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First-principles calculations of second-order nonlinear optical coefficients in the static
limit and Pockels coefficients in III-N and II-IV-N2 compounds
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The second-order nonlinear optical coefficients in the static limit are evaluated using density functional
perturbation theory from the electronic response to a static electric field for the group-III nitrides and several
II-IV-N2 ternary nitrides. They are compared with literature results using the sum over states approach including
local field effects. The effects of the scissor correction are evaluated. Good agreement is obtained for GaN, AlN,
and w-BN. For InN, the small or even negative gap in the LDA at � causes an extreme sensitivity to the k point
summation and pseudopotentials. Similar problems occur for other very small gap II-IV-N2 semiconductors.
The nonlinear optics coefficients are showing a general trend of increasing values with smaller gaps but no
clear scaling relation with the direct gaps is obtained. In addition, unexpected changes in sign are found for the
Si-based compounds, similar to the case of AlN, compared to the expected signs of d33 in GaN. The Pockels
coefficient, which includes in addition to the electronic response the phonon and piezoelectric response, is
also evaluated. They show that the phonon and electronic contributions to the response in these materials are
comparable in magnitude but in many cases of opposite sign.
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I. INTRODUCTION

Nonlinear optical properties are of interest both from an
applied and fundamental perspective. They can be used for
frequency conversion via sum and difference frequency gener-
ation, including second harmonic generation. The calculation
of frequency-dependent second-order nonlinear optical coef-
ficients in solids is rather complex because of difficulties in
obtaining divergence free expressions in perturbation theory
within the usually applied momentum gauge [1]. This problem
was solved within the independent particle approach in a
series of papers by Sipe and collaborators [2–4]. However,
these formulations still do not include local field effects or
excitonic effects. A formulation for the frequency dependent
second-harmonic generation including local field effects was
obtained by Levine [5,6] but in practice applied only for
the region below the gap. In this treatment, only first-order
local field effects were included while in a subsequent paper,
second-order local field effects were found not to be negligible
but expressible in terms of the first-order ones in the static
limit [7]. We will refer this as the “sum over states” approach.
Methods for including excitonic effects were also recently
developed [8,9] and specialized to 2D materials but were thus
far restricted to simplified models of the band structure with a
few bands and k · p type models.

On the other hand, in applications, one is usually interested
mostly in the region below the gap and in the static limit,
for which an alternative simpler formulation of the second
harmonic effects can be obtained by calculating the response
to a static electric field by means of a Berry phase calculation
of the polarization [10,11]. Because of the 2n + 1 theorem
in density functional perturbation theory (DFPT), one can
calculate up to third derivatives of the total energy from the
first-order corrected wave functions. So, a first-order corrected

wave function in response to a static electric field allows
one to calculate the third-order derivatives of the total energy
versus a static electric field, and these provide precisely the
static limit of the second-order nonlinear optics response
functions. This approach was first proposed by Dal Corso
et al. [12,13].

Our first goal here is to compare this approach for the
group-III nitride semiconductors with the alternative methods
and with experiment. We then also apply the same approach
to various II-IV-N2 semiconductors. The latter have recently
gained increasing interest [14–33]. We note that for other III-
V semiconductors than nitrides, the corresponding chalcopy-
rite II-IV-V2 semiconductors, such as ZnGeP2 and CdGeAs2

have found applications in nonlinear optics. This is not only
because they have relatively high second-order susceptibilities
χ (2), but also because the lower (tetragonal) symmetry allows
for birefringence and phase matching and hence more effi-
cient frequency conversion than in III-V materials. While the
nitrides with higher band gaps are expected to have lower χ (2),
there still is a fundamental interest in comparing the nonlinear
optics response of the corresponding III-N with the II-IV-N2

families.
The above considered static nonlinear optical response

concerns only electronic response and thus applies only to the
frequency range well below the band gap but still high with re-
spect to phonon frequencies. In the true static limit, additional
response from the phonons comes into play. This leads to the
linear electro-optic (EO) or Pockels effect [34]. The EO tensor
rijγ describes the change in the inverse dielectric constant ε in
response to a static electric field �E :

�(ε−1)ij = rijγ Eγ , (1)
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where summation convention over repeated indices is used. It
includes an electronic, ionic, and piezoelectric contribution.
Here, i and j refer to Cartesian components of the optical
frequency fields, i.e., above the phonon range, where γ refers
to a static field. We may view this as a sum frequency ω + 0 =
ω NLO effect. The purely electronic part of the linear EO
effect can thus indeed be written in terms of the χ

(2)
ijγ as

rel
ijγ = −8π (ε−1)ilχ

(2)
lmγ (ε−1)mn, (2)

or assuming the Cartesian axes coincide with the crystal
principal axes, so that εij = n2

i δij is diagonal and corresponds
to the index of refraction squared (at optic frequencies),

rel
ijγ = − 8π

n2
i n

2
j

χ
(2)
ijγ . (3)

