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Mapping of local lattice parameter ratios by projective Kikuchi pattern matching
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We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via
electron backscatter diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to
local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the
transformation properties of points and lines in the real projective plane, we can obtain continuous estimations
of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference
structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full
solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the
fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application
example, we map the locally varying tetragonality in martensite grains of steel.
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The characterization of locally changing lattice parameter
ratios within crystalline materials is crucial for an improved
understanding of the properties of technological and geologi-
cal materials in the presence of varying mechanical, thermal,
or chemical conditions, which can induce crystal structure dis-
tortions on microscopic scales. Here, we present an approach
to map the lattice parameter ratios of a material with respect
to continuous perturbations from a reference structure. This
is made possible by application of the method of electron
backscatter diffraction (EBSD) for submicron-scale crystallo-
graphic mapping in the scanning electron microscope (SEM).

EBSD delivers spatially resolved crystallographic infor-
mation via the measurement of Kikuchi patterns that are
formed by incoherent point sources within a crystal struc-
ture [1,2]. The observation of shifting Kikuchi pattern fea-
tures on a geometrically calibrated phosphor screen provides
the possibility to measure small local distortions of a mate-
rial [3], with resolutions in the order of 10−4 [4]. While the
achievable precision of high-resolution EBSD (HR-EBSD)
measurements is very attractive for a wide range of applica-
tions, these experiments also involve a substantially increased
complexity in the experimental setup, the data acquisition,
and the data analysis. For example, advanced Kikuchi pattern
simulations [5,6] would be highly useful for a comparison to
absolutely known reference structures via HR-EBSD, but the
application of such patterns is limited by the simulation speed
when using dynamical diffraction theory. This is why it could
often be desirable to (a) have an initial option for controlled
compromises in accuracy and precision when trying to map
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continuous changes of crystal lattices, e.g., via routine EBSD
measurements, and then (b) being able to subsequently refine
these results using iteratively improving EBSD data analysis
approaches.

With these demands in mind, the example application
which we discuss in this paper concerns the problem of
martensite tetragonality in carbon-containing steels [7]. With
the average lattice parameters depending on the carbon
content [8], a tetragonally distorted martensite forms after
rapid quenching of the high-temperature face-centered cubic
austenite phase. To characterize the martensitic microstructure
in more detail, it would be beneficial to monitor the local
tetragonality with microscopic resolution and compare the
results to x-ray diffraction measurements that lack the spatial
resolution of EBSD.

The locally resolved investigation of martensite tetrag-
onality has been approached previously by comparison to
kinematic simulations of Kikuchi patterns [9]. Also, dy-
namical electron diffraction simulations for a fixed number
of lattice parameters have been combined with subsequent
pattern cross-correlation [10]. Moreover, a similar study of
tetragonally distorted SiGe films has been published in [11].

In the current paper, we describe an approach which is
tailored to the different sensitivity of specific diffraction
pattern features under a distortion of the crystal lattice. We
will demonstrate that the underlying geometrical and physical
conditions of Kikuchi diffraction pattern formation allow
us to approximate the effects of the local distortion of the
crystal lattice by the resulting projected effects on reference
diffraction data. This makes it possible to estimate the local
lattice distortion in a sample by pattern matching to a single
global simulation for a particular reference structure which
is stored for the full 4π solid angle of possible scattering
directions. No additional electron diffraction simulations for
the perturbed test lattices are required during the fit of the
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FIG. 1. Pseudocolor SEM image derived from the EBSD
Kikuchi patterns of the measured sample area, with indicated areas
of martensite (bct) and austenite (fcc). The labels A, B, and C mark
reference positions used for the discussion of the pattern analysis as
shown in Figs. 2 and 3.

local lattice distortion. Because the projective crystallographic
approximation improves in the limit of small changes from the
reference lattice, the results of our approach can be iteratively
refined.

