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Kinetic Monte Carlo simulations of vacancy diffusion in nondilute Ni-X (X = Re, W, Ta) alloys
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The mobility of vacancies in alloys may limit dislocation climb. Using a combined density functional theory
and kinetic Monte Carlo approach we investigate vacancy diffusion in Ni-Re, Ni-W, and Ni-Ta binary alloys
up to 10 at.% solute concentration. We introduce an interaction model that takes into account the chemical
environment close to the diffusing atom to capture the effect of solute-host and solute-solute interactions on the
diffusion barriers. In contrast to an ideal solid solution, it is not only the diffusion barrier of the solute atom
that influences the vacancy mobility, but primarily the change in the host diffusion barriers due to the presence
of solute atoms. This is evidenced by the fact that the observed vacancy slowdown as a function of solute
concentration is larger in Ni-W than in Ni-Re, even though Re is a slower diffuser than W. To model diffusion
in complex, nondilute alloys, an explicit treatment of interaction energies is thus unavoidable. In the context of
Ni-based superalloys, two conclusions can be drawn from our kinetic Monte Carlo simulations: the observed
slowdown in vacancy mobility is not sufficient to be the sole cause for the so-called Re effect, and assuming a
direct correlation between vacancy mobility, dislocation climb, and creep strength, the experimentally observed
similar effect of W and Re in enhancing creep strength can be confirmed.
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I. INTRODUCTION

Solid-state diffusion is a key aspect in the evolution of
the microstructure that ultimately determines many materials
properties. In multicomponent alloys, atomic transport is of
importance not only during processing where it influences the
chemical composition of precipitates as well as the precip-
itation kinetics [1], but also under service conditions where
it controls solute segregation to defects such as dislocations
[2,3], grain boundaries [4,5], interfaces [4,6,7], and surfaces
[8]. Diffusion also affects the stability of the microstructure
and plays a role in processes such as dislocation climb [9],
which in turn can be related to creep strength and other
materials properties [10]. In Ni-based superalloys, a class of
special purpose high-temperature materials [11], it was shown
that the addition of a few at.% Re significantly enhances the
creep strength, which is known as the Re effect [12]. One of
the hypothesis to explain the Re effect is that Re hinders the
transport of vacancies through the γ -channel and thus retards
dislocation climb [10]. On the atomistic level, the atomic jump
frequencies that determine diffusion can be obtained with
high accuracy by electronic structure calculations. The jump
frequencies can then be combined with analytical models
[13–17] or numerical kinetic Monte Carlo (KMC) simulations
[18,19] to determine macroscopic diffusion properties. Ana-
lytical models like the five-frequency model [13] or the self-
consistent mean-field method [14] are limited in the type of
interactions that can be considered and only applicable within
the dilute limit. For larger solute concentrations, analytical
models only exist for the case of ideal solid solutions [20–22].
While, in principle, KMC simulations are not limited in their
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complexity regarding the alloy composition, in practice, it
may become an unfeasible task to determine the atomic jump
frequencies accurately. A general way to include complex
interactions in KMC models is to extract these interactions
from electronic structure calculations and to parametrize a
model lattice Hamiltonian [23–25].

In this work, we combine density functional theory (DFT)
calculations with KMC simulations to investigate the influ-
ence of solute atoms on the mobility of vacancies in binary
Ni-X (X = Re, W, Ta) alloys. We take into account the change
in the atomic diffusion barriers due to the presence of multiple
solute atoms explicitly. This allows us to study compositions
in the nondilute limit. The Ni-Re system serves as a model
system for the γ -phase (face-centered cubic solid solution) in
Ni-based superalloys. A typical nominal Re concentration in
Ni-based superalloys is around 1 at.%, which can be consid-
ered to be within the dilute limit. Both DFT-based KMC simu-
lations [18] and analytical models [19] have shown that within
the dilute limit the mobility of vacancies is only marginally
reduced by about 4% due to the presence of Re. In contrast,
if one assumes that the observed increase in creep strength
is due to retarded dislocation climb, a vacancy slowdown of
up to 75% would be expected [19]. Due to segregation in
the γ /γ ′-microstructure of Ni-based superalloys, the local
Re concentration in the γ -channel can be significantly larger
than the nominal one. Energy-dispersive x-ray spectroscopy
(EDX) and atom probe tomography (APT) experiments [26]
have shown that Re segregates to the γ -matrix and is almost
nonexistent in the γ ′-particles. The local Re concentration
can reach 8–10 at.% in the γ -phase, which is the nondilute
concentration range that we focus on in the current study.