The phonon contribution [34] stems from the fact that the
linear susceptibility χ

(1)
ij (or equivalently εij ) changes when

the atoms are displaced and involves ∂χ
(1)
ij /∂τnα , where τnα

is the displacement of atom n in the unit cell in direction α.
It thus involves the Born effective charges and the mth mode
Raman tensor αm,

r ion
ijγ = − 4π√

�0n
2
i n

2
j

αm
ij p

m
γ (4)

with the mode polarity

pm
γ =

∑

n

Z∗
n,γβum(nβ ) (5)

with Z∗
n,γβ the Born effective charge and um(nβ ) the mode

eigenvector in terms.
Finally, at even lower frequencies, a piezoelectric contri-

bution comes in because the electric field induces a change in
lattice constants or strain via the piezoelectric effect, which in
turn induces an optoelastic effect. This contribution is written
as [34]

r
piezo
ijγ = pijμνdγμν (6)

in terms of the optoelastic tensor pijμν , which describes the
linear change in χ

(1)
ij in response to a strain ημν and the piezo-

electric tensor dγμν , which gives the strain ημν = dγμνEγ

induced by the electric field. The calculation of derivatives
of total energy versus atomic displacement, strain [35,36],
and electric fields have all been worked out in DFPT. When
the piezoelectric contribution is not included, one calls the
Pockels effect clamped, otherwise unclamped. The clamped
value corresponds to frequencies sufficiently high that the lat-
tice constant or unit cell shape relaxation via the piezoelectric
effect can be neglected, typically above 100 MHz. In some
materials, such as typical ferroelectrics, the ionic contribution
can be the dominant one and allows in principle to tune optical
properties via electric effects.

II. COMPUTATIONAL METHOD

The basic framework for our calculations is density func-
tional (DFT) [37,38] and density functional perturbation the-
ory (DFPT) [10,11]. The DFPT approach provides a method
to calculate the response of an insulating system to adiabatic
(with respect to electronic time scales) perturbations, such as

a static or slowly varying electric field, atomic displacements,
and strain. DFPT using first-order corrected wave functions
allows one to calculate up to third-order derivatives of the
total energy [34]. As mentioned already in Introduction, the
third-order derivative of the total energy as a function of a
static electric field gives us the second-order susceptibility
and when adding the appropriate phonon response parts the
Pockels coefficient.

All the calculations are done with the ABINIT package [39]
in the local-density approximation (LDA). LDA is used rather
than the generalized gradient approximation (GGA) here for
easier comparison to previous work. Various pseudopotentials
were tested, among them the norm-conserving Fritz-Haber
pseudopotential [40], and the Hartwigsen-Goedecker-Hutter
[41] pseudopotentials. An 80-Ha plane-wave energy cutoff
and a 4 × 4 × 4 Monkhorst-Pack k-point mesh are used to
perform the calculations for II-IV-N2 compounds, except for
MgSiN2 where a 6 × 6 × 6 mesh was used. For the III-N
compounds, the plane-wave energy cutoff and k-point mesh
were set to be 80 Hartree and 8 × 8 × 4, except for InN where
a 12 × 12 × 8 mesh was used.

As we will see, an issue to be studied is how the under-
estimate of the gap by the local density approximation or
semilocal generalized gradient approximation (GGA) affects
the results. Although the interband transitions in this approach
do not directly enter the calculations, one may still include a
so-called scissor’s operator correction to the gap [11]. This in
fact enters when solving the Sternheimer equation for the first-
order corrected wave functions as was discussed in Appendix
A of Ref. [11]. Additionally, all the calculations within DFPT
assume that there is a gap. In some cases, such as InN, the
gap in LDA vanishes. We avoid the closing of the gap by
using a shifted mesh, which does not include the � point in
the Brillouin zone integrations and which is coarse enough to
avoid points where the gap closes, while still being sufficiently
accurate to sample the Brillouin zone. Nonetheless, the region
close to � where the gap and hence energy denominators in
the perturbation theory approach would be very small may
dominate the result and give unphysical results. To further
investigate the problem, we also used different pseudopoten-
tials, for example not including the lower In 4d states as
bands, which tends to lower the VBM and allows us to open
a gap. Nonetheless we will see that for these cases, the results
are very sensitive to the mesh and the pseudopotential, and
extracting a meaningful result is not evident.