Sample description. For our investigation, we produced a
steel sample for which we confirmed from x-ray investigations
an average c/a ratio for the martensite of about c/a = 1.07.
(For details for the x-ray equipment see [12].) In Fig. 1, we
show a pseudocolor SEM image of the measured sample re-
gion, where the body-centered tetragonal (bct) martensite and
face-centered cubic (fcc) austenite grains are indicated. The
image in Fig. 1 has been derived from the measured EBSD
patterns [13–15] by assigning color variations to variations
in intensity between regions of interest (ROI) in the resulting
background-processed Kikuchi patterns. Specifically, we have
binned each processed Kikuchi pattern to a 7 × 7 ROI array
and calculated the ratio of the ROIs in columns 3, 4, and 5
between rows 6 and 5, respectively. The variation in the ROI
intensity ratio has been mapped to the range of the R, G, B
color channels of the image. This “differential Kikuchi pattern
imaging” mode qualitatively emphasizes orientation changes
between and within the different grains, which are seen by
color changes in the image.

Method. Kikuchi pattern features which are observed on a
planar phosphor screen are closely related to the gnomonic
projection of crystallographic features such as lattice planes
(hkl) and lattice directions [uvw], which appear as line traces
and intersections of these linear traces, respectively [16].
Changes in these geometrically defined features of Kikuchi
patterns can thus be variably linked to changes in the pro-
jection geometry, to lattice rotations, but also to variations
in the crystal lattice parameters. In current HR-EBSD ap-
proaches [17] and suggested improvements related to general
feature registration [18–20], the specifically different crys-
tallographic nature of the various observed pattern features

remains largely untapped. This means that the Kikuchi fea-
tures mostly serve as reference points in a coordinate system
in which the deformation of the material can be measured
via feature matching, like in digital image correlation (DIC)
methods, for example [21]. The basic feature-shift approach
of HR-EBSD could work even with noncrystallographic types
of angle-dependent emission patterns as long as one can
reliably identify spatial shifts of features on a geometrically
calibrated phosphor screen.

With respect to the measurement of lattice directions and
lattice plane normals, crystal geometry [22–24] is essen-
tially an experimental realization of abstract mathematical
projective geometry, specifically of the real projective plane
RP2 [25]. Backscatter Kikuchi diffraction (BKD) patterns
measured at typical tens of keV energies using EBSD in
the SEM represent a fortunate case where electron scattering
physics emphasizes the relation of mathematical projective
geometry to the geometry of the crystal lattice. The predom-
inantly forward peaked electron scattering in the diffraction
process limits the scattered electron intensity to the lowest
reflection orders of a lattice plane. (An instructive counterex-
ample is given by neutron s-wave scattering, which leads
to very different patterns for an equivalent crystal geome-
try [26]). Because electron Kikuchi bandwidths are relatively
small (�5◦ for the strongest bands) and change only slowly
with changes in crystal structure or scattering energy, these
physical bands can outline the mathematical traces of the
relevant lattice planes in a relatively stable way.

In order to make the connection between the experimental
projection geometry for Kikuchi pattern measurements and
its mathematical description via concepts of projective ge-
ometry, in Fig. 2(a) we display experimental BKD patterns
(gray) collected at sample positions “A” and “C” in Fig. 1.
At location A, we find bct Fe with c/a = 1.08 as the best
fit to a simulation, which is shown as the pattern in color
in the background. For comparison, the experimental pat-
tern at location C corresponds to fcc Fe. The experimental
patterns have been calibrated in a two-dimensional plane
of coordinates (xg, yg, zg ) = (xg, yg, 1) in such a way that
the two-dimensional distance between the point [uvw] and
[xg, yg, zg] = [0, 0, 1] corresponds to tan θ of the angle θ

between the crystal direction [uvw] and the z-axis direction.
Regarding the Kikuchi patterns in Fig. 2, this calibration
means that the pattern center will always be at (0,0), and the
coordinates of the four corner points of the measured pattern
define the extent in the projection plane. While this is com-
monly known as a gnomonic projection, the plane (xg, yg, 1)
also corresponds to the standard embedded Euclidean plane in
analytic projective geometry using homogeneous coordinates.
In this way, crystal directions correspond to points, while
lattice plane traces correspond to lines [22–24]. Via this cor-
respondence, knowledge about the real projective plane RP2

can be applied to the crystallographic analysis of experimental
Kikuchi patterns [27].