In addition to Ni-Re, we perform simulations in Ni-W and
Ni-Ta. Both W and Ta are further important alloying elements
in Ni-based superalloys. It was shown that a similar increase
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in creep strength as observed by the addition of Re can be
achieved by increasing the concentration of W in the γ -phase
[27]. Ta, on the other hand, partitions to the γ ′-phase, and
its diffusion barrier in Ni is actually lower than the Ni self-
diffusion barrier [18,19], i.e., Ta is a fast diffuser, which makes
it interesting to compare to.

The interaction model that we introduce includes the most
important contributions to the change in the diffusion barriers
by evaluating the chemical composition in the vicinity of
the diffusing atom. Even though our interaction model is
limited in its complexity, we observe a strong influence on the
vacancy mobility as compared to an ideal random alloy. This
emphasizes the necessity to include the details of the atomic
interactions when modeling diffusion properties in nondilute
alloys.

We briefly introduce our computational approach for the
KMC simulations and setup for the DFT calculations in
Sec. II. Next, we present our DFT results for the diffusion
barriers and introduce our interaction model (Sec. III). The
vacancy mobilities extracted from the KMC simulations and a
comparison of our interaction model with a random alloy are
discussed in Sec. IV, before we conclude our results (Sec. V).

II. COMPUTATIONAL APPROACH

A. Kinetic Monte Carlo

The mobility of the vacancies is evaluated using kinetic
Monte Carlo simulations [28–30]. Our KMC model represents
vacancy-mediated substitutional diffusion on a face-centered
cubic (fcc) lattice. The rate constants ki for the exchange
between a vacancy and a neighboring atom are given by
harmonic transition state theory (hTST) [31–33] as

ki = νi exp

(
−�Ei

kBT

)
, (1)

where �Ei represents the atomic diffusion barrier, kB is
the Boltzmann constant, T is the temperature, and νi is the
attempt frequency. Within hTST, the attempt frequency is
obtained from the vibrational frequencies in the initial and
transition state of the diffusion process. The diffusion bar-
riers �Ei can be calculated using density functional theory
(Sec. II B). A particular challenge in alloys with high solute
concentrations is the dependence of the diffusion barriers on
the local chemical environment. A direct evaluation of the
diffusion barriers using DFT during the KMC simulations is
computationally unfeasible. Likewise, an a priori list of all
configurations cannot be established due to the vast amount
of possible combinations. One approach to capture the com-
positional dependence of the diffusion barriers within KMC
simulations is to use a cluster expansion (CE) [34] of the
energy together with kinetically resolved activation (KRA)
energies [24]. To obtain a fully converged CE of the energies
as well as the diffusion barriers is a sophisticated task. In the
current work, we focus on the key effects of multiple solute
atoms in the vicinity of the diffusing atom and incorporate
this dependence in our KMC simulations via a straightforward
interaction model (Sec. III B).

The vacancy tracer diffusion coefficient D is ex-
tracted from the KMC trajectories using the mean square

displacement 〈R2(t )〉 = N−1 ∑N
i (ri (t ) − ri (0))2, where N is

the number of vacancies (in this work N = 1) and ri (t ) is the
position of vacancy i at time t :

D = 〈R2(t )〉
2dt

, (2)

where d is the dimensionality. The diffusion constant is mea-
sured over segments with a fixed number of KMC steps and
the value of D is determined from the time-weighted average
over these segments [35].

The diffusion coefficient is frequently expressed as

D = D0 exp

(
− Q

kBT

)
, (3)

where D0 is the diffusion prefactor and Q is the diffusion acti-
vation energy. For vacancy-mediated substitutional diffusion,
Q comprises the diffusion barrier and the vacancy formation
energy for host and solute diffusion, whereas for vacancy
diffusion, Q corresponds to the effective diffusion barrier.
The diffusion prefactor D0 = �a2ν0f consists of a geometric
factor � = n/2d where n is the number of possible jump sites
and d is the dimensionality, the jump distance a, the attempt
frequency ν0, and the correlation factor f . For an fcc lattice,
� = 2, fhost = 0.7815 [36], fvac = 1, and a = a0/

√
2, where

a0 is the equilibrium lattice constant. The analytic expression
in Eq. (3) can be fitted to experimental as well as our KMC
simulation data as a function of temperature to extract Q

and D0.
The KMC simulations were performed using an extension

to the CE code CASM [37]. The simulation cells contained
8788 sites including a single vacancy on an fcc lattice with
periodic boundary conditions. The solute concentration was
varied between 2–10 at.% X (with X = Re, W, Ta), where the
solute atoms were distributed randomly in the simulation cell
to represent a solid solution. The jump distance a = 2.48 Å
was derived from the equilibrium lattice constant of pure fcc
Ni calculated using DFT. The attempt frequency in Eq. (1)
was set to ν0 = 1013 s−1, which is a reasonable approximation
in these systems [19]. All input values to our KMC model, in
particular the composition dependent diffusion barriers �Ei

in Eq. (1), were obtained from DFT calculations.

