that. We seek a solution in the case where
two mirror-symmetric particles make repeated collisions with
one another as sketched in the inset to Fig. 2(a). We emphasize
that Eqs. (1) and (2) represent a lumped element approach
intended to describe the spatially averaged polarization of
contact electrified particles. The charging mechanisms leading
to the pattern shown in Fig. 1 are manifestly complex, as the
figure shows. Our goal here is only to analyze the effects
of multiple timescales on mean particle polarization, leaving
detailed spatial as well as temporal analysis to future studies.

With this caveat in mind, as polarized particles make and
break contact, the field on each will periodically grow and
diminish—and so the rate r should periodically flip between
values α and β. In the simple case where the polarizations
on each particle are identical and where particles collide with
frequency f , the electric field on either particle will grow and

FIG. 2. Simulations of repeated collisions between mirror-
symmetric charged particles. (a) Inset: depiction of polarizations
and charges on each particle; these generate an electric field on
its partner, modeled in Eqs. (1) and (2). Here the polarizations
are identical, and the net charges are equal and opposite; we de-
scribe the field on either particle due to its mate in Eq. (3). Main
plot: integration of Eqs. (2)–(4) using A = 0.825, B = 1, χ = 1,
α = 1, β = 0.5, pb = 1000, and when p > pb, rb = 0.03. (b)
Exemplar growths in polarization on semilog axes for f = 0.3, 0.6,
and 0.9: Notice that as the frequency f of particle collisions in-
creases, the mean asymptotic polarization, 〈p〉, decreases. Solutions
shown are obtained using MATHEMATICA’s multistep Adam’s method
solver, NDSolve. Complete code used is included as Supplemental
Material [16].

diminish as the particles vibrate toward and away from one
another. At its simplest, the field can be written

E � [A + Bsin(f t )] · p, (3)

where A and B are leading-order Fourier coefficients. Here
A defines the mean field due to an oscillating polarized
particle, and B defines the periodic variation in field due to
periodic oscillations. Inserting Eq. (3) into Eq. (1) completes
the description of the problem depicted in Fig. 2(a).

The essential kinetics of Eq. (1) are of course exponential
growth or relaxation. Yet any practical experiment will be
bound by an ultimate limit pb and its associated rate rb due
either to breakdown of the particle material or of its envi-
ronment. Assuming that breakdown is independent of contact
charging and discharging, we add a final term to Eq. (1) as
follows:

dp

dt
= r · [χE − p] + rb · [pb − p], (4)

where rb is a fixed rate if the polarization is greater than the
breakdown limit, and is zero otherwise. So, rb defines the rate
of decay of polarization due to breakdown, and pb defines the
critical polarization above which breakdown occurs.

We integrate Eqs. (2)–(4) to produce time evolutions of p

shown in Fig. 2(b) for several values of vibration frequency
f . We include a time-averaged plot in each case (solid curve)
as well as the asymptotic value 〈p〉 (broken line), which we
define to be the mean of the polarization between times 800
and 1000. Parameters used are illustrative and are included
in the caption to Fig. 2. Crucially, the charging rate α = 1 is
higher than the discharging rate β = 0.5, and the frequencies
shown are in the range between the two values.
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Examination of the asymptotic polarization 〈p〉 reveals that
it decreases as the frequency increases between the charging
and the discharging rate. To make this more evident, in the
main plot of Fig. 2(a) we display the dependence of 〈p〉
on frequency ƒ. Broadly speaking, the paradoxical decrease
in polarization with increasing frequency occurs when the
charging rate α is higher than the discharging rate β and the
driving frequency is of the same order as α and β.

To understand this heuristically, let us consider the polar-
ization growth in several frequency ranges. When ƒ is much
slower than α and β, a particle’s polarization is quasistatic,
and would in the absence of breakdown simply be slaved to
the driving field. This means that without an external field [7],
particle charges will not grow.

At the other extreme, when ƒ is much faster than α and
β, oscillations defined in Eq. (3) become too fast for either
charging or discharging kinetics to respond to. In this case, the
mean field A can be expected to prevail. If A < p/χ , Eq. (2)
tells us that the particle will discharge, whereas if A > p/χ ,
Eq. (1) implies that the particle polarization will grow until
it reaches the mean value p = χA. In this case, again barring
an external field, the particle will discharge. So for large ƒ, the
particle will either discharge (if χ and A are small) or charge
to the prescribed limit, p = χA (i.e., the expected induced
dipole moment).

Finally, at intermediate values, for ƒ near α and β, the
induced polarization will grow as the particles approach,
but will seldom reach the threshold value p = χE given by
Eq. (2), and so discharging will be triggered less often than
charging. Consequently the polarization will ratchet upward
with time until it reaches a saturation value given by a balance
between polarization growth and breakdown, as shown in
Fig. 2(b). The faster the vibration frequency, ƒ, however,
the more often discharging will occur, and so the ultimate
polarization will decrease with ƒ.