For example, the image analysis pipeline [28], which is
pertinent to the gnomonic projection of lattice directions in
Kikuchi diffraction patterns [16], can be understood in a
unified way by concepts of projective geometry, with a projec-
tive transformation H acting on the homogeneous coordinates
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FIG. 2. Projective Kikuchi pattern transformation: (a) experi-
mental bct Kikuchi pattern (gray) from position A in Fig. 1, and
dynamical simulation (color) according to c/a = 1.08. (b) Experi-
mental fcc pattern (gray) from position C, with the same dynamical
bct simulation data as in (a) projectively transformed according to a
resulting c/a = 1.41. (See text for explanation of the axes ranges.)

[uvw] [27]:
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The coordinates (xg, yg ) in the standard embedded projec-
tion plane at zg = 1 are given by dehomogenization of the
projective coordinates as (xg, yg ) = (p1/p3, p2/p3) for all
projected points with p3 �= 0. H has eight degrees of freedom,

so that scaling of H by a real factor does not change the pro-
jective transformation [29]. The homogeneity of coordinates
[uvw] is also consistent with the fact that the present HR-
EBSD approaches are not directly sensitive to the hydrostatic
expansion of the lattice [30]. Sensitivity to changes in absolute
lattice parameters is provided by concomitant changes in
Kikuchi band widths, which, however, are not treated exactly
by the projective geometry approach.

For the interpretation of H in terms of the orientations
O which are measured by EBSD, the general (3 × 3) ho-
mography matrix H can be decomposed into the combined
contributions of a transformation C from crystal coordinates
to Cartesian coordinates, a rotation matrix O, and the selection
of the projected area on the screen relative to the projection
center (PC) by the scaling and translation transformation
P [28].

The result of a tetragonal lattice distortion can be described
by a corresponding transformation F of the reference matrix
C to result in a transformed matrix CT for a cubic reference:

CT = FC =
⎛
⎝

1 0 0
0 1 0
0 0 c/a

⎞
⎠C, (2)

with corresponding generalizations for arbitrarily strained lat-
tices. Similar projective relations have been applied for EBSD
strain analyses using kinematically simulated patterns [11,27].
With respect to dynamical pattern simulations, we can in
principle apply the same approach by noting that the tetrag-
onality c/a in the transformed matrix CT changes the specific
reference lattice direction [uT vT wT ] that is projected on the
screen in the previous position of [u0v0w0] of the nondis-
torted lattice. We can thus sample the diffracted intensity for
the tetragonally distorted structure from the distorted global
pattern data for the reference lattice. As viewed from the
central point of the gnomonic projection inside a reference
sphere of diffracted intensity, we essentially distort the sphere
into an ellipsoid corresponding to the distortion of the lattice.
Because lattice zone axes [uvw] and the (hkl) lattice plane
traces are transformed exactly, the high intensity in zone axes
and in the center of Kikuchi bands will be transformed to
positions which approximately correspond also to intensity
maxima in the exact dynamical simulation for the distorted
structure. Of course, this approximation requires that the crys-
tal structure in the strained state retains sufficient similarity to
the unstrained reference, in order that the diffraction patterns
still show the corresponding Kikuchi bands with sufficient
similarity. We can assume that this will be nearly always the
case for small deviations from the reference structure, but this
does not exclude rather large deviations.

