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Topological edge modes by smart patterning
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We study identical coupled mechanical resonators whose collective dynamics are fully determined by the
patterns in which they are arranged. In this work, we call a system topological if (1) boundary resonant modes
fully fill all existing spectral gaps whenever the system is halved, and (2) if the boundary spectrum cannot
be removed or gapped by any boundary condition. We demonstrate that such topological characteristics can
be induced solely through patterning, in a manner entirely independent of the structure of the resonators and
the details of the couplings. The existence of such patterns is proven using K theory and exemplified using
an experimental platform based on magnetically coupled spinners. Topological metamaterials built on these
principles can be easily engineered at any scale, providing a practical platform for applications and devices.
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I. INTRODUCTION

Experimental demonstrations of topological effects in clas-
sical mechanical systems abound [1–24] and the field is
rapidly moving towards the next stage, where practical de-
vices and concrete applications ought to emerge. However,
it is extremely difficult to maintain control over the designs
as the systems are scaled down to meet certain practical
constraints, especially those based on specific configurations
and values of the couplings. In this work, we demonstrate that
topological boundary modes can emerge solely from a smart
patterning of a metamaterial. More precisely, metamaterials
made out of bundles or stacks of certain patterns have all
their bulk spectral gaps completely filled with topological
edge spectrum when the system is halved. This edge spectrum
cannot be gapped by any boundary condition or by adia-
batic deformation of the metamaterial. The phenomenon is
completely due to the patterning and does not require any
tuning of the couplings, except for the opening of gaps in
the bulk resonant vibrational spectrum. Due to such minimal
tuning, metamaterials designed on these principles may be
fabricated at any scale, hence providing a viable pathway
towards concrete practical applications.

The goal of our paper is twofold: On one hand, we
seek to demonstrate the experimental manifestation of the
topological boundary modes in one such smartly patterned
metamaterial and, on the other hand, we want to explain the
theoretical principles behind these unusual predictions. For
the first part, we introduce an experimental platform based
on magnetically coupled spinners. Its hallmark feature is that
arbitrarily complex mechanical resonators and couplings can
be built by engineering one degree of freedom at a time
(see Sec. II). The experimental platform not only enables the
realization and characterization of a topological pattern of
mechanical resonators, but also helps with the formulation and
exemplification of the theoretical concepts, which otherwise
may appear quite abstract. Indeed, such topological patterns
are necessarily aperiodic, thus the traditional Bloch-Floquet

analysis is unavailable. The natural theoretical tool to use in
such situations is the K theory of C∗ algebras, as introduced
in the pioneering works of [25] and [26]. Based on this for-
malism, we formulate a K-theoretic bulk-boundary principle
for generically patterned resonators. This principle enables
one to resolve the precise conditions in which the topological
edge spectrum emerges as well as the mechanism behind this
phenomenon. Prediction of topological patterns then becomes
routine. For simplicity, the present study is restricted to one-
dimensional patterns but generalizations to higher dimensions
can be easily achieved based on [27] (see, e.g., [28]). Let
us point out that the effect of a magnetic field can be also
incorporated in the analysis [29].

We believe these theoretical methods of analysis would be
extremely useful additions to the materials scientist toolbox
and we think that, by combining the somewhat abstract con-
cepts with the concrete experiments, we have finally found
a formula to explain the framework to a broad scientific
community.

The paper is organized as follows. In Sec. II, the experi-
mental platform based on magnetically coupled spinners is in-
troduced. In particular, we show how to quantitatively map the
coupling functions and how to obtain the dynamical matrices
that drive the dynamics of the collective resonant modes when
the spinners are assembled in arbitrary patterns. This concrete
setting is used to explain what topological classification over
a fixed pattern means and to give the first hints to why such
a program is feasible, despite the fact that the pattern can
be arbitrary. In particular, using elementary calculations, we
demonstrate that all dynamical matrices take a very specific
form, involving only a small set of operators. This leads us
in Sec. III to introduce the algebra of bulk physical algebras,
which generates all possible dynamical matrices over a pattern
via a canonical representation. For the proposed patterns, this
algebra is computed explicitly and shown to be isomorphic
to the algebra generated by magnetic translations. Section IV
illustrates the bulk spectra of the proposed patterns and points
to the similarity with the Hofstadter butterfly [30]. We also
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illustrate the good agreement between numerical and experi-
mental mappings of the spectra. A review of Bellissard’s gap
labeling procedure [31] is used to rationalize the complexity
of the spectra and we show how to compute bulk topological
invariants solely from the integrated density of states. It is
at this point where the K theory is introduced. Section V is
dedicated to the edge analysis. We illustrate the manifestation
of the topological edge spectrum through both numerical
simulations and quantitative experimental measurements as
well as video recordings. Additionally, we explain the K-
theoretic bulk-boundary mechanism, which culminates with
the proof that, indeed, the proposed patterns are topological. A
discussion of possible applications concludes the exposition.

Last, let us relate our work with the existing literature.
The emergence of the topological boundary spectrum in
quasiperiodic structures was pointed out theoretically and
observed experimentally in [32,33]. Questions about these
systems were raised in [34], namely, were the topological
characteristics noted in [32] a property of one pattern or of
an ensemble of patterns? Reference [35] provided answers
using some of the algebraic methods employed in the present
work. By passing from numerical topological invariants to
the K-theory groups, we answer those questions completely
while providing a global chart of all possible topological
systems over a quasiperiodic pattern. Additionally, we provide
experimental observation of such topological edge modes in
a quasiperiodic mechanical system. The authors emphasize
that this work is part of the vigorous effort of the metama-
terials community on the search for topological boundary
resonances in aperiodic systems [32–52]. This exploration
goes well beyond the periodic table of topological insulators
and superconductors [53–55].

II. MAGNETICALLY COUPLED SPINNERS: A VERSATILE
EXPERIMENTAL PLATFORM

Utilizing an experimental platform which can be easily
reconfigured and quantitatively characterized enables one to
engineer patterns of coupled mechanical resonators with pre-
defined internal structures and couplings, and to study the
spectral properties of virtually any imaginable discrete model.
The experimental control over these systems is extremely
high, resulting in excellent agreement between theory and
experiment. One particular configuration is discussed in detail
to exemplify the experimental procedures and is used to
demonstrate a topological pattern. The experimental platform
will also be used to introduce the program of topological
classification over an aperiodic pattern and other more abstract
concepts.