III. RESULTS

A. Nonlinear optical tensor

We start by comparing the static second harmonic response
obtained from the (2n + 1) approach in wurtzite III-N semi-
conductors with the “sum over states” approach including
local field corrections [7] and experiment in Table I. Note that
we use the Voigt notation for third-rank tensors. In the expres-
sion for the polarization Pi = χ

(2)
ijkEjEk , the last two indices

are contracted to χ
(2)
im , where m = 1, 2, 3, 4, 5, 6 for {jk} =

xx, yy, zz, yz = zy, zx = xz, xy = yx. Furthermore, we use
the usual notation dim = 1

2χ
(2)
im . In wurtzite crystals by sym-

metry, the only nonzero coefficients are d31 and d33. Because
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TABLE I. Second-order nonlinear optical tensor coefficients dim in pm/V, optical dielectric constants ε∞ (averaged over directions) and
band gap for wurtzite III-N semiconductors at experimental lattice constants. Results obtained with various pseudopotentials and obtained with
the sum over states approach including local fields [7] are included as well as the effects of the scissor correction, and experimental values
where available. For GaN, AlN, and InN, the scissor correction is taken as the difference between the experimental gap and the gap with a
particular pseudopotential, for BN, we use the fixed value 2.5 eV used by Chen et al. [7]. The band gaps Eg are the direct gaps at �, which are
indeed the minimum gaps for AlN, GaN, and InN. For w-BN, the minimum gap is at K , 3.2 eV below that of �.

Psp. property BN AlN GaN InN
(2n + 1) approach

LDA scissor LDA scissor LDA scissor LDA scissor
FHIa d31 − 1.38 − 0.89 − 0.13 − 0.07 − 2.80 − 1.97 8469 765

d33 2.70 1.77 − 3.54 − 2.27 4.78 3.37 −506 −139
d31/d33 − 0.51 − 0.50 0.04 0.03 − 0.59 − 0.58 −16.8 −5.5
Eg 8.26 10.76 4.26 6.1 2.17 3.51 0.30b 0.7
ε∞ 4.58 4.00 4.48 3.87 5.57 4.83 15.21 8.91

KA d31 − 1.37 − 0.89 − 0.19 − 0.09 − 3.71 − 2.90 −10.92 −13.5
d33 2.69 1.76 − 3.60 − 2.18 5.83 4.46 25.45 31.4
d31/d33 − 0.51 − 0.51 0.05 0.04 − 0.64 − 0.65 −0.43 −0.43
Eg 8.29 10.79 4.23 6.1 2.73 3.51 0.89 0.7
ε∞ 4.54 3.97 4.50 3.88 5.34 4.93 6.51 7.26

HGH d31 − 1.41 − 0.90 − 0.11 − 0.05 − 3.12 − 2.27 90 34.6
d33 2.80 1.80 − 3.60 − 2.21 5.23 3.80 −20 −7.5
d31/d33 − 0.50 − 0.50 0.03 − 0.02 − 0.60 − 0.60 −4.5 −4.6
Eg 8.23 10.73 4.23 6.1 2.39 3.51 0.34 0.7
ε∞ 4.61 4.03 4.50 3.90 5.47 4.87 8.35 7.32

FHI (semicore) d31 − 2.19 − 1.82 10200 607
d33 3.58 3.15 −198 −58
d31/d33 − 0.61 − 0.58 52 10.5
Eg (direct) 1.76 3.51 0.22b 0.7
ε∞ 6.21 5.10 22.3 10.5

HGH(semicore) d31 − 2.46 − 2.04 9302 665
d33 3.99 3.18 −302 −85
d31/d33 − 0.62 − 0.59 −31 −7.8
Eg (direct) 1.83 3.51 0.25b 0.7
ε∞ 6.13 5.09 18.83 9.84

sum over statesc

LDA scissor LDA scissor LDA scissor
d31 − 1.4 − 0.9 − 0.1 − 0.1 − 3.2 − 2.1
d33 2.7 1.7 − 4.2 − 2.3 5.4 3.5
d31/d33 − 0.52 − 0.53 0.02 0.04 − 0.59 − 0.60

Expt.
d31 |d| � 0.26d 2.66e

d33 −6.3 ± 3.5 −5.35
d31/d33 � 0.04 −0.50
Eg 6.1f 3.51g 0.7h

ε∞ 4.22i 5.35 ± 0.2j (ordinary) 8.4k,5.8l

aThe pseudopotentials choices are as follows: FHI Fritz-Haber Institute Troullier-Martins type pseudopotentials [40], KA, A. Khein, D. C.
Allan pseudopotentials from ABINIT web site based on Troullier Martins approach, HGH Hartwigsen Goedecker-Hutter [41], semicore means
the 3d of Ga and 4d of In are treated as valence states.
bThis is the smallest gap or the k-mesh used, while the gap at � is negative.
cFrom Chen et al. [7].
dFrom Fujii et al. [42].
eFrom Miragliotta et al. [43].
fFrom Li et al. [44].
gFrom Vurga et al. [45].
hFrom Yu et al. [46].
iFrom Moore et al. [47].
jFrom Barker et al. [48].
kFrom Tansley et al. [49].
lFrom Inushima et al. [50].
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of the equivalence of wurtzite basal plane (0001) with the
cubic (111) plane and assuming a quasicubic model, one
expects d33 = −2d31 in wurtzite and dw

33 = 2√
3
dz

13, where the
w and z superscripts stand for wurtzite and zincblende.