This can be illustrated by returning to the experimental
Kikuchi patterns shown in Fig. 2. We have used a projective
transformation to transform the exactly simulated diffraction
data for Fig. 2(a) into the approximate theoretical pattern
shown in (b), e.g., we apply a strain transformation to the
global reference simulation, which takes c/a from 1.08 to
1.41 near the ideal

√
2 for the fcc structure. In the fit of the

projectively transformed bct global reference data to the fcc
pattern, we see that the dashed lines (lattice plane traces)
and all their intersections (zone axes) are transformed ex-
actly, and thus the major experimental fcc bands still align
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approximately symmetric to the transformed bct-plane traces.
The approximate alignment of major high-intensity Kikuchi
band centroids is the key reason why we still obtain suffi-
ciently good values for the image similarity using the nor-
malized cross-correlation coefficient (see below). In contrast,
the transformed bct Kikuchi band widths deviate significantly
from the experimental fcc pattern, as can be seen by the
discontinuities at the fcc pattern edge. As long as the devi-
ations of the widths are small, however, the good alignment
of the band centroids can dominate the fit. Compared to the
extreme case of a bcc-fcc transition, we will consider in the
following only deviations of c/a from the ideal bcc value
of c/a = 1.0 in the bct martensite itself. This will involve
changes in c/a ratios below 0.1 and only small rotations
(±2◦), which still can be handled in a stable way by the
specific optimization approach which we apply in the pattern
fit (see below). However, the example of Fig. 2 shows that for
the bcc-fcc structural relationship in Fe, the full ideal range
of c/a ratios can be handled by the approximative projective
transformation ( 1(bcc) � c/a �

√
2(fcc)) via the bct symmetry

common to both structures.
We note that our approximations are purely geometrical,

i.e., we make no assumptions about mechanical stress condi-
tions, etc., to constrain the distortion tensor. The full-pattern
projective matching approach automatically treats the crys-
tallographic correlations between all the Kikuchi bands and
zone axes, as compared to multi-ROI approaches in which
the internal consistency of changes in these features is not
necessarily included from the outset.

Experimental details. For the EBSD investigation pre-
sented in this paper, we have used a Versa 3D (FEI) field-
emission scanning electron microscope with a Hikari detector
(EDAX) at 120 × 120 pixel resolution, 20-kV primary beam
voltage, a beam current of 15 nA, and a measurement time of
20 ms per pattern. The raw EBSD patterns were stored for the
subsequent analysis using the pattern-matching approach.

The best-fit pattern parameters were determined by the
optimization of the normalized cross-correlation coefficient
(NCC) [31] r (0 < |r| < 1) between the simulated data and
the experimental Kikuchi patterns. We used the Nelder-Mead
simplex method [32] to find the local maximum of the NCC
between experiment and simulations, with start parameters at
an orientation obtained from the manufacturer EBSD soft-
ware. For the dynamical electron diffraction simulations we
have used the Bloch wave approach according to [5]. In the
NCC optimization procedure, the test Kikuchi patterns are
reprojected from a stored global pattern according to the cur-
rent values of the projection parameters, the orientation, and
the tetragonal lattice distortion, then the NCC is calculated,
and updated projection and distortion parameters are chosen
for the next iteration according to the simplex approach until
convergence to a local maximum with changes of the NCC
�r < 10−4 are achieved. The austenite phase in the map
area has been used for calibration of the detection geometry
via pattern matching to dynamical simulations, assuming a
cubic fcc structure [33]. EBSD pattern processing involved
high-pass filtering to remove the slowly-varying background
and normalization of the Kikuchi diffraction patterns to a
mean value of μ = 0.0 and standard deviation σ = 1.0 for
visualization.