A. Coupling and dynamics

A configurable spinner is illustrated in Fig. 1(a). It consists
of a stainless-steel ball bearing mounted in a threaded brass
encapsulation. This enables the spinners to be adorned with
a multitude of components. The centers of the spinners are
pinned down, resulting in one rotational degree of freedom ϕ.
By stacking and coupling such spinners, extremely complex
systems can be built one degree of freedom at time [illustrated
in Fig. 1(b)]. With full control over the degrees of freedom and

Ball bearing

Magne�c disk

Brass arms

(a) (b)

FIG. 1. Magnetically coupled spinners: A versatile experimental
platform. (a) Example of the basic spinner configuration used in the
present work. The arms are detachable such that the spinners can
be easily refitted. (b) Exemplification of a relative complex linear
configuration of coupled spinners, with coupling in front sideways
(shown) and in the back (not shown).

couplings, any quadratic Hamiltonian can be implemented
to drive the small oscillations of the coupled spinners. For
example, using this very platform, the generators of the entire
classification table of topological condensed-matter systems
have been recently implemented with passive metamaterials
in [56].

The present work features a spinner with six grooved
indentations and with heavy brass arms securely fastened
in the brass encapsulation. Two of the arms are fitted with
neodymium magnetic disks, which provide the couplings
between each spinner when arranged in linear patterns. These
magnetic couplings can be measured by mapping the resonant
modes of a dimer, whose dynamics is governed by the La-
grangian (I = moment of inertia):

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) = 1
2I ϕ̇2

1 + 1
2I ϕ̇2

2 − V (ϕ1, ϕ2). (1)

In the regime of small oscillations around the equilibrium
configuration ϕ1 = ϕ2 = 0, the potential can be approximated
quadratically:

V (ϕ1, ϕ2) = 1
2α

(
ϕ2

1 + ϕ2
2

) + βϕ1ϕ2, (2)

and the pair of the two resonant modes can be computed
explicitly:

f± =
√

α ± β

4π2I
. (3)

The measured resonant frequencies are reported in Fig. 2 as
functions of distance d between the magnets. Equations (3)
can be inverted:

α = 2π2I (f 2
+ + f 2

−), β = 2π2I (f 2
+ − f 2

−), (4)

which, together with the experimental data, enables us to
determine the functional dependencies α(d ) and β(d ) of the
coupling coefficients. The details are provided in Fig. 2 and
note that units of 2π2I are used henceforth for the coupling
functions. The functional dependencies are well fitted by

α(d ) = −654.09√
d

+ 2763.66

d
+ 575.89

d2
,

β(d ) = −778.14√
d

+ 3439.81

d
+ 161.35

d2
. (5)

When the centers of the spinners are pinned in a one-
dimensional pattern ω = {xn}n∈Z, the Lagrangian of the
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FIG. 2. Mapping the coupling coefficients. (a) Illustration of a
single spinner with the locations of magnets indicated. (b) Ex-
perimental apparatus for measuring the interaction potential of a
dimer. Two spinners are placed on an aluminum track with variable
distance d . The system is actuated and the response is recorded
using accelerometers. (c),(d) Response of the coupled spinner as
the frequency is swept over the low and high resonances of dimers
spaced 9 mm apart. The standard fits indicate quality factors of
Q = 40, 53, respectively. (e) Map of the high (red) and low (blue)
resonant frequencies as functions of magnet spacing. (f) The cou-
pling functions α (red dots) and β (blue dots), as derived from (4) and
the data from panel (e), together with the fit functions from Eqs. (5).

system becomes

L =
∑
n∈Z

[
1

2
I ϕ̇2

n − (α(dn − 1) + α(dn))ϕ2
n − β(dn)ϕnϕn+1

]
,

(6)

where dn = xn+1 − xn − D with D the diameter of a spinner.
The equations of motion read

−I ϕ̈n = [α(dn−1) + α(dn)]ϕn + β(dn−1)ϕn−1 + β(dn)ϕn+1.

(7)

The degrees of freedom can be encoded in the column vector:

|ϕ〉 = (. . . , ϕ−1, ϕ0, ϕ1, . . .)
T , (8)

and let us denote by |n〉 the column vector with 1 at position
n and 0 in the rest. Then |ϕ〉 = ∑

n ϕn|n〉 and, with the ansatz
|ϕ(t )〉 = Re[ei2πf t |ψ〉] and the units from Fig. 2, the system
of equations of motion becomes f 2|ψ〉 = H |ψ〉 with

H =
∑
n∈Z

{[α(dn−1) + α(dn)]|n〉〈n|

+β(dn−1)|n〉〈n − 1| + β(dn)|n〉〈n + 1|}. (9)

It is now a classical eigensystem for the Hamiltonian H in the
Hilbert space �2(Z).

We present this analysis in detail because it serves as a
model for generically patterned resonators. For example, it

can be implemented for other spinner configurations, even
for complex ones that include stacking and couplings beyond
nearest neighbors. Throughout this paper, especially when
discussing continuous deformations of the systems, it is ex-
tremely helpful to have a physical realization in mind.