We have tested the sensitivity of the results to the choice of
pseudopotentials. All these pseudopotentials were taken from
the ABINIT website [39]. The FHI pseudopotentials are the
Fritz-Haber Institute norm-conserving pseudopotentials [40].
As the KA potentials, they are obtained within the Troullier-
Martins scheme. The origin of the KA pseudopotentials is not
entirely clear from the ABINIT website, but they are mentioned
to be developed mostly by A. Khein and D. C. Allan without
a clear citation. The HGH are Hartwigsen-Goedecker-Hutter
pseudopotentials [41]. Some of these come in two versions,
treating the semicore d states (3d for GaN and 4d for InN)
as bands or included in the core. All these calculations are
carried out at the experimental lattice constants to avoid any
possible errors inherent to the DFT on the lattice constants.

For GaN, we can see that the HGH pseudopotential without
semicore d states best reproduces the results of Chen et al. [7]
but the other ones give dim results that differ by a few 0.1.
The ratio of d31/d33 is 0.60 ± 0.02 and is well reproduced
independent of pseudopotential. The experimental d31 is in
best agreement with the HGH pseudopotential including the
3d semicore states as bands but the d33 is then somewhat
underestimated. Note that the sign of all the coefficients in
the experiment is opposite to the calculated one, but the sign
is difficult to determine experimentally and depends on the
choice of the orientation of the axes in these polar materials.
Our calculated sign corresponds to the positive c direction
being oriented from Ga to N along the bonds. To estimate
the effect of using experimental instead of calculated lattice
parameters we evaluated GaN with the FHI pseudopotentials
(including semicore), which is 0.5 % lower in volume than
experiment and found d31 = −2.15 pm/V and d33 = 3.37
pm/V, so about 6% smaller, which is consistent with a larger
gap.

For AlN, surprisingly, the d31/d33 ratio is far from the
expected quasicubic result but this is well reproduced both
by the Chen et al. [7] and our present results. Essentially,
d31 becomes almost negligible and of the same sign as d33.
This strong deviation from the quasicubic rule is also obtained
using a sum-over-states method without local field effects
[51,52]. The different pseudopotentials agree closely with
each other in this case but the value closest to Chen et al.
[7] is obtained again with the HGH pseudopotential. Both
ours and Chen et al. underestimate the experimental value of
d33 = −6.3 but note the large experimental uncertainty in this
value. The calculated value falls within the uncertainty range
of the experiment.

For wurtzite BN, the agreement between the different
pseudopotentials is excellent and the results also closely agree
with those of Chen et al. [7]. Because the gap of wurtzite BN is
actually indirect, and not well known, we use the same scissor
correction as used by Chen et al. [7], which is 2.5 eV. The gap
quoted in the Table I is the direct gap at �. The gap of cubic
(zincblende) BN is 6.4 eV experimentally and about 4.2 eV in
LDA, but corresponds to the indirect �-X gap. In w-BN, the
minimum gap is between the valence band maximum (VBM)
at � and the conduction band minimum (CBM) at K and is

again significantly lower (by about 3.2 eV) than the direct
gap at �.

We next note that when applying a scissor correction to
open the gap, the dim values as well as the ε∞ are reduced
as expected. It is not clear, however, that this improves the
agreement with experiment. We can see that the scissor
correction reduces the dim in a similar manner in the (2n + 1)
approach used here as in the sum-over-states method used by
Chen et al. [7].

For InN, there are no experimental values, and a previ-
ous calculation work by Gavrilenko et al. [53] gives d33 =
6.17 pm/V and d31 = 5.62 pm/V. However, in Ref. [53],
the local-field effects were neglected and an overestimated
band gap (1.9 eV) was used in the calculation, which would
underestimate the resultant second-order optical tensor. Cal-
culating the χ (2) of InN is problematic because the LDA
gives a negative gap and the Berry-phase approach requires
a gap to exist. That is, the �1c state (which is the CBM at �

in AlN and GaN) lies below the �5v state, which normally
forms the VBM. We see that even when we avoid the actual
closing of the gap by using a finite (12 × 12 × 8) and shifted k
mesh, the values of the dim become extremely high and
furthermore the order and sign of d33 and d31 is inverted
from that of the other compounds. Even after adding a scissor
correction, the values are extremely high. On the other hand,
when we use the KA pseudopotential at the experimental
lattice constant, a gap at � of 0.89 eV opens up, even larger
than the experimental value of 0.7 eV. This band structure
apparently yields more reasonable looking dim, in particular,
d31 is negative and d33 is positive and about twice as large
in absolute value, which is then similar in InN and GaN.
The ratio d31/d33 = −0.43 seems reasonable. After adding a
(negative) scissor correction to reduce the gap to 0.7 eV, the
values change only slightly and as expected increase slightly.
In contrast, using the HGH pseudopotentials, which still have
a very small gap at � of 0.34 eV, the values are an order of
magnitude larger and with an unexpected sign reversal of dim