B. Density functional theory calculations

The DFT calculations were performed using the projector
augmented wave (PAW) method [38,39] as implemented in
the Vienna ab initio simulation package (VASP 5.4) [39–42],
with the gradient corrected PBE [43] exchange-correlation
functional. All calculations were carried out spin-polarized
as it was shown that magnetism significantly influences the
interactions between solute atoms in Ni, in particular for
Re [44]. The diffusion barriers were determined using the
climbing-image nudged-elastic band (CI-NEB) method [45–
47] as provided by the VTST package [48] for VASP. Calcu-
lations were performed in (3 × 3 × 3) fcc supercells with a
[4 × 4 × 4] Monkhorst-Pack [49] k-point mesh and a plane-
wave cutoff of 560 eV for the Ni-Re system and 500 eV for
the Ni-W and Ni-Ta system. Within this setup total energies
were converged to within 1 meV/atom. The ionic positions of
the initial and final states of the diffusion process including
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FIG. 1. Fcc lattice depicting the diffusion channel (shades of
blue) around a first nearest neighbor diffusion process. The diffusion
channel consists of the first nearest neighbors around the initial and
final position of the diffusing atom (red). (b) The diffusion channel
with 18 sites (blue) and the diffusing atom at the transition state (red).
The notation indicates the distance from the transition state.

a single vacancy were fully relaxed until forces were below

0.01 eV Å
−1

. The cell shape and volume were kept fixed at the
equilibrium volume of 1158.88, 1162.87, 1167.82, 1170.87,

1174.87, and 1178.88 Å
3

for one vacancy with 0–5 Re atoms,
respectively. One image along the diffusion path was found
to be sufficient for the CI-NEB calculations. Forces were
converged to 0.01 eV Å

−1
and the corresponding diffusion

barriers to 10 meV.

III. COMPOSITION DEPENDENT DIFFUSION BARRIERS

A. Re distribution in the diffusion channel

The diffusion barriers in a binary alloy generally depend on
the overall composition as well as the specific configuration
of the initial (IS) and final (FS) state of the atomic diffusion
process. Usually, changes in the local composition in the
vicinity of the diffusing atom have the most significant effect
on the barriers. We therefore focus on different occupations
of the diffusion channel shown in Fig. 1 that comprise all
first nearest neighbors of the initial and final position of the

diffusing atom. Here, we only consider first nearest neighbor
jumps as diffusion processes. Each of the 18 sites in the
diffusion channel can be either occupied by Ni or Re, as
well as the diffusing atom can be either Ni or Re. Occupying
19 sites with two different elements yields 219 = 524 288
possible combinations, and even if considering only symmetry
nonequivalent configurations there are still too many possible
structures to be directly calculated with DFT. As a model
system for Ni-based superalloys, we are only interested in
local concentrations of Re of up to ∼10 at.%. We therefore
restrict the number of Re atoms in the diffusion channel
to three, yielding a local concentration of 16.7 and 22.2
at.% depending on whether the diffusing atom is Ni or Re,
respectively. With three Re atoms in the diffusion channel,
there is still a large number of possible configurations from
which we chose a set of structures where the distribution of
Ni and Re in the diffusion channel is as dissimilar as possible
so that these structures represent a diverse variety of Ni-Re
arrangements. The set consists of 26 different occupations of
the positions in the diffusion channel with 0–3 Re atoms and
one with four Re atom for which either Ni or Re can diffuse,
yielding in total 52 structures.

The corresponding diffusion barriers are shown in Fig. 2.
The x axis denotes the different configurations where the
index refers to the position of the Re atom in the diffusion
channel relative to the transition state: [1] means that the Re
atom is located on a first nearest-neighbor (NN) position to the
transition state (see Fig. 1) and [2] that one Re is on a second
NN position, and [2′′, 4] that 2 Re atoms are located on the
second and fourth NN positions, respectively.