B. Aperiodic yet fully classifiable

To resolve the bulk-boundary correspondence principle for
these systems, one must deal with the classification of gapped
bulk Hamiltonians over the pattern ω. To properly define the
pattern, recall that the spinners can be easily reconfigured,
hence the Hamiltonian (9) is only one of many that can be
implemented over ω. When N spinners are stacked at each
point of the pattern, the Hilbert space becomes CN ⊗ �2(Z),
with elementary vectors of the form ξ ⊗ |n〉, and the most
general Hamiltonian driving the small oscillations of the
coupled spinners takes the form

Hω =
∑
n,n′

wn,n′ (ω) ⊗ |n〉〈n′|, (10)

where wn,n′ ∈ MN (C) with wn′,n = w
†
n,n′ . Throughout,

MN (C) denotes the space of N × N matrices with complex
entries. The above expression allows couplings beyond the
first nearest neighbors and allows for the coupling N × N

matrices to depend on arbitrarily many geometrical data
from the pattern ω. The coupling coefficients can be changed
continuously (e.g., by modifying the strength of the magnets).
Furthermore, by stacking a large number of spinners on top
of each other at each point of the pattern, one can smoothly
activate or deactivate internal degrees of freedom, changing
the dimension N . These will be the allowed continuous
deformations of our physical systems. It is useful to view
a gapped Hamiltonian as a pair (Hω,G), where G is a
connected component of the resolvent set R \ Spec(Hω ).
Two gapped Hamiltonians (Hω,G) and (H ′

ω,G′) are said
to be in the same topological class if a continuous gapped
deformation connecting the two Hamiltonians exists. The
topological classification of the gapped Hamiltonians consists
of enumerating these topological classes as well as spelling
out at least one representative for each class.

Considering generic aperiodic patterns, the topological
classification may appear a daunting task. To understand why
this classification is achievable, several key observations are
in place:

(1) The pattern ω needs to be treated as an ordinary
variable. It takes values in the space of point patterns, a space
that can be characterized and topologized using procedures
that by now are quite standard [57]. Existence of a topology
is important in defining what a continuous deformation of a
point pattern is.

(2) Since the spinners are identical copies of a basic design,
once the internal structure of the basic spinner is set, the
functional dependencies of the couplings on ω are fixed. More
precisely, if the pattern is changed to ω′, we will use the same
functions wn,n′ but evaluate them at ω′.

(3) Per previous observation, a better terminology for the
coupling coefficients would be coupling functions. This is a
useful concept because ω, as a point in the space of patterns,
contains all the geometric information of the pattern. In
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general, the coupling coefficients depend on many geometric
details of the pattern. If the concept of coupling functions is
adopted, then those complicated dependencies can be written
concisely as wn,n′ (ω).

(4) The coupling functions are assumed to be continuous
of ω. We will also consider cases where wn,n′ (ω) becomes
negligible for n and n′ far apart. Both assumptions are usually
met in practice.

The particular Hamiltonian (9) reflects all these principles,
through the fact that α(d ) and β(d ) have been measured
once and then properly evaluated and applied to the arbitrary
pattern ω. The analysis and the measurements that led to
(9) can be repeated for more complex spinner structures and
couplings, and the principles will emerge again. While they
seem obvious, these observations bring a unique perspective,
which is key to solving the topological classification.

Gearing towards that solution, note the natural action of the
Z group on the space of one-dimensional patterns:

Z 	 a → τaω = τa{xn}n∈Z = {xn+a − xa}n∈Z. (11)

We will always fix the point labeled by 0 at the origin of the
real axis and set the labels to be consistent with the ordering
· · · < x−1 < x0 = 0 < x1 < · · · . This implicitly assumes that
two points are never on top of each other. Then τa can be
identified with the rigid translation of the pattern that brings
point xa at the origin. Galilean symmetry requires that

wn−a,n′−a (τaω) = wn,n′ (ω) ⇒ wn,n′ (ω) = w0,n′−n(τnω).
(12)

Dropping one redundant index and using q = n′ − n, as well
as the shift operator,

S|n〉 = |n − 1〉, S†|n〉 = |n + 1〉, SS† = S†S = I, (13)

the generic Hamiltonian takes the form

Hω =
∑

q

∑
n

wq (τnω) ⊗ |n〉〈n| Sq. (14)

This expression already reveals a very particular structure.
Also, in order to reproduce Hω, one only needs to evaluate the
coupling functions on a small subset of the space of patterns,
namely

� = {τnω, n ∈ Z}, (15)

where the overline indicates the topological closure of the
otherwise discrete set of translated patterns. In the profes-
sional literature [57], the tuple (�, τ ), which is a bona fide
topological dynamical system, is called the discrete hull of the
pattern. A system is called homogeneous if the orbit {τnω

′}n∈Z
is dense in � for any pattern ω′ ∈ �. We will be dealing
exclusively with homogeneous patterns.

The main conclusion is that every Hamiltonian over the
pattern ω can be generated using just the shift operator S and
diagonal operators of the form

∑
n f (τnω)|n〉〈n| with f a

continuous function over �. In many instances, the algebra
generated by these operators is very simple and connects
to other well-known and well-studied algebras. Ultimately,
completing the topological classification program over a point
pattern is conditioned by the ability to resolve the topological
set � and the action of Z on it.

0-l0 l0 2l0 3l0

2r

−

3

(a)

(b)

FIG. 3. Example of a pattern with discrete hull equivalent to S1.
(a) Display of a finite number of points of a pattern generated by
the algorithm xn = n l0 + r sin(nθ ), with the particular values l0 =
1, r = 0.4, and θ = 2π√

15
. (b) A geometric algorithm to generate the

same pattern, revealing that � � S1.

C. Generating patterns with prescribed hull

Here, we generate a class of patterns for which � is topo-
logically equivalent with the circle S1. The simplest pattern is
illustrated in Fig. 3(a) and it has the analytic expression

xn = n l0 + r sin(nθ ), r <
l0

2
, n ∈ Z. (16)

The geometric algorithm explained in Fig. 3(b) can be used to
formally derive that � � S1. Consider a rigid translation τaω

of the pattern such that the old xa now sits at the origin of the
real axis. Associated to this xa there is a point on the circle and
it is evident that knowing where this point is located enables
us to reproduce the entire translated pattern τaω. Applying
the geometric algorithm described in Fig. 3(b) (starting from
angle aθ instead of 0) establishes a one-to-one relationship
between the translated patterns τaω and the angles aθ, a ∈ Z.
For θ irrational (in units of 2π ), these points densely fill the
circle. It is important to note that � is just a topological space
and it has no geometry. From a topological point of view,
any closed loop is also a circle, hence more complex patterns
can be generated by the same algorithm but using a deformed
circle. Such a pattern is illustrated in Fig. 4(a). As one can
see, although the algorithm is simple, the resulting patterns
can be extremely complex and irregular looking. Using the
same arguments, one can quickly see that � is just the closed
loop traced in Fig. 4(b), hence � � S1.