from GaN and an unreasonable |d33| < |d31|. Finally, when
treating the In 4d states as bands, the gap is further reduced
and unreasonable values of dim are obtained. Thus, among the
various pseudopotentials tested, only the KA choice with or
without scissor correction seems to give reasonable results.
Although there is still significant uncertainty, the best esti-
mate from the present results would be the scissor corrected
ones for the KA pseudopotentials, d33 ≈ 30 ± 5 and d31 ≈
−13 ± 2.

To further test this, we plot the d33 value as a function
of 1/Eg , with Eg the direct gap at �, along the series, BN,
AlN, GaN, and InN in Fig. 1. Although the scaling does not
correspond to E−3

g as expected on the basis of perturbation
theory, these values of InN seem to follow a trend with the
other compounds within the III-N family. We have plotted
d33/2 and −d31, which in the quasicubic model would be
equal. We can see that AlN is clearly an outlier in the series
but the trend from BN to GaN extrapolates reasonably linearly
with the inverse gap toward InN and the scissor corrected
values also follow the expected trend. Note that the values for
InN are about twice those obtained by Gavrilenko et al. [53],
which makes sense from the point of view that their gap is
1.9 eV.
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FIG. 1. Second-order NLO coefficients as function of 1/Eg for
III-N compounds using the KA pseudopotentials.

Next, having established that the approach gives results in
good agreement with the sum over states approach for III-N
materials, and reasonable agreement with experiment for GaN
and AlN, we move on to the II-IV-N2 semiconductors. For
these materials, because of the orthorhombic symmetry, there
are three distinct nonzero coefficients, d15 = d31, d24 = d32,
and d33. The equalities apply only in the static limit and
are due to Kleinman permutation symmetry. The difference
between d32 and d31 is expected to be small if the crystal stays
close to the hexagonal underlying wurtzite lattice and from
the relation with wurtzite, we would expect d33 ≈ −2d31 ≈
−2d32. The results for these coefficients along with the LDA
band gaps and all calculated with the HGH pseudopotential
[41], chosen because they appeared to give the best results for
GaN, AlN, and BN, are given in Table II.

The band gaps in LDA are close to those reported earlier
obtained using the all-electron linearized muffin-tin orbital
method [21]. For easier comparison, we give here just the
gaps at � but we note that in the Si-containing compounds
the gap is actually indirect and even in CdGeN2 the gap is
very slightly indirect. The trends are not obvious at all. For
ZnGeN2, which is close to GaN, we see that indeed a similar
value of d33 is found as for GaN and the d31 ≈ d32 = −d33/2.

In fact, we show in Table II the ratio d33/(d31 + d32), which
is expected to be close to −1. We can see that for the Mg
compounds this ratio is significantly smaller and for both
MgSiN2 and ZnSiN2 the sign of this ratio is reversed as is also
the case in AlN. The deviations from these expected ratios in-
dicate the significant deviation of the structure from the ideal
wurtzite structure. For both ZnSnN2 and CdSnN2, the sign
of d33 is reversed compared to the corresponding Ge based
compounds. We can see a general trend of increasing absolute
values of the d33 with lower band gap but no clear scaling is
apparent. As an example, we show the d33 values obtained
within the HGH pseudopotential for the three families as a
function of 1/Eg in Fig. 2. It should be kept in mind that
NLO properties involve a rather complex interplay between
different interband transitions and are obtained by integrating
over the whole Brillouin zone, and hence a simple scaling
with band gaps should actually not be expected. We note that

TABLE II. Second-order nonlinear optical tensor coefficients dim

in pm/V and LDA direct band gaps at � (in eV) calculated for three
families of II-IV-N2 semiconductors.