Depending on the configuration, the initial and final state
of the diffusion process can either be equivalent or have
different energies (EIS �= EFS) due to interactions between the
solute atoms and between the solute and the vacancy. Corre-
spondingly, the diffusion barrier will depend on the direction
of the diffusion process with �Ediff

IS→FS − �Ediff
FS→IS = EFS −

EIS. The diffusion barriers for each configuration are shown in
Fig. 2; if EIS = EFS, there is only one value, and if EIS �= EFS

two values are given, respectively. The horizontal lines indi-
cate the diffusion barriers of Ni (black) and Re (red) in pure
Ni with �Ediff

Ni = 1.13 eV and �Ediff
Re = 1.55 eV. These values

are in good agreement with previous calculations [18,19].
Figure 2(a) shows the diffusion barriers with a single Re

atom at the four nonequivalent NN positions to the transition
state (TS) in the diffusion channel. Re in the first NN position
to the TS increases both the Ni and Re diffusion barrier by
80 and 140 meV, respectively, whereas Re in the second NN
position slightly decreases the diffusion barriers and in the
third NN position has almost no effect. Re in the fourth NN
position has a larger impact on the diffusion barrier of Re
than of Ni, which is mainly due to slightly attractive Re-Re
interactions: in the IS, the Re atom in the diffusion channel
and the diffusing Re atom are first NN whereas in the FS the
two Re atoms are separated, so that the energy of the IS is
lower than the energy of the FS, while the energy of the TS is
slightly increased by Re in the fourth NN position.

A similar trend in the diffusion barriers is observed with
two Re atoms in the diffusion channel [Fig. 2(b)]. In partic-
ular, with two Re atoms in the first NN position to the TS,
[1, 1′] and [1, 1′′], the diffusion barrier significantly increases
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FIG. 2. Diffusion barriers with 1, 2, and 3 solute atoms in the diffusion channel at varying distances to the transition state. The primes
denote the exact position in the diffusion channel as shown in Fig. 1. Configurations with EIS = EFS have one value for the diffusion barriers
and configurations with EIS �= EFS have two values, respectively.

by 0.18–0.43 eV for both Ni and Re. Other configurations
with at least one Re atom in the first NN position also exhibit
a general increase in the diffusion barriers, whereas Re in the
second NN position appears to reduce the barriers, due to a
decrease of the TS energy. Re in the third NN position to the
TS only has a minor effect on the diffusion barriers. Placing
Re in the fourth NN position seems to increase the diffusion
barrier of Re, but not of Ni. This is again due to the slightly
attractive first NN Re-Re interaction and a corresponding
decrease in the IS/FS energies, while the TS energy slightly
increases.

The diffusion barriers with three Re atoms in the diffusion
channel shown in Fig. 2(c) corroborate the general trend
observed for one and two Re atoms: Re atoms in the first
NN position to the TS strongly increase the diffusion barriers,
Re atoms in the second NN position slightly decrease the
diffusion barriers, and Re atoms in the third NN position have
only a small effect. In particular, the configuration with three
Re atoms in the first NN position exhibits diffusion barriers
that are ∼0.6 eV higher than in pure Ni for both Ni and Re.

Variations in the diffusion barriers arise from changes ei-
ther in the IS/FS energies or in the TS energies. The difference
in energy between the IS and FS is due to Ni-Vac, Ni-Re,
Re-Re, as well as Re-Vac interactions. Focussing to a first
approximation on the Re-Re interactions, we observe that
configurations where three to four Re atoms are second NN to
each other usually leads to an energy gain of up to 400 meV
compared to the configuration where three to four Re atoms
are placed as a first NN to each other. Placing Re atoms on
the third NN shell to each other has almost no effect on the
energy of the IS and FS. However, aligning two Re atoms
as first NN such that one Re atom can push another closer
to the vacancy also exhibits a significant energy gain of up to
300 meV. Configurations where Re atoms are forth NN to each
other usually correspond to an energy loss and are not very
favorable. From this discussion, it is already clear that Re-
Re interactions in this ternary system are very complex and
can only be addressed with a sophisticated cluster expansion
approach. In the current study, we therefore focus only on the
dominant contributions to a change in the diffusion barriers
due the presence of multiple solute atoms.

Our DFT data suggest that the effect of Re in the diffu-
sion channel on the TS energy is strongly dependent on the

distance to the TS. Most notably, Re in the first NN position
can be regarded as having a first-order effect on the TS energy,
whereas Re atoms further away from the TS only have second-
order effects. This dependence has been discussed also for
diffusion in the ordered L12 Ni3Al phase [50]. From Fig. 1,
it is intuitively clear why Re in the first NN position to the
TS has the largest influence on the TS energy. The four first
NNs form a window through which the diffusing atom has
to move, which leads to an increase in the TS energy when
occupied with Re. To a first approximation, the influence of Re
on the diffusion barriers can thus be described by considering
the occupation of this diffusion window.