(a)

(b)

FIG. 4. Additional example of a pattern with discrete hull equiv-
alent to S1. (a) Display of a finite number of points. (b) The geometric
algorithm used to generate the pattern consists of translation by θ

along the loop followed by a horizontal translation by one unit.
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Based on the above remarks, one can see that we can actu-
ally allow not only continuous deformations of the resonators
but also of the patterns themselves, provided the topology of
the hull remains unchanged. This will be assumed from now
on and will be covered by our topological classification.

III. C∗-ALGEBRAIC APPROACH

It is instructive to inspect the commutation relations be-
tween the basic operators, which for N = 1 are(∑

n

f (τnω)|n〉〈n|
)

S

= S

(∑
n

f (τnω)|n − 1〉〈n − 1|
)

= S

(∑
n

f (τn+1ω)|n〉〈n|
)

. (17)

This demonstrates that, when conjugating the specific diago-
nal operators by S, f was effectively replaced by f ◦ τ1. This
observation enables us to define an abstract algebra which
generates all Hamiltonians Hω for all ω ∈ �.

A. Algebra of bulk physical observables

We will discuss three important aspects even though some
might appear technical at first sight. First is the definition of
the algebra A of bulk physical observables. It is the universal
C∗ algebra generated by the algebra CN (�) of continuous
function over � with values in MN (C) and by a unitary oper-
ator u (uu∗ = u∗u = 1), satisfying the commutation relations
which stem directly from (17):

f u = u(f ◦ τ1), ∀ f ∈ CN (�). (18)

A generic element from this algebra takes the form a =∑
q aqu

q , where all coefficients aq are from CN (�). The

canonical representation on CN ⊗ �2(Z) is provided by

CN (�) 	 f → πω(f ) =
∑

n

f (τnω) ⊗ |n〉〈n| (19)

and u → S, which we already verified in (17) to respect
the commutation relations of A. One can see explicitly that
πω(h), h = ∑

q wqu
q , generates (14). The algebra A gen-

erates not only the Hamiltonians but all covariant physical
observables over the patterns from �, that is, the families of
operators {Aω}ω∈� with the property

S−nAωSn = Aτnω, ∀ ω ∈ �. (20)

Second, since one of the main themes is the classification
under continuous deformations, we need to introduce a norm
for A in order to make precise what the latter means. The
canonical norm on A is

‖a‖ = sup
ω∈�

‖πω(a)‖, (21)

where on the right is the ordinary operator norm. When
completed under (21), A becomes a separable C∗ algebra,
which for our program is extremely important because these
algebras have well-defined topological K theories and their K

groups are always countable. In other words, we are assured
that we have a sensible and useful topological classification.

Third, there is an important relationship between the spec-
trum of an element h ∈ A and the spectra of operators πω(a)
that stem from it. Recall that the resolvent set of a is

Res(a) = {λ ∈ C | λ − a is invertible in A}. (22)

The spectrum of a is then Spec(a) = C \ Res(a), a definition
that actually makes sense for an arbitrary algebra. In general,
we have the isomorphism

A �
⊕
ω∈�

πω(A) ⇒ Spec(h) =
⋃
ω∈�

Spec(Hω ). (23)

However, for a homogeneous system, Spec(Hω ) is indepen-
dent of ω and, as such

Spec(h) = Spec(Hω ) ∀ω ∈ �, (24)

a conclusion which will play an important role in our final
discussion.

B. Explicit computations

If the pattern ω is periodic, then � is a point and the
algebra A is generated by the shift operator S. Hence, it
is commutative and we are dealing with the ordinary band
theory.

If ω is a disordered lattice, i.e., small random displace-
ments drawn from the interval [−r, r] of otherwise equally
spaced points, then � is the Hilbert cube [−r, r]Z. This space
has trivial topology since it is contractible to a point and the
K theory of the resulting observable algebra is the same as the
K theory of the periodic lattice [27].

The simplest example with a nontrivial topology is when
� is equivalent to the circle and τ1 is the translation by a
fixed θ , as in the examples from Figs. 3 and 4. For N = 1,
we know from the ordinary Fourier analysis that the algebra
C(�) is generated by one function, v(s) = eis , where s is
the coordinate along the �, assumed to be a closed loop of
length 2π . The commutation relations can be computed (18)
explicitly:

v u = u (v ◦ τ1) = eiθu v, (25)

because (v ◦ τ1)(s) = ei(s+θ ) = eiθv(s). The conclusion is
that A is the noncommutative two-torus. This algebra is the
same as the one generated by the magnetic translations, from
where one draws the Hamiltonians for electrons hopping on
a lattice in a perpendicular uniform magnetic field. The latter
is the setting where the integer quantum Hall effect (IQHE)
is observed, which is the prototypical topological system
from class A in two dimensions. As we shall see, there are
extremely close spectral and topological similarities between
those systems and the ones studied in this work.

One important point of these exercises was to convey that
if (�, τ ) can be resolved and is simple enough, then the
algebra A can be computed explicitly. In many cases, it can be
connected with already well-studied algebras. In these cases,
the classification of the gapped Hamiltonians can be fully
carried out and the bulk-boundary principle can be formulated
very precisely, as we shall see next.
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FIG. 5. Bulk spectral characteristics of the Hamiltonian (9) over the pattern from Fig. 3. (a) Bulk spectrum as function of parameter θ . The
parameters l0 and r have been fixed to the experimental values (see Fig. 6). (b) Integrated density of states (26) rendered as function of θ and
frequency. The frequency axis is out of the plane.