MgSiN2 MgGeN2 MgSnN2

HGH pseudopotentials
d15 = d31 − 1.57 − 1.73 − 1.25
d24 = d32 − 0.32 − 1.70 − 2.98
d33 − 0.76 1.35 1.14
d33/(d31 + d32) 0.40 − 0.39 − 0.27
Eg 4.60 3.24 1.67

ZnSiN2 ZnGeN2 ZnSnN2

HGH pseudopotentials
d15 = d31 − 2.44 − 2.55 3.71
d24 = d32 − 1.05 − 2.43 1.00
d33 2.80 4.16 − 6.00
d33/(d31 + d32) − 0.80 − 0.84 − 1.27
Eg 3.90 2.29 0.67

CdSiN2 CdGeN2 CdSnN2

HGH pseudopotentials
d15 = d31 − 4.31 − 3.77 9.41
d24 = d32 0.51 0.29 10.44
d33 6.51 4.40 − 18.97
d33/(d31 + d32) − 1.71 − 1.27 − 0.96
Eg 2.32 1.46 0.21

FHI pseudopotentials
d15 = d31 − 5.09 − 3.94 12.32
d24 = d32 0.44 1.05 17.39
d33 7.99 4.30 − 30.28
d33/(d31 + d32) − 1.72 − 1.49 − 1.02
Eg 2.17 1.39 0.25

FHI pseudopotentials + scissor
d15 = d31 − 3.00 − 2.90 5.06
d24 = d32 − 0.20 0.07 7.72
d33 4.89 3.76 − 14.77
d33/(d31 + d32) − 1.53 − 1.33 − 1.16
Eg

a 3.82 2.71 0.84

aQuasiparticle self-consistent gaps in the 0.8� approximation at the
LDA lattice constants from Lyu et al. [21].

our values for the Zn compounds differ substantially from the
values in Paudel et al. [16]. The latter were calculated with
the FHI pseudopotential, but we found that the real reason
for the discrepancy is that only a 2 × 2 × 2 k-point mesh was
used in that work. We have tested that with the here used
4 × 4 × 4 mesh, results closer to the HGH pseudopotential
were obtained.

For CdSnN2, which is very close in band gap to InN, we
again obtain values of the order of about 10 for d31 and d32 and
about 20 for d33. With the FHI pseudopotentials, we obtained
even larger values but which are then again reduced if we
add the scissor correction. Clearly, there is still a significant
uncertainty on these values associated with the choice of
pseudopotentials for small gap materials.

From a practical point of view, we should note that even for
the small gap compounds here, InN, CdSnN2, and ZnSnN2,
the values are relatively low compared to those of other

124602-5



SAI LYU AND WALTER R. L. LAMBRECHT PHYSICAL REVIEW MATERIALS 2, 124602 (2018)

0 1 2 3 4 5
1/E

gap
 (1/eV)

0

5

10

15

20

|d
33

|  
(p

m
/V

)

Mg-IV-N
2

Zn-IV-N
2

Cd-IV-N
2

FIG. 2. NLO coefficient d33 in pm/V as function of inverse gap
in the II-IV-N2 compounds.

II-IV-V2 compounds, such as ZnGeP2 and CdGeAs2, where
values of order 100 or larger are not uncommon [54].

B. Electro-optic tensor

We start again by establishing the accuracy of the method-
ology for III-N materials where comparison to experiment is
possible. The clamped linear electro-optical coefficients for
the III-N compounds are given in Table III. The allowed
coefficients are r51, r13, and r33, where the first index is a
contracted Voigt index 1-6 and refers to the optic frequency
electric fields, and the last index refers to the static elec-
tric field. In the Pockels coefficient, unlike the purely elec-
tronic nonlinear susceptibility, r51 �= r13 because we can no
longer permute all indices, since the third one has a different
meaning of a truly static electric field. In this part of the
work, we performed all the calculations at the experimental
lattice constants. We have seen in the previous section that

TABLE III. Clamped linear electro-optical coefficients (pm/V)
for BN, AlN, and GaN. The experimental values are given in absolute
values.

r51 r13 r33

BN FHI 0.005 − 0.08 0.38
HGH 0.005 − 0.07 0.38

AlN FHI − 0.57 − 0.86 2.49
FHI-revised − 0.64 − 0.97 2.81
HGH − 0.56 − 0.85 2.45
HGH-revised − 0.64 − 0.97 2.79
Expt. [55] 0.98
Expt. [56] 0.67 − 0.59

GaN FHI − 0.29 − 0.63 1.09
FHI-revised − 0.31 − 0.68 1.18
HGH − 0.30 − 0.65 1.20
HGH-revised − 0.31 − 0.68 1.26
Expt. [57] 0.38 0.72 1.31
Expt. [58] 0.57 1.91
Expt. [59] 1.00 1.60

TABLE IV. Decomposition of clamped linear electro-optical co-
efficients in BN, AlN, and GaN using HGH at experimental lattice
constants.

r51 r13 r33

BN total 0.005 − 0.07 0.38
electronic 0.26 0.27 − 0.50
phonon − 0.26 − 0.34 0.88

AlN total − 0.56 − 0.85 2.45
electronic 0.02 0.02 0.67
phonon − 0.58 − 0.87 1.78

GaN total − 0.30 − 0.65 1.20
electronic 0.41 0.42 − 0.68
phonon − 0.71 − 1.07 1.88

the NLO coefficient is not clearly improved in comparison
to experiment by adding the scissor correction, nor are the
ε∞. The LDA values seem a bit overestimated, while the
scissor corrected ones seem underestimated. In fact, it has
been suggested [34] to improve the estimated electro-optical
coefficients by adjusting the dielectric constants or indices of
refraction appearing in the equations to experimental values.
This is what we also do here in the results listed as “revised.”
The averaged LDA dielectric constant for GaN with the FHI
pseudopotential and at the experimental lattice constant is
5.57 and the experimental high-frequency dielectric constant
ε∞ = 5.35, and we here ignore the directional dependence
because it is small. We make similar adjustments for HGH
results. We can see that our revised results and the HGH
results are in good agreement with the experimental value of
Ref. [57].