B. Diffusion window

Within the KMC simulations, we locally determine the
diffusion barriers that enter Eq. (1) depending on the Re occu-
pation of the first NN to the TS, i.e., of the diffusion window.
As discussed in Sec. III A, this allows us to capture the most
important effect of Re on the diffusion barriers. Re atoms in
the diffusion window generally increase the diffusion barriers,
whereas configurations that lead to a decrease in diffusion
barriers are not considered here. Our model thus serves as an
upper bound for the diffusion barriers in the presence of Re.
Except for the influence of Re in the diffusion window on the
corresponding diffusion barriers, we do not explicitly include
any Re-Re interactions. Since Re-Re interaction energies are
small [44] and since we do not expect any clustering, this
approximation is reasonable within the concentration range of
up to 10 at.% investigated here. This implies that within our
model the energy of the IS and FS coincide. Distributing Re
in the diffusion window yields a total of seven configurations
with 0–4 Re atoms (six of these are shown in Fig. 3), where
combinations with two Re atoms result in three symmetry
nonequivalent configurations.

C. Diffusion barriers for Re, W, and Ta

Using DFT, we have calculated the diffusion barriers of Ni
and Re for all seven possible configurations of the diffusion
window model. The diffusion barriers as a function of Re
atoms in the diffusion window are shown in Fig. 4 and the
corresponding values are listed in Table I. We observe an
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FIG. 3. Simplified diffusion channels used in the KMC simula-
tions. The diffusing atom is shown in red and the solute atoms in blue.
Solute atoms can only occupy the first NN to the TS, the diffusion
window. The simplest diffusion channel without any solute atom is
not shown.

almost linear increase in the diffusion barriers for both Ni
[Fig. 4(a), red triangles] and Re [Fig. 4(b), red triangles].

In addition to Re, we also performed DFT calculations for
all configurations with 0–4 solutes in the diffusion window
in Ni-W and Ni-Ta. The results for the Ni and W diffusion
barriers are given by green circles in Fig. 4. The general trend
is the same as in the Ni-Re system, the diffusion barriers
increase with an increasing number of solute atoms in the
diffusion window. Interestingly, the effect of Re and W on the
diffusion barriers of Ni is also quantitatively similar, which
is of importance for the mobility of Ni in these two alloys.
The diffusion barriers in the Ni-Ta system are represented by
blue squares in Fig. 4. In pure Ni, the diffusion barrier of Ta is
lower than the one of Ni, but Ta in the diffusion window has
a much larger effect on the diffusion barriers than Re or W.
This may be due to a simple size effect since Ta is the largest
of the three solute elements and its presence in the diffusion
window will narrow the path for the diffusing atom. With
only one Ta in the diffusion window the Ni diffusion barrier
already increases to 1.45 eV. Similarly, the diffusion barrier
of Ta increases by almost 0.4 eV with a single Ta atom in the
diffusion window. For the diffusion barriers with two solutes
in the window we observe a slight scatter depending on the
occupation [see Figs. 3(b)–3(d)]. The values listed in Table I
comprise the basic input data for the KMC simulations.

IV. MOBILITY IN NONDILUTE ALLOYS

KMC simulations were performed with 0–10 at.% solutes
in 2 at.% intervals. In each KMC step, the occupation of
the diffusion window was evaluated and the corresponding
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FIG. 4. Diffusion barriers of (a) Ni and (b) solute atoms as a
function of solute atoms in the diffusion window for Ni-Re (red
triangles), Ni-W (green circles), and Ni-Ta (blue squares).

diffusion barrier taken from Table I was used to determine
the rate constant via Eq. (1). For the diffusion processes with
two solute atoms in the diffusion window, we take the average
of the three possible diffusion barriers. Simulations were run
for temperatures of 500–1700 K with 108–109 KMC steps.
The vacancy diffusion coefficient is evaluated using Eq. (2)
to determine how the vacancy mobility is affected by the
various solutes. If the solute atoms were causing a significant
slowdown of the vacancies this could retard vacancy flow
needed in dislocation climb, which might contribute to the
observed creep strengthening in Ni-based superalloys.

A. Vacancy mobility

In Fig. 5(a), the relative slowdown in vacancy mobility
as a function of solute concentration is shown for different
temperatures in the Ni-Re system. The relative slowdown is
given by the ratio of the vacancy diffusion coefficient in Ni
+ x at.% solute and in pure Ni. Errors are in the range of
0.7%–2.2% and the corresponding error bars are smaller than
the symbol size. In the case of Re, the slowdown increases al-
most linearly with Re concentration, the corresponding slope
increases with decreasing temperature. The change in vacancy
mobility results from a combination of different effects that
originate in the statistical interplay between host and solute
diffusion. Within our KMC model, the rate constants for the
atomistic diffusion processes vary depending on the chemical
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TABLE I. Diffusion barriers for Re, W, and Ta considering only
the first NN of the transition state (in eV). 0 corresponds to no
solute atoms in the diffusion channel. 1, 3, and 4 correspond to
configurations depicted in Figs. 3(a), 3(e) and 3(f). The notation 2−,
2\, and 2| correspond to configurations shown in Figs. 2(b), 2(c) and
2(d), respectively.