IV. DECIPHERING THE BULK

A. Facts and observations

The resonant frequency spectrum for Hamiltonian (9) over
the pattern (16) is shown in Fig. 5(a) as function of θ . The
calculation was performed on a finite pattern of length L =
840 with periodic boundary condition for all commensurate
values θn = 2nπ

L
(note that the spectrum is known to be

continuous of θ , hence the use of rational values is not an
issue here). The empirical couplings α and β have been used
in these calculations. The similarity between this spectrum
and the Hofstadter spectrum [30] is remarkable. The main
characteristic of the spectrum is the fractal network of spectral
gaps. Despite its complexity, the spectral gaps can be labeled
uniquely by just two integer numbers [31]. A practical way to
achieve this labeling is to compute the integrated density of
states (IDS), defined as

IDS(f ) = no. resonant frequencies below f

Length L

∣∣∣∣
L→∞

. (26)

A graphic representation of IDS as a function of f and θ is
reported in Fig. 5(b), as derived from the data reported in
Fig. 5(a). In this rendering, the sharp changes in color are
associated with the spectral gaps and the value of IDS inside

the spectral gaps are all characterized by straight lines:

IDS(θ ) = n + m
θ

2π
, n,m ∈ Z. (27)

Another key observation is that, since N = 1, the IDS is
always bound to the interval [0, 1]. As we shall see later, the
index m in (27) is the topological number which dictates the
presence or absence of edge modes. Examining (27), one sees
that there are only two instances where m = 0; when the states
are fully depopulated (IDS = 0) or fully populated (IDS = 1).
We can now anticipate the main finding of our work; every gap
seen in Fig. 5(a) is topological in the sense that m �= 0 and
this implies the emergence of topological edge states. This
is a statement which applies to any Hamiltonian (14) with
N = 1. Thus, it is an intrinsic characteristic of the pattern.
By all measures, the pattern can be called topological.

The bulk spectrum has been mapped experimentally for
select values of θ . The setup is shown in Figs. 6(a) and
6(b). Throughout, the units of length are millimeters. To
accommodate for the diameter, D = 66 mm, of the spinners,
their centers have been arranged according to the algorithm
xn = 76n + 2 sin(nθ ), θ = 6π

32 , leading to a distance between
the magnets [see Eq. (6)]:

dn = 10 + 2 sin [(n + 1)θ ] − 2 sin(nθ ), n ∈ Z. (28)

(d)1.0

0.8

0.6

0.4

0.2
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FIG. 6. Experimental bulk spectral characteristics. (a) A system of 32 spinners arranged in pattern (16). (b) Notations and experimental
values: θ = 6π

32 , D = 66 mm, l0 = 76 mm, r = 2 mm. (c) Theoretically computed bulk spectrum for θ = 2π√
117

= 6π

32 + O(10−3), together with
the gap labels for the upper gaps, as extracted from Fig. 5. (d) Experimental reading from an accelerometer placed in the bulk of the system.
The correspondence between theory and experiment is shown by the shaded regions.
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These are the inputs for Hamiltonian (9). The theoretically
computed spectrum and the experimentally measured one
are reported in Figs. 6(c) and 6(d), respectively. The overall
quantitative agreement is good, especially for the upper part
of the spectrum. In fact, a rigorous correspondence between
the two was established [see the guiding shaded regions
in Figs. 6(c) and 6(d)], by matching the experimental and
theoretical profiles of the normal modes. The IDS is extremely
difficult to map experimentally since the size of the system
needs to be appreciable and each of the resonant frequencies
needs to be resolved. For these reasons, no attempt was made
towards an experimental measurement.

B. Gap labeling: K -theoretic account

One extremely puzzling question is how do the straight
lines emerge in Fig. 5(b), given that no tuning of the cou-
pling coefficients has been attempted? For example, identical
straight lines will show up even if the spinners are arranged
in the complicated pattern shown in Fig. 4. The fundamental
principle behind this phenomenon is easily explained by the
K theory of the observables algebra, A [31].

Given an element h of the C∗ algebra and a continuous
function ϕ : C → C, one can define a functional calculus
ϕ(h) by approximating ϕ by polynomials and taking the limit
with respect to (21). This limit exists if and only if ϕ is con-
tinuous on the spectrum of h (see [58]). The example which
will often appear from now on is the gap projection pG =
χ(−∞,G](h), where h is the element of A which generates
a covariant family of gapped Hamiltonians (Hω,G). From
now on, G will represent the gap itself and also an arbitrary
point from the gap. Also, χ is the characteristic function of
the specified interval. In the expression of pG, χ(−∞,G] has a
discontinuity at G but, since it occurs outside the spectrum
of h, pG is indeed an element of A, which generates the
spectral projections of Hω’s onto the spectrum below G. Con-
sider now the family of functions ϕt (x) = x−G

1−t+t |x−G| , which
interpolates continuously between ϕ0(x) = x and ϕ1(x) =
sgn(x − G). Then, ϕt (Hω ) interpolates continuously between
Hω and sgn(Hω ) = 1 − 2χ(−∞,G](Hω ). What this suggests is
that classifying gap Hamiltonians (Hω,G) are the same as
classifying the projections Pω(G) = χ(−∞,G](Hω ) or, at the
level of algebra A, the projections pG. Typically, there are
many projections in an algebra but, if they are organized in
topological equivalence classes, their accountability becomes
possible. This is what K theory offers [25,59–62].

Given a generic C∗ algebra A, the K0 group is defined
as the classes [p]0 of projections ( i.e., p2 = p∗ = p) from
MN (C) ⊗ A with N arbitrarily large [hence M∞(C) is used
instead], where two projections belong to the same class iff
they can be continuously deformed into each other or if there
is u ∈ M∞(C) ⊗ A such that p′ = upu∗ [when A is tensored
by M∞(C), the two criterion coincide]. Given two projections
and their classes, one defines

[p]0 ⊕ [q]0 =
(

p 0
0 q

)
0

,

which makes K0 into an Abelian semigroup, which then
can be completed to a group. This is how K0(A) group is
defined. Similarly, two unitary elements from M∞(C) ⊗ A

are declared to be in the same K1 class if they can be continu-
ously deformed into each other. Given two unitaries and their
K1 classes, one defines the binary operation [u]1 � [u′]1 =
[uu′]1, which transforms K1(A) into an Abelian group. Since
the projections and unitaries are drawn from M∞(C) ⊗ A,
we can simplify and take N = 1 in the definition of the
bulk algebra, because M∞(C) automatically takes care of the
internal degrees of freedom!