For AlN, we also find the revised results (for both pseu-
dopotentials) to give comparable results. We should also keep
in mind that the experimental values show in fact a frequency
dependence not yet addressed in the present paper. This arises
among other from the dispersion (frequency dependence)
of the indices of refraction. The calculated LDA dielectric
constants for AlN are 4.48 (at FHI) and 4.50 (at HGH). To
obtain the revised values, we use the directionally averaged
high-frequency dielectric constants ε∞ = 4.22. The revised
results are in good agreement with the more recent Ref. [55],
but not with Ref. [56]. Since |d33| � |d31| for AlN, one
generally expects that r33, due to the electronic contribution,
should be notably larger than r31 and this is found to be the
case even after adding the phonon contributions.

Separately, in Table IV, we show the decomposition of the
clamped EO tensor into its purely electronic and phonon parts.
This shows that the electronic part has ratios of r13/r33 similar
to the corresponding second harmonic generation coefficients.
However, the phonon part has values of comparable size and
opposite sign for r13 to the electronic part. As a result, the r13

and r51 become negligible for BN, and for AlN they become
dominated by the phonon part because the electronic part
is anomalously small. For AlN, the r33 phonon contribution
has the same sign as the electronic one, so they enhance
each other, while for GaN and BN, they have opposite sign.
Again, AlN behaves different from the other materials in
this respect. For GaN, we can also compare our results with
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TABLE V. Clamped linear electro-optical coefficients (pm/V)
for Mg-IV-N2, Zn-IV-N2, and Cd-IV-N2 compounds.

r51 r42 r13 r23 r33

MgSiN2 total − 0.01 − 0.36 − 0.40 − 0.53 1.10
electronic 0.33 0.07 0.34 0.07 0.16
phonon − 0.34 − 0.43 − 0.74 − 0.60 0.94

MgGeN2 total − 0.07 − 0.15 − 0.25 − 0.19 0.88
electronic 0.31 0.30 0.32 0.29 − 0.23
phonon − 0.38 − 0.45 − 0.57 − 0.48 1.11

MgSnN2 total − 0.40 − 0.19 − 0.78 − 0.48 1.37
electronic 0.17 0.39 0.18 0.40 − 0.15
phonon − 0.57 − 0.58 − 0.96 − 0.88 1.52

ZnSiN2 total 0.24 0.01 − 0.07 − 0.23 − 0.05
electronic 0.37 0.16 0.37 0.17 − 0.41
phonon − 0.13 − 0.15 − 0.44 − 0.40 0.36

ZnGeN2 total 0.16 0.19 − 0.08 − 0.07 − 0.04
electronic 0.32 0.31 0.33 0.31 − 0.51
phonon − 0.16 − 0.12 − 0.41 − 0.38 0.47

ZnSnN2 total − 0.68 − 0.37 − 1.04 − 0.80 1.48
electronic − 0.32 − 0.09 − 0.33 − 0.09 0.51
phonon − 0.36 − 0.28 − 0.71 − 0.71 0.97

CdSiN2 total 0.39 − 0.26 0.07 − 0.49 − 0.37
electronic 0.52 − 0.07 0.51 − 0.07 − 0.80
phonon − 0.13 − 0.19 − 0.44 − 0.42 0.43

CdGeN2 total 0.14 − 0.16 − 0.13 − 0.45 0.03
electronic 0.38 − 0.03 0.38 − 0.03 − 0.46
phonon − 0.24 − 0.13 − 0.51 − 0.42 0.49

CdSnN2 total − 1.11 − 1.03 − 1.60 − 1.51 2.13
electronic − 0.64 − 0.74 − 0.63 − 0.76 1.32
phonon − 0.47 − 0.29 − 0.97 − 0.75 0.81

those by Prussel and Véniard [60] for the electronic part
only. Their value of χ (2)

zzz(−ω,ω, 0) obtained by means of a
frequency dependent sum-over-states method neglecting local
field effects but including a scissor correction is 9.0 pm/V.
Converting this to r33 by dividing by (ε∞)2 and multiplying
by −2 gives −0.68 in agreement with ours even though the
method used is rather different.