Results. In Fig. 3, we illustrate the effects of a change
in local tetragonality on the observed Kikuchi patterns from
locations A and B in the SEM image of Fig. 1. In Fig. 3(c) we
show the difference of the experimental patterns in Figs. 3(a)
and 3(b). The red and blue regions in the left half of the differ-
ence pattern show where the largest changes occur, i.e., in the
region around the [111] zone axis of the bct lattice (see Fig. 2).
The middle and the right column of Fig. 3 allow a comparison
of the experimental patterns to simulations. In the middle
column, we show the result of exact dynamical diffraction
simulations for two bct structures with c/a ratios of (d) 1.080
(r = 0.651) and (e) 1.060 (r = 0.661), respectively. These
patterns have been obtained after testing against simulations
for c/a ratios in the range of 1.0–1.1, with a 0.01 step size. For
comparison, in the right column of Fig. 3, we show the result
of a variable projective transformation of simulated global
pattern data for a bcc structure (c/a = 1.0), where a scaling
transformation is allowed along the c axis of the initial bcc
crystal coordinate system. After testing for the best of three
possible pseudosymmetric orientation solutions, we obtained
best-fit c/a values of (g) 1.084 (r = 0.646) and (h) 1.062 (r =
0.660). The close agreement of the NCC r values for the exact
and the approximated pattern indicates that the projective
approximation captures the main features of the experiment
in both cases equally well. Because the r values for the
approximate pattern will decrease with increasing distortion,
we can use the difference of r relative to the reference for an
assessment of the quality of the approximation. In the bottom
row of Fig. 3, we see that the experimental difference pattern
A-B is well reproduced by both of the analysis approaches,
with the variable projective transformation not requiring any
additional dynamical simulation beyond the bcc reference
structure. From the exact results shown in the middle column
(d, e), it is also obvious that a refinement of the variably
transformed bcc patterns shown in Figs. 3(g) and 3(h) is
possible via refitting to new bct reference structures with an
updated c/a ratio near the values obtained in the initial fit step
to the distorted bcc start structure.

Finally, by applying the projective pattern matching to the
full map of Kikuchi patterns measured from the martensite
grains, we obtain a map of the local c/a ratio which is
shown in Fig. 4(a). We can observe a range of tetragonalities
from about 0.03 to 0.08, which, for this specific grain, is
consistent with the averaged value of 0.07 estimated in the
x-ray measurements. We expect a more detailed, statistically
significant picture by mapping the tetragonal distortions in
larger sample areas. This will allow better insights into the
details of the local martensite tetragonality formation, espe-
cially concerning the driving forces and stresses which are
involved in the interplay between local carbon content and
lattice distortion.

Error assessment. For a reliability analysis of our EBSD
pattern-matching approach, we have used Monte Carlo sim-
ulations of the EBSD formation, detection, and analysis
pipeline acting on simulated raw EBSD patterns with known,
varying parameters for orientation, tetragonality, and projec-
tion geometry. In addition to the dynamical electron diffrac-
tion effects of the Kikuchi pattern, we have taken into account
the various noise sources and optical effects [34,35], as well
as phenomenological models for the EBSD background signal
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FIG. 3. Effect of a locally changing tetragonality on Kikuchi patterns from martensite. Left column: Experimental Kikuchi patterns (a), (b)
from positions A and B in the map shown in Fig. 1 and (c) experimental pattern difference. Middle column: Simulated exact Kikuchi patterns
for Fe bct structures with fixed c/a ratios. Right column: Best-fit Kikuchi pattern approximations for a continuously varying c/a ratio obtained
by projective transformation of simulated bcc reference data.

and the excess-deficiency effect on the Kikuchi bands. These
simulations give us an estimation of the frequency distribution
of the NCC r values for the simulated experimental conditions
and thus allow us to estimate confidence intervals for the fitted
parameters in the pattern-matching approach.

FIG. 4. Local c/a ratio in the Martensite, obtained by variable
projective pattern matching.