We now state a central statement. By definition, the class of
a projection is a topological invariant, though not a numerical
one. As long as we classify the systems by K theory, which is
now well understood within our community to be the physi-
cally correct way (see next paragraph), the class [pG]0 inside
the K0 group is the most general topological invariant that can
be associated to a gap projection. Another key observation
is that, if A is a separable C∗ algebra as in our case, then
both K0(A) and K1(A) are, at most, countable. In fact, for the
noncommutative two-torus, which is the algebra associated to
our patterns, K0(A) � Z2, hence it has only two generators,
the identity [1]0 and the Rieffel projection [pθ ]0 [63]. As such,
up to homotopies, any projection from M∞(C) ⊗ A can be
decomposed as

[p]0 = [1]0 ⊕ · · · ⊕ [1]0 ⊕ [pθ ]0 ⊕ · · · ⊕ [pθ ], (29)

or simply as

[p]0 = n [1]0 + m [pθ ]0, n,m ∈ Z. (30)

Therefore, we can locate p in K0(A) using just the two
integers n and m. As long as one classifies by K theory, these
integers represent the complete set of topological invariants
that can be associated to a projection. It remains to show that
they are the same numbers appearing in our previous IDS
analysis. For this, note that the IDS values inside the gaps can
be also computed as the trace per length of the gap projections:

IDS(G) = lim
N→∞

1

2N

N∑
n=−N

〈n|Pω(G)|n〉. (31)

At the level of algebra A, the trace per length has a very simple
interpretation. Indeed,

lim
N→∞

1

2N

N∑
n=−N

〈n|Aω|n〉 = lim
N→∞

1

2N

N∑
n=−N

〈n|πω(a)|n〉

= lim
N→∞

1

2N

N∑
n=−N

a0(τnω), (32)

and, by using Birkhoff’s ergodic theorem [64], we can con-
clude that

lim
N→∞

1

2N

N∑
n=−N

〈n|Aω|n〉 =
∫

�

dP(ω) a0(ω), (33)

where P(ω) is the unique translation invariant probability
measure on S1. The right-hand side defines a trace on the
algebra A, which will be denoted by T , i.e., a positive linear
functional such that T (aa′) = T (a′a) for any a, a′ ∈ A. This
trace can be trivially extended over M∞(C) ⊗ A by tensoring
with the ordinary trace. Now, consider p and p′ from the
same K0 class. Then there exists u such that p′ = upu∗ and
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consequently T (p) = T (p′). As a consequence, the trace T
is constant over the topological classes, hence it defines a
topological invariant. Given the linearity of the trace [25,31]:

IDS(G) = T ([pG]0) = T (n[1]0 ⊕ m[pθ ]0)

= nT ([1]0) + mT ([pθ ]0) = n + mθ, (34)

where for the last equality we used the fundamental result
T (pθ ) = θ [63].

Several observations are in place, with fundamental con-
sequences for experiments. Given any Hilbert space H, its
algebra B(H) of bounded operators is not separable and its
K theory is irrelevant. In fact K0(B) = 0 for any separable
H [60]), so it is very important that all the Hamiltonians over
a pattern can be all drawn from the smaller algebra A with
a nontrivial K theory. The number of internal degrees of the
resonators cannot be fixed in general. For example, in quan-
tum chemistry we use pseudopotentials and discard the deep
electron states, which are chemically inert, and we also get
rid of the states in the continuum spectrum. The tight-binding
Hamiltonians used to model topological insulators are just
effective Hamiltonians where an infinite number of internal
states are “integrated out.” It is important to acknowledge
that, in K theory, states can be added without changing the
classification. This is why the K-theoretic classification is
more physical than any other classification schemes. Now an
extremely fine and important point: by definition, the labels
n and m cannot be changed as long as p is continuously de-
formed. This deformation needs to happen inside the algebra
A by either deforming the resonators, the way they couple,
or by deforming the pattern without changing the topology
of the discrete hull � (as for the patterns in Figs. 3 and 4).
These give the precise experimental conditions in which the
predictions based on K theory will hold, something which in
the physical literature are completely overlooked, yet they are
paramount for the practical applications.

V. TOPOLOGICAL EDGE STATES

In this section, we remove the degrees of freedom with
index n < 0 and examine the spectral properties of the edged
Hamiltonians, like

Ĥω =
∑

n,n′�0

wn,n′ (ω) ⊗ |n〉〈n′|, (35)

defined over the Hilbert space CN ⊗ �2(N). The above
Hamiltonians assume that all spinners with n < 0 have been
jammed. However, the edge can be generated in many differ-
ent ways. For example, one could remove all the spinners with
index n < 0, in which case some of the coupling coefficients
near the edge are altered. In real-world applications, we may
never produce and maintain clean edges. Instead, the coupling
constants will be drastically affected near the edge by the
cutting process or by gradual wear and tear. Hence, it is very
important to produce statements that are independent of the
boundary conditions. This is another aspect where K theory
shows its effectiveness.

When a bulk system Hω is edged to Ĥω, the bulk spectrum
remains in place, but an additional spectrum can emerge inside
the bulk spectral gaps. It is useful to introduce the edge

spectrum as

Spece(Ĥω ) = Spec(Ĥω ) \ Spec(Hω ). (36)

In one- and quasi-one-dimensional systems, Spece(Ĥω ) can
only contain a finite number of eigenvalues. Interesting things
can happen when the systems are stacked as

Ĥ =
⊕
ω∈�

Ĥω. (37)

The bulk spectrum remains unchanged, but the edge spectrum
now consists of

Spece(Ĥ ) =
⋃
ω∈�

Spece(Ĥω ) =
⋃
a∈Z

Spece(Ĥτaω ), (38)

where in the last equality we used the fact that the orbit of ω

is dense in �. The last equality shows that the stacking can
be achieved by simply cutting the same chain but at different
locations. The edge spectrum is said to be topological if it fills
the bulk gap completely:

Spece(Ĥ ) ∩ G = G, (39)

and if it cannot be removed by any adiabatic deformation of
the bulk system or by changing the boundary condition.