window 0 1 2− 2\ 2| 3 4

Ni in Ni-Re 1.13 1.21 1.38 1.47 1.44 1.73 2.03
Re in Ni-Re 1.55 1.70 1.74 1.99 1.92 2.14 2.39
Ni in Ni-W 1.13 1.29 1.32 1.65 1.56 1.77 1.95
W in Ni-W 1.29 1.48 1.57 1.57 1.77 1.77 2.01
Ni in Ni-Ta 1.13 1.45 1.46 1.93 1.77 1.97 2.29
Ta in Ni-Ta 0.81 1.19 1.40 1.70 1.80 2.03 2.29

composition of the diffusion window, which makes an analytic
description of the observed diffusivity even more complicated.
To aid the interpretation of the simulation results we have fit-
ted the KMC data for the vacancy diffusion coefficients using
Eq. (3) to extract the effective activation energy Q and the
prefactor D0. The change in Q and D0 with Re concentration
is shown in Fig. 5(d). In pure Ni without any Re atoms, the
effective activation energy Q = 1.132 eV corresponds to the
self-diffusion barrier of Ni, and the diffusion prefactor D0 =
1.274 × 10−6 m2 s−1 agrees well with the analytical value
D0 = 1.230 × 10−6m2 s−1. With increasing Re concentration
the effective activation energy increases by ∼2 meV/at.% Re
and the prefactor decreases by ∼2.5%/at.% Re, both support-
ing the observed decrease in the vacancy diffusion coefficient.
Even though the change in the Ni and Re diffusion barriers

with increasing number of Re atoms in the diffusion window
is significant (Table I), the change in the effective activation
energy is rather small. This can be understood when analyzing
the distribution of processes obtained in the KMC simulation.
For all temperatures and Re concentrations, the diffusion is
dominated by Ni atoms without Re atom in the diffusion
window. For large Re concentrations and high temperatures,
Ni diffusion processes with one Re atom in the diffusion
window contribute up to 20%, whereas configurations with
two or more Re atoms in the diffusion window play a minor
role. The relative decrease in the effective diffusion prefactor
D0 is much larger than the change in Q. The decrease in
D0 is partially due to a decrease in the vacancy correlation
factor fvac, which decrease to about 0.87 for 10 at.% Re and
T = 1300 K. The vacancy slowdown in the Ni-Re system
is dominated at high temperatures by the decrease in the
diffusion prefactor, with decreasing temperatures the effect is
enhanced by the increase in the effective activation energy.
For Re concentrations of 10 at.% and temperatures around
1300–1700 K, we observe a relative slowdown of 36%–32%,
which is significant, but can only partially explain the Re
effect. At the γ /γ ′-interface and dislocations, it might be
possible to achieve concentrations up to 20 at.% Re due
to segregation or dynamically through redistribution during
dislocation climb. For such very high concentrations, we
calculate a slowdown of 65%–59% for a temperature range of
1300–1700 K, which is closer to but still lower than the 75%
slowdown needed to account for the Re effect. In addition to
a reduced vacancy mobility other effects are thus expected
to contribute to the observed enhanced creep strength in Ni-
based superalloys.
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FIG. 5. (Top) Relative slowdown of the vacancy mobility as a function of solute concentration for different temperatures for (a) Re, (b) W,
and (c) Ta. (Bottom) Effective activation energy Q and the diffusion prefactor D0 for vacancy diffusion for solute concentrations of 0–10 at.%
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FIG. 6. The predicted, relative slowdown of the vacancy mobility as a function of solute concentration for different temperatures for (a)
Re, (b) W, and (c) Ta for an ideal random alloy. The slowdown is underestimated as compared to our KMC simulations.

The results for Ni-W [Figs. 5(b) and 5(e)] are very similar
to the Ni-Re system. The diffusion barrier of W itself in Ni is
lower than the Re diffusion barrier, but W reduces the vacancy
mobility even more than Re. This is due to the fact that within
the investigated concentration range vacancy diffusion is dom-
inated by the movement of Ni atoms, and W in the diffusion
window increases the Ni diffusion barrier more strongly than
Re. This is also reflected in the slightly larger increase in the
effective activation energy and larger decrease in the diffusion
prefactor. The relative slowdown at 10 at.% W ranges from
42%–36% for temperatures of 1300–1700 K. Assuming again
that a reduced vacancy mobility hinders dislocation climb and
thus contributes to an increase in creep strength our results
corroborate the fact that a similar effect as adding Re can be
obtained by locally increasing the concentration of W in the
γ -phase of Ni-based superalloys [27].