Conveniently, the behavior shown in Fig. 2 implies that
there is a simple test to assess the multiple timescale model:
We can vibrate a bed of insulating grains and ask whether
charging in fact decreases as vibration frequency increases.
This would not be expected otherwise, for one would naively
predict that, irrespective of what process produces charg-
ing, repeating the process more often should produce more
charging.

III. EXPERIMENT

We have therefore performed an experiment on a vibrated
bed of 1-mm-diameter glass beads in a polycarbonate box,
shown in Fig. 3(a). We use a bed of particles rather than a
single pair because including numerous particles allows us
to average over multiple oscillating states [seen in Fig. 2(b)],
and greater numbers of particles provide for greater growth in
polarization than would be expected using only two particles
[11]. The granular bed is ∼1.5 cm deep at rest, and we
suspend an electrostatic voltmeter probe (Trek, model 347)
above the bed and vibrate the bed between 50 and 100 Hz,
maintaining the shaker amplitude at 3 ± 0.7 g (measured with
the accelerometer shown). We have also investigated a wider
range of frequencies; we display a limited range here because
the bed is uniformly fluidized and no Faraday patterns (which

FIG. 3. Experiment using vibrated bed to evaluate predicted de-
crease in charging with an increase in contact frequency. (a) Vibrated
bed of glass beads; distance between probe and top of bed held
fixed as described in text. (b) Plot of experimental measurements
of voltage vs vibration frequency confirming the predicted decrease
in charge generation with an increase in frequency. Broken line is
copied and rescaled from Fig. 2(a) between f = 0.4 and 1.

complicate results at lower frequencies) are seen. We carefully
adjust the probe height at each frequency so that it is 14 cm
above the apparent top of the vibrated bed surface (which
again is nearly uniform at these frequencies), and we vibrate
the bed until the probe records a steady voltage (about a
minute). We show 27 frequencies, where each data point is
an average over 3 replicates, and we perform the 81 trials in
random order to eliminate systematic bias.

As shown in Fig. 3(b), as the rate of vibration increases,
the measured voltage does decrease, here by about a factor
of 3, strongly supporting the proposition that charging of the
granular bed depends on a multiple timescale mechanism. To
guide the eye we also copy and rescale a segment of the model
plot from Fig. 2(a): Agreement is far from definitive, but the
model curve is consistent with the experimental data.

We remark that the voltage drops rapidly when vibration
is stopped, which would not occur if the measurements were
produced by a growth in net charge. This is also consistent
with charge conservation in an insulating environment, and
supports the analysis of dipole moment growth presented in
Eqs. (2)–(4). The glass particles are, however, expected to tri-
bocharge due to contact with the polycarbonate box: We spec-
ulate that this tribocharging may establish a field that initiates
the polarization growth that we have defined. Tribocharging
likely also contributes to the voltage measurements; however,
the reduction in voltage as frequency is increased is predicted
by our model, but does not fit with current understanding of
contact electrification [5].

Finally, it is important to stress that contact electrification
has long been investigated [12] and is exceedingly complex
[13]. Without question, contact charging variations depend
both on material transport and on electronic densities of states
at material interfaces [14], and these densities vary strongly
with deformations [15] that occur during contact. Notwith-
standing these complexities, we emphasize that the analysis
of multiple-timescale charging presented here represents the
only model that predicts a decrease in charging with an
increase in contact frequency.
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IV. CONCLUSION

In conclusion, we have developed a model for growth of
contact-mediated polarization of insulating particles based on
the proposition that charging and discharging obey different
timescale kinetics. The model produces the counterintuitive
prediction that when discharging kinetics are more rapid than
charging kinetics, charging may decrease with increasing
frequency of contacts. We confirm this paradoxical prediction
in a vibrated bed experiment.

The model is highly simplified and provides considerable
room for future extensions and analysis. For example, the
model only considers the 1D problem of polarization of a sin-
gle particle with its companion mirror particle. Prior work [9]
has shown that in higher dimensions, collinear polarizations
align, while noncollinear polarizations form antiparallel pairs,
so it is not obvious how vector polarizations in two or three
dimensions will behave. Likewise, in Fig. 1 we showed charge
patterns on a single large particle, indicating that nontrivial
spatial kinetics are also at work. How these spatial kinetics
interact with the multiple-timescale kinetics that we have

proposed is both an intriguing and a difficult question, and
deeper study is needed. Finally, the toner used to produce
Fig. 1 only sticks to the outermost charges on the surface:
it is not possible at this time to discriminate between net
surface charge and a polarized double layer on the surface.
The surface chemistry and surface-bulk interactions involved
in both the charge kinetics and the ultimate patterning remain
to be understood. We look forward to further developments in
this very basic, yet unexpectedly rich, area.
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