The limited number of eight free parameters which are
combined in a nontrivial way in the elements of the (3 × 3)
matrix H [27] shows that an accurate knowledge of the
projection center is necessary to calibrate the coordinate trans-
formations in the detector plane, which is a key experimental
problem in HR-EBSD investigations. The estimated tetrago-
nality will depend systematically on the correct calibration of
the projection center, for which typical error values of about
0.2%–0.5% of the pattern width have been estimated in the
literature [36,37]. Taking a value of 0.5% as a conservative
upper-limit estimate, we find that a systematic shift in tetrag-
onality of about 0.01 will be induced by this error in PC for
the main observed grain in the current study. The actual PC
we used for the current map was determined from the fcc
austenite region, which was assumed as perfectly cubic.

Assuming a fixed PC and comparing simulated patterns for
a known tetragonality in the range of 0.0–0.1, we find for the
observed orientation of the Martensite grain a systematic un-
derestimation of the tetragonality by 0.005 within a standard
deviation of 0.001. These values are consistent with the noise
which we observe in the tetragonality map of Fig. 4.

Our error assessment suggests that we achieve a precision
in the order of >10−3 for the tetragonality at a modest pattern
resolution of 1002 pixels in the current study, compared to
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typically about 10002 pixels for typical HR-EBSD work. As
the projective approximation which we used here becomes
better at small distortions, the method presented here can be
combined with iterative best-fit methods which use reference
patterns at varying levels of distortion, as discussed, e.g.,
in [10,11], to improve the precision of the results.

While the observed tetragonalities in the current applica-
tion stay below 0.10, we note that the distortion approach is
flexible enough to accommodate the full range of hypothetical
c/a ratios in the Fe γ − α (fcc-bcc) transition, as shown
above in Fig. 2. Quantitatively, this means that for the fcc
Kikuchi pattern in position C of the map we can find a
best-fit value for the c/a ratio of 1.405 (near the ideal

√
2

for fcc) when we consider pattern C as resulting from the
distorted bcc reference data (c/a = 1.0). The best-fit NCC
r value of the distorted bcc pattern is r = 0.53, which still
compares well to r = 0.67 for the fit to the simulated exact
Fe fcc structure. The close relationship between the atomic
positions in the α-Fe and γ -Fe crystal structures, irrespective
of their description by specific crystallographic symmetry
groups, leads to a sufficiently clear correspondence between
the distorted lattice plane traces and their intersections (which
are transformed exactly) and the related Kikuchi bands (which
are transformed only approximately).

While the global reference data in the present application
has been simulated using the dynamical theory of Kikuchi
diffraction [5], the projective transformation approach should
in principle also work for the kinematic pattern models [9,11].
The use of these simplified models for indexing and strain
determination could possibly be sufficient for experimental

patterns at lower resolutions or for patterns which contain
less detail, e.g., due to reduced crystal quality after plastic
deformations. Compared to the HR-EBSD approach used
in [10], we estimate that the projective matching approach
is more stable when using lower resolution patterns, which
also introduces a considerable speed gain in both experimen-
tal data acquisition and theoretical analysis. Ultimately, the
precision limit of the projective matching approach should be
at least as good as the conventional HR-EBSD approach when
using similar resolutions for the experimental and theoretical
data. Due to the inherent crystallographic constraint in the
projective method, improvements of precision and accuracy
compared to previous HR-EBSD approaches can be expected,
provided that a correspondingly accurate projection center
determination can be carried out.

In summary, we have presented a crystallographic approx-
imation for the determination of variable lattice distortions
using full-pattern simulations of Kikuchi diffraction in the
SEM. This improves the options to extract approximate lattice
parameter information even from conventional, routine EBSD
data. Some relevant materials which we can envision include
technologically and geologically important structure types,
such as, for example, locally deformed materials in met-
allurgy, distorted thin films for semiconductor applications,
or the cubic-tetragonal-orthorhombic-rhombohedral line of
related structures of perovskites under varying chemical and
environmental conditions. In this way, we expect that the
approach presented here will be useful for the analysis of
various important structure types and their relationships by
microcrystallographic methods in the SEM.
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