The diffusion behavior in the Ni-Ta system is different
from Ni-Re and Ni-W. The main reason for this is the low
diffusion barrier of Ta in Ni. By adding a fast diffuser to the Ni
matrix we would expect an increase in the vacancy mobility.
As shown in Fig. 5(c), this is only partially true and more
pronounced for low temperatures. The negative slowdown or
rather speed-up of the vacancies is reduced by the strong
increase in the Ni and Ta diffusion barriers with additional
Ta in the diffusion window (Table I). This is also reflected by
the change in Q and D0 as a function of Ta concentration,
Fig. 5(f). The diffusion prefactor hardly changes up to 6 at.%
Ta, followed by a slight decrease of 8% for 10 at.% Ta, and
the effective activation energy decreases by ∼1.6 meV/at.%
Ta. At high temperatures, the change in vacancy mobility as a
function of Ta concentration is governed by the diffusion pref-
actor, whereas at lower temperature, the speed-up is enhanced
by the decrease in the effective activation energy. The overall
shape of the curves reflects the change in trend in D0 as well as
the competition between a decrease in D0 and a decrease in Q.
At temperatures of 1300–1700 K the overall speed-up is less
than 8 %, i.e., the effect of Ta on the vacancy mobility is small.

B. Ideal solid solutions

For a binary random alloy without any interactions the
kinetic transport coefficients Lij of the Onsager matrix can be
determined analytically [22] and it has been shown that these
agree well with numerical results of KMC simulations [51].

Together with the thermodynamic factor matrix �̃ the matrix
of diffusion coefficients D is given by [51](

DAA DAB

DBA DBB

)
=

(
L̃AA L̃AB

L̃BA L̃BB

)(
�̃AA �̃AB

�̃BA �̃BB

)
, (4)

where L̃ij = Lij�kBT and � is the volume of a substitutional
site. Again, for an ideal solid solution, the thermodynamic
factor matrix can be calculated analytically from the
concentrations of the alloy components and the vacancies
[51]. The atomistic and analytical expressions for the
thermodynamic factor matrix and the kinetic transport
coefficient are reviewed in the Appendix. The eigenvalues of
the diffusion coefficient matrix can be interpreted in terms of
relevant diffusion processes. In particular, it has been shown
that for ideal solid solutions and in the limit of small vacancy
concentrations, the larger eigenvalue can be associated with
the vacancy diffusion coefficient and the smaller one with the
intermixing coefficient [52].

We have evaluated the diffusion coefficient matrix in
Eq. (4) for the Ni-Re, Ni-W, and Ni-Ta system using the dif-
fusion barriers in pure Ni given in the Table I. From the eigen-
values of D we have determined the corresponding vacancy
diffusion coefficients as a function of solute concentration.
The corresponding slowdown in vacancy mobility is shown
in Fig. 6. Qualitatively, we observe the same behavior as a
function of concentration and temperature as for our KMC
model, but quantitatively there are significant differences. For
10 at.% Re and temperatures of T = 1300–1700 K, the slow-
down is only around 12% in the ideal solid solution [Fig. 6(a)]
compared to 36%–32% when considering the influence of Re
in the diffusion window on the diffusion barriers [Fig. 5(a)].
This increase by a factor of three can be attributed to a change
in the distribution of diffusion barriers encountered during the
KMC simulations.

The differences are even more pronounced for Ni-W. In a
random alloy, the vacancy slowdown for 10 at.% W and T =
1300 K is only about 9%, i.e., the effect is smaller than for
Re. This is expected since in the ideal solid solution only the
diffusion barriers in pure Ni enter the analytical model and
here the diffusion barrier of W is smaller than the one of Re. In
our KMC model the vacancy slowdown is larger in the Ni-W
system. As discussed in Sec. IV A this is due to the larger
influence of W on the Ni diffusion barriers, which cannot be
captured by the analytical model.
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For Ni-Ta, the analytical model predicts a monotonic in-
crease of the vacancy mobility up to 10 at.% Ta, which is
reasonable when adding a fast diffuser. The effect is much
larger than in our KMC model and the change in trend,
i.e., the observed decrease in vacancy mobility for larger Ta
concentrations, is missing. Again we can clearly identify the
influence of additional Ta on the diffusion barriers as the
source for the discrepancy between the KMC simulations
and the analytical model. From the comparison of the KMC
results with the analytical model for a binary random alloy it
clearly follows that the change in diffusion barriers due to the
presence of solute atoms strongly influences the composition
and temperature dependence of the vacancy mobility.