A. Facts and observations

After removing all the spinners with index n < 0, the
dynamics is described by the Hamiltonian

Ĥω =
∑
n∈N

{[α(dn−1) + α(dn)]|n〉〈n|

+β(dn−1)|n〉〈n − 1| + β(dn)|n〉〈n + 1|}, (40)

with the understanding that α(d−1) = β(d−1) = 0. In Fig. 7
we show the theoretically computed spectra of Ns stackings
of edged systems,⋃

a=0,...,Ns−1

Spec(Ĥτaω ), Ns = 1, 10, 100, 1000, (41)

for the pattern (28) with the experimental coupling coef-
ficients. The angle was fixed at θ = 2π√

117
≈ 0.5808. This

particular irrational fraction of 2π accepts a good rational ap-
proximation θ = 6π

32 + O(10−3) and is used in the experiment.
In the numerical calculations the exact θ was used and the
calculation was performed on a finite pattern with L = 7669,
chosen based on the rational approximation θ = 2π 709

7669 +
O(10−7). This ensures that all graphical representations in
Fig. 7 are extremely accurate.

Figure 7(a) reports the computed IDS together with the gap
labels (n,m) derived from the values of IDS inside the gaps.
They are in agreement with the labels seen in Fig. 5. Examin-
ing Figs. 7(b)–7(e), one can witness how all the spectral gaps
of the bulk Hamiltonian are gradually filled with boundary
spectrum as more systems are added to the stack. The resulting
bundle of systems is topological in the sense described above,
in full agreement with the gap labels. The edge spectrum can
be resolved asa function of ω ∈ S1 as in Fig. 8, by noticing
that the coordinate of τaω on the circle is the angle aθ . The
simulation in panel (a) shows that the edge spectrum splits into
chiral bands, whose number equals the gap label m. Since the
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FIG. 7. Numerical illustration of the topological edge spectrum.
(a) Integrated density of states (IDS) for the pattern (28) with
θ = 2π√

117
(red curve). Overlaid in gray is the bulk spectrum. The

IDS values n + mθ inside the spectral gaps are indicated by the
pairs of integers (n,m). (b)–(e) Edge spectrum (red marks) of Ns

stacked edged systems, with Ns = 1, 10, 100, 1000, respectively. For
convenience, the bulk spectrum is shown in gray.

computation was performed on a finite rather than a halved
system, the chiral bands appear always in pairs, one per edge.

The edge spectrum has been reproduced experimentally as
reported in Fig. 8(b). In these experiments, the system shown
in Fig. 6(a) is actuated from the first spinner between 14 and
21 Hz in steps of 0.1 Hz. One spinner was then moved from
the front to the back of the chain, effectively implementing
the translation τ1ω, and the measurements were repeated.
By cycling this whole process, one can shift the pattern 32
times and generate the experimental measure of the edge
spectrum (38). Topological edge modes are detected at proper

FIG. 8. Theoretical edge spectrum vs the measured one. (a) The
predicted theoretical spectrum of a chain of 32 spinners with free
ends, mapped as function of ω. (b) The resonant frequencies (dots)
recorder at one end of the chain, with the bulk spectrum from
Fig. 6(d) indicated by vertical grey bars. Dotted lines have been
added to help indicate the chiral bands. In both panels, ω runs over
the experimentally available values ωn = nθ, n = 0, . . . , 31. Note
that the theoretical plots include both (left and right) edge modes and
this is why the chiral bands come in pairs.

frequencies inside the bulk spectral gaps as the frequency is
swept. They manifest as extremely strong and well-defined
resonances, visible to the naked eye. A quantitative account
of this phenomenon is reported in Fig. 9, which displays
the reading from an accelerometer placed on the arm of the
second spinner from the edge. Figure 10 resolves the spatial
profile of an edge resonant mode detected in the last and most
prominent bulk gap. It confirms that the mode is extremely
well localized near the edge.

Last, in the Supplemental Material [65] we report video
recordings of the response of the experimental system when
actuating from one end at different frequencies. In these
experimental observations, the system has been enlarged to
64 spinners and the chain has been wrapped around in a
spiral-like configuration. Since the excitations along the chain
caries only angular and no linear momentum, there is no
backscattering at the sharp corners. Another way of seeing
this is by observing that the equations of motion remain
unchanged. The first video recording exemplifies a bulk mode,
where one can see a standing-wave pattern over the entire
structure, even when the system is actuated only at one end.
In the second recording, the frequency has been tuned on the
topological resonant mode occurring in the last spectral gap.
To exemplify the difference between this resonant response
and a trivial forced oscillation, we report a third recording
where the driving frequency is off resonance.

B. Algebra of half-space observables

For the half space, the shift operator, which on the new
Hilbert space will be called Ŝ, is no longer unitary, but instead

Ŝ Ŝ∗ = I, Ŝ∗ Ŝ = I − P0, P0 = |0〉〈0|. (42)

This suggests the definition of the half-space algebra Â as
the algebra generated by CN (�) and the operator û satisfying
the same commutation relations (18). However, û∗û = 1 − ê,
with ê a proper projection ê2 = ê∗ = ê �= 1. The half-space
algebra accepts the following canonical representation:

CN (�) 	 f → π̂ω(f ) =
∑
n�0

f (τnω) ⊗ |n〉〈n|, (43)

and π̂ω(û) = Ŝ, which generates all half-space physical
Hamiltonians [27]. In general, we have the isomorphism of
algebras Â � ⊕

ω∈�

π̂ω(Â) hence

Spec(ĥ) =
⋃
ω∈�

Spec(Hω ) =
⋃
a∈Z

Spec(Hτaω ) = Spec(Ĥ ),

(44)
with H from (37). In other words, the spectrum of ĥ coincides
with the spectrum of the stacked systems introduced and
discussed above. This is important to keep in mind because
the K-theoretic bulk-boundary principle contains a statement
about the spectrum of ĥ, hence of the stacked systems, as
already highlighted in Fig. 7.