Next, in Table V, we show the clamped EO coefficients for
the II-IV-N2 compounds at LDA relaxed lattice constants. In
addition, we show for each coefficient, its decomposition in
the electronic and phonon parts. Here, additional components
are nonzero because of the lower symmetry. These were
obtained with HGH pseudopotentials. These were not revised
because the experimental values for the indices of refraction
are not currently available. For the Zn-IV-N2 compounds they
were previously reported by Paudel et al. [16]. However, as
mentioned earlier for the dim coefficients, we found those
results to be poorly converged with respect to the k-point
mesh. Focusing, for example, on ZnGeN2, which is the closest
to GaN, we can see that the electronic part is rather similar
to that in GaN. This makes sense because they have very
similar band structures. However, the phonon part is rather
different. The phonon part is related to the Raman tensor as
pointed out in Introduction. The phonon spectrum in ZnGeN2

is rather different from that in GaN because of the much larger

TABLE VI. Clamped (A) and unclamped (B) linear electro-
optical coefficients (pm/V) for Cd-IV-N2 compounds using FHI-
pseudopotential.

CdSiN2 CdGeN2 CdSnN2

Components A B A B A B

r51 0.47 0.66 0.14 0.32 − 1.30 − 1.20
r42 − 0.21 − 0.07 − 0.23 − 0.09 − 1.56 − 1.48
r13 0.16 0.40 − 0.12 0.12 − 1.74 − 1.53
r23 − 0.45 − 0.22 − 0.52 − 0.29 − 2.05 − 1.82
r33 − 0.56 − 0.95 0.04 − 0.35 2.88 2.45

number of vibrational modes, which are all Raman active.
Thus it is not surprising that the phonon contributions to the
EO coefficient are substantially different in ZnGeN2 and GaN.

Finally, the clamped and unclamped linear optical electro-
optical coefficients of the Cd-IV-N2 compounds are shown in
Table VI. The differences between clamped and unclamped
values are significant, indicating that the piezoelectric con-
tribution is not negligible. The piezoelectric constants were
reported in Ref. [24] and are indeed relatively high.

IV. CONCLUSION

In this paper, we have shown that the (2n + 1) approach
based on the Berry-phase calculation of the polarization,
as implemented in ABINIT, gives good agreement for the
second-order nonlinear optics coefficients in the static limit
with the values obtained from a “sum-over-states” approach
including local field effects by Chen et al. [7] for BN, AlN,
and GaN. The results are also in fair agreement with the few
experimental values known for AlN and GaN. The approach
is here extended toward InN. We found that in order to obtain
reasonable values, a gap correction of InN is essential and one
cannot totally rely on the scissor correction to achieve this
but needs to start from a pseudopotential that already gives
a gap. The predicted results on InN remain highly uncertain
because of the strong dependence on the pseudopotential.
Nonetheless, the results make sense from the point of view
of an approximate linear scaling of the dim coefficients with
the inverse gap 1/Eg . The one previously calculated result for
InN [53] would also approximately fall on this linear relation
ship, keeping into account the larger gap used in that work,
which was at that time the commonly accepted experimental
band gap value of InN, but which has since been revised.

The effects of the scissor correction in both the (2n + 1)
and sum-over-states approach are similar but it is not clear
whether it improves agreement with experiment because of
the remaining uncertainty on the experimental values and the
degree of agreement that can presently be obtained.

The same method was then applied to various II-IV-N2

semiconductors, with the group-II elements being Mg, Zn,
or Cd. The trends in this family are far from trivial. In fact,
even for AlN and GaN, they are not obvious because of the
large discrepancies of the d33/d31 from the quasicubic values
in AlN. Unfortunately, there are as yet no experimental values
to compare with. Interestingly, MgSiN2, which should most
resemble AlN, shares with it that d31, d32, and d33 have the
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same sign. We also noticed that the previous calculations
reported by Paudel et al. [16] for the Zn-IV-N2 compounds
were insufficiently converged with respect to k points.

In terms of the Pockels coefficients, we find that the
agreement with experiment for AlN and GaN is fair, given
again rather large experimental uncertainty. We also find
that the phonon and electronic contributions are comparable
in magnitude but often of opposite sign. The phonon con-
tributions and electronic contributions were analyzed sepa-
rately. While the electronic contributions in the II-IV-N2 and
corresponding III-N semiconductors are similar, the phonon
contributions are rather different. This reflects the similarity in
their band structure but large differences in the phonon spec-
trum. Finally, we note that even the piezoelectric contribution

appearing in the unclamped value is significant for the
Cd-IV-N2 compounds.

The numerical values of the Pockels coefficient as such are
rather unremarkable. They are relatively small compared to
the ones in, for example, ferroelectric perovskite oxides where
the phonon contribution becomes dominant [34,61].
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