V. CONCLUSIONS

Using a combined DFT and KMC study we have in-
vestigated the effect of solute concentration on the vacancy
mobility in binary Ni-Re, Ni-W, and Ni-Ta alloys. Adding a
slow diffuser (Re, W) decreases the vacancy mobility, whereas
a fast diffuser (Ta) increases the vacancy mobility. Within
our KMC simulations we take into account the effect of
solute atoms on the microscopic diffusion barriers through the
so-called window model, i.e., we determine the dependence
of the diffusion barriers on the chemical composition of
the diffusion window. Within this simple interaction model
we observe significant deviations from the vacancy diffusion
within an ideal solid solution. For the slow diffusers Re
and W, the KMC simulation predict a much larger vacancy
slowdown, whereas for the fast diffuser Ta the speed-up is
reduced compared to a random alloy.

These rather notable quantitative differences originate
solely from the influence of the solute atoms on the diffusion
barriers. In particular, the fact that within the KMC simula-
tions the vacancy slowdown is stronger in Ni-W than in Ni-Re
emphasizes the importance of including these interactions: the
magnitude of the slowdown is primarily determined by the
effect of the solute atom on the host diffusion barriers, rather
than the diffusion barrier of the solute itself.

In the context of Ni-based superalloys, it becomes evident
that local Re concentrations of up to 10 at.% considerably
slow down vacancy diffusion, but not sufficiently to be the
sole cause for the observed Re effect. To obtain the ex-
pected slowdown, the local Re concentration needs to exceed
20 at.% Re, which might be possible at dislocations and the
γ /γ ′-interface. The KMC simulations also confirm that a
similar effect could be achieved by adding W, where again the
slowdown is determined by the effect of the solute on the host
diffusion barrier instead on the diffusion barrier of the solute
itself. Based on our results of the KMC simulations, it be-
comes apparent that within nondilute binary alloys a detailed
treatment of solute-solute, solute-host, and solute-vacancy
interaction energies is crucial for the correct prediction of
atomic diffusion.
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APPENDIX: CALCULATION OF DIFFUSION MATRIX

We briefly review the expressions for the calculation of
the diffusion matrix Eq. (4) using the thermodynamic factor
matrix and the transport coefficients, which can be determined
numerically and analytically for the case of an ideal solid solu-
tion. A detailed derivation and discussion of these expressions
is given in Ref. [51].

The thermodynamic factor matrix �̃ can be determined
numerically using grand canonical Monte Carlo simulations
with a fixed number of crystal sites M by

�̃ = M

Q

( 〈
�2

jj

〉 −〈
�2

ij

〉
−〈

�2
ij

〉 〈
�2

ii

〉
)

, (A1)

where 〈
�2

ij

〉 = 〈NiNj 〉 − 〈Ni〉〈Nj 〉, (A2)

and

Q = (〈
N2

i

〉 − 〈Ni〉2)(〈N2
j

〉 − 〈Nj 〉2)
− (〈NiNj 〉 − 〈Ni〉〈Nj 〉)2. (A3)

The angular brackets denote ensemble averages and Ni,j is
the number of atoms i and j . For an ideal solution the
thermodynamic factor matrix can be expressed analytically as

�̃ =
( (1−xj )

xixV

1
xV

1
xV

(1−xi )
xj xV

)
, (A4)

where xi,j is the concentration of element i and j and xV for
vacancies V .

The kinetic transport coefficients Lij can be calculated
numerically from the displacement of the atoms, using, e.g.,
KMC simulations, with

Lij = 1

�kBT
L̃ij , (A5)

where � is the volume per substitutional site and

L̃ij =
〈(∑

ξ � 	Ri
ξ (t )

)(∑
ξ � 	Rj

ξ (t )
)〉

(2d )tM
. (A6)

� 	Ri
ξ denotes the vector linking the end points of the trajectory

of atom ξ of atomic species i after time t , d is the dimension-
ality of the system and M denotes the number of sites in the
crystal.

In an ideal random alloy, the analytical expression for L̃ij

with different rate constants for two elements ki �= kj is

L̃ii = xV xiρa2ki

(
1 − 2xjki

�

)
,

(A7)

L̃ij = 2ρa2kikjxV xixj

�
,
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where

� = 1

2
(F + 2)(xiki + xjkj ) − ki − kj + 2(xikj + xjki ) +

√(
1

2
(F + 2)(xiki + xjkj ) − ki − kj

)2

+ 2Fkikj (A8)

and

F = 2f

1 − f
. (A9)

f is the correlation factor for a single element with the crystal structure of the i-j alloy.
Using these expressions for the thermodynamic factor matrix and the kinetic transport coefficients, we can calculate the

diffusion matrix in Eq. (4).
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