Inside Â, there is the ideal Ã made up of elements of
the form â ê b̂ for some â, b̂ ∈ Â. When represented on the
physical space, such elements are localized near the boundary,
hence Ã is called the boundary algebra [27]. Given a bulk
Hamiltonian h, the half-space Hamiltonian with Dirichlet
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FIG. 9. Measurements of the edge resonances. The panels report the readings from accelerometers placed on the second spinner from the
edge for randomly rotated configurations of the spinner chain. The edge resonances appear as prominent peaks in these measurements.

boundary condition, i.e., all couplings crossing the boundary
set to zero, is generated by

ĥD =
∑
q�0

hqû
q +

∑
q<0

hq (û∗)|q|.

By adding elements from Ã, ĥ = ĥD + h̃, the Dirichlet can
be changed into any other boundary condition, hence the
formalism is completely general. An important relation estab-
lished in [27] is the isomorphisms between Ã and M∞(C) ⊗
C(�), which will play an important role for the bulk-boundary
correspondence principle. That is because then K∗(Ã) =
K∗[C(�)], and since � � S1, K∗(Ã) � Z. In particular,
K1(Ã) is generated by [v]1, with v introduced in (25).

)zH( ycn euqerF

17.5

19.5

18.5

Pa�ern

FIG. 10. Spatial profile of a resonant mode. The data report the
readings from four accelerometers placed on the first four spinners
from the edge, as the frequency was swept over the last and most
prominent bulk gap. The amplitudes of these readings are propor-
tional with the size of the disks. For convenience, the full pattern of
spinners is also shown.

C. Engine of the bulk-boundary correspondence

The following exact sequence between the algebras of
physical observables is well established [26,27]:

(45)

with ev(û) = u. This exact sequence sets in motion a six-term
exact sequence at the K-theory level [60–62]:

(46)

The relevance of this diagram to the bulk-boundary principle
program was established by the work of [26]. Examining
the right side of the diagram, one can see the standard K-
theory map Exp taking projections from the bulk algebra
into unitaries from the boundary algebras. Given a gapped
bulk Hamiltonian (h,G) from A, one defines a function
φ : R → R with a sharp, but continuous, variation in an ε

interval around any point G inside the gap, such that φ =
0/1 below/above that interval. Besides these requirements,
φ is completely arbitrary. If ĥ is any half-space Hamiltonian
obtained from h, i.e., ev(ĥ) = h, then [26,27]

Exp[pG]0 = [ũG]1, ũG = e2πiφ(ĥ). (47)

As the notation suggests, ũG is a unitary element of the
boundary algebra Ã, because the function e2πε − 1 is nonzero
only on the edge spectrum. Hence, e2πĥ − 1 is built only from
boundary states. If the half-space Hamiltonian ĥ is gapped,
then we can take G and the variation of the function φ inside
this gap, in which case φ is either 0 or 1 on the spectrum of
ĥ. By the rules of functional calculus, ũG is the identity. If
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ĥ is gapped, then [pG]0 is necessarily mapped into the trivial
K1 class [1]1 by the Exp map. However, if the latter is not
the case, then ĥ cannot be gapped. The key conclusion is that
if Exp[pG]0 �= [1]1, then the topological boundary spectrum
emerges, filling the entire bulk gap. This spectrum cannot be
gapped by any boundary condition or adiabatic deformation
of h.

To summarize, in order to establish a bulk-boundary cor-
respondence principle, one needs to resolve the K theories
of both bulk and boundary algebras, as well as the action of
the Exp map on the generators of K0(A). We should warn
the reader that just the condition [pG]0 �= [0]0 is in general
not enough, a counterexample being the case of Fibonacci
patterns where the whole K0 group is mapped by the Exp map
into the trivial K1 class of the boundary [47].

D. Topological patterns, indeed

From the bulk analysis, we know that K0(A) is generated
by [1]0 and [eθ ]0 and that every bulk gap projection accepts a
decomposition:

[pG]0 = n [1]0 + m [eθ ]0, m �= 0. (48)

The action of the Exp map is also known [27] explicitly:

Exp[1]0 = [1]1, Exp[eθ ]0 = [v]1. (49)

One can see that any gap projection is mapped nontrivially:

Exp[pG]0 = m [v]1 �= [1]1, (50)

and, consequentially, the topological edge spectrum fills every
single spectral gap of a bulk Hamiltonian, regardless of its
particular form. Furthermore, (50) automatically implies that
ũG is homotopic to vm, hence m counts the winding of the
eigenvalues of ũG(ω) as ω is varied along � � S1. In turn,
this tells us that m counts the number of chiral edge bands of
ĥ, in agreement with the observations from Fig. 8.

In the cases when there are more internal degrees of
freedom, N > 1, the IDS will take values in the interval
[0, N − 1], hence there are N − 1 possible instances where

m in (34) can be zero. As such, among the infinite number
of bulk gaps there will be only N − 1 gaps which are not
topological, i.e., will not be filled with edge spectrum when
the system is halved. If there is enough control over the design
of metamaterials, of course, one should try to isolate just one
degree of freedom per resonator but, if this is not possible,
even the cases with large N ’s will still display plenty of
topological gaps.

VI. DISCUSSION

We conclude with proposals of how our findings can be
incorporated in practical applications. First, let us recall that
the topological systems proposed here are fibers made of bun-
dles of patterned chains Hω, with ω sampling its configuration
space. 1. As we have seen, this configuration space, which
is the hull �, can be sampled by simply shifting an infinite
chain and this leads to the important observation that such
bundles can be obtained by a simple and practical procedure.
Indeed, by sequentially cutting equal pieces of length L from
a single bulk sample and bundling these pieces together, one
is effectively generating a fiber whose dynamics is described
by

⊕
n∈N ĤτnLω (provided L is large enough). Since τnLω

is densely sampling the configuration space �, the desired
bundling has been achieved.

The bundle described above displays edge modes which
cannot be removed by cutting, wear and tear, or by gentle
bending of the strands. Additionally, the modes can be local-
ized not only in space but also in frequency. By examining
the spectral butterfly in Fig. 5, one can see that, by varying
θ , one can align at least one bulk spectral gap at any desired
frequency within the bulk range.

Let us end by noting that our conclusions are not bound
to mechanical systems and they apply to any coupled res-
onators regardless of their nature. Hence, whenever spatial
and frequency control over the excitation modes is desired, the
proposed patterns can provide a convenient practical solution
given the minimal tuning required.
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