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Quasidiscontinuous change of the density correlation length at the fragile-to-strong transition
in a bulk-metallic-glass forming melt
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Many bulk-metallic-glass (BMG) forming melts undergo a rather abrupt fragile-to-strong transition (FST),
at which density and local structure appear to change only continuously. In this study, we reproduce similar
results for a ternary BMG former (Zr0.606Cu0.29Al0.104) using computer simulations. The results include a
smooth evolution of radial distribution functions at small distances through the FST. However, the long-range
density correlation length increases (quasi)discontinuously at the FST as revealed by an Ornstein-Zernike-
based analysis of the radial distribution function. Likewise, the temperature derivative of aZr−Zr (T ) decreases
(quasi)discontinuously at the FST. These observations add to the rich phenomenology of FSTs lacking a
theoretical understanding.
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I. INTRODUCTION

Glass-forming liquids frequently undergo a fragile-to-
strong transition (FST) at which a high-temperature non-
Arrhenius dependence of dynamical properties, such as shear
viscosity and volume or energy relaxation times, crosses
over to an Arrhenius-type dependence [1–11]. The FST
often occurs in equilibrium well above the (experimental)
glass-transition temperature Tg, e.g., in many bulk-metallic-
glass (BMG) forming melts [8–10,12] and molecular glasses
[2–6], but also in silica [6,7,13]. BMGs lacking a FST at
conventional cooling rates revealed it when the cooling rate
was much reduced [14]. The FST has even been observed
in undercooled liquids, most notably water, outside thermal
equilibrium [15–19]. It thus appears as if the FST is a common
phenomenon of complex liquids defying crystallization.

In some cases, the FST is accompanied by significant struc-
tural changes resulting from the competition of two phases
that differ clearly from one another, for example, through
different densities [15,18]. A discontinuous change of the
temperature dependence of dynamical properties is then not
unexpected, but not necessarily an Arrhenius-like behavior
at low temperatures and clear deviations from it at high
temperatures. In contrast, when density evolves smoothly at
the FST, significant structural changes in the local order at the
FST have not been identified [12], which does not prevent the
picture of two competing phases to be postulated [20].

The mode-coupling theory (MCT) explains a variety of
dynamical anomalies, which occur at the FST [21–23], in
particular, a high-temperature nonhopping dynamics not sat-
isfying Arrhenius-like dependence to a thermally activated
motion at low temperatures, in which (apparent) activation
energies may differ for different elements at low T [7]. MCT
assumes neither a competition of phases nor a (smeared-
out) transition between them [22,23]. The FST in BMGs
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(and many other glass-forming melts) is nevertheless accom-
panied by thermodynamic anomalies such as a small but
noticeable peak in the specific heat cp(T ) just below the
FST temperature T ∗ and a subsequent drop of cp(T ) upon
cooling to a value which is barely above that expected of a
harmonic solid [12,24]. The small value of the specific heat
is an indication of structural rearrangements with temperature
being small or the melt jumping between different basins of
attraction having similar energies. The presence of the peak
in cp(T ) is sometimes seen as an indication of a smeared-out
phase transformation [24] or of the existence of two distinct
disordered phases [14]. However, a recent simulation of a
model BMG revealed that the peak height and intensity are
subextensive, i.e., that it decreases with increasing system
size [25]. This is the opposite of what should be expected from
a competition between two different liquid phases.

The analysis of structural evolution in glass-forming melts
in general and BMG-forming melts in particular has so
far been focused on local two-point distribution functions
[12,26–30] and on the analysis of the probability of locally
preferred structural motifs to occur [26–29,31–38]. To the
best of our knowledge, no (quasi)discontinuous changes in
these properties was reported to exist at those FSTs lacking
a density anomaly.

It appears counterintuitive that the quasicontinuous change
of dynamics, which may even include a reduction of the
apparent activation energies �E near T ∗ [9,14,27], does
not correlate with similarly discontinuous structural changes.
This motivated us to investigate not only the local radial
distribution function in a BMG-forming melt but to focus
on the asymptotic long-range density correlations. According
to Ornstein and Zernicke [39] and subsequent work [40],
these can be described as an exponentially decaying sinu-
soidal. To fill this gap, simulations were run on the alloy
Zr0.606Cu0.29Al0.104, which was recently demonstrated to re-
produce the frequently observed local maximum of cp just
below T ∗ [25] along with some other features typical for FSTs
of (bulk-metallic)-glass forming melts.
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The remainder of this paper is organized as follows: The
model and methods are sketched in Sec. II. Section III con-
tains the results and some discussion. Conclusions are drawn
in Sec. IV.

II. MODEL AND METHODS

The model and the simulation setup used for this work
are identical to those used in a former study [25], i.e., in-
teractions in the considered model alloy Zr0.606Cu0.29Al0.104

are described with an embedded-atom potential, which was
carefully designed for Zr-Cu-Al ternaries [41]. Simulations
are run again in the NpT ensemble using LAMMPS [42].
This time, the system size was fixed to N = 8788. Pressure
is controlled again with a Nosé-Hoover chain [43] with a
time constant equal to 1000 time steps, while temperature is
maintained constant using a Langevin thermostat [44] with
a time constant equal to 100 time steps. The time step was
chosen to be 2 fs. We also took the liberty again to reduce
the “isotope masses” of Zr and Cu to that of Al in order
to collapse vibrational timescales of the different elements.
While this isotope trick affects prefactors of dynamical prop-
erties, it leaves static observables as well as apparent activa-
tion energies unchanged because the Boltzmann distribution
of a classical system factorizes into one term that solely
depends on momenta and another one that solely depends on
coordinates.

For the thermal treatment of the largest N = 8788 sam-
ple, we proceeded as follows: The alloy was set up on an
fcc lattice, chemical identities and vacancies were assigned
randomly, and the resulting configuration was simulated for
100 ns at the highest temperature of T = 1200 K. The follow-
ing steps were then repeated each time the temperature was
set to a new value. First it was ensured that the instantaneous
energy clearly fluctuated about its (new) mean value. Towards
this end, the energy measurements were passed through a
low-frequency filter, which was necessary to do because the
energy distribution functions obtained at “adjacent tempera-
tures” overlapped within a standard deviation. The equilibra-
tion times turned out a posterio to be 10 times the energy
autocorrelation time τE for T clearly above T ∗ and more than
100 τE in the vicinity of T ∗. The final configuration was then
used as initial input for the observation simulation at the same
temperature (running over time periods exceeding that of the
relaxation by at least a factor of two). It was also used as input
for the next lower temperature. Temperature jumps were 50 K
at T > 900 K and 25 K at smaller temperatures. Near T ∗,
additional simulations were run to obtain better resolution,
i.e., the temperature discretization was further reduced to 12.5
and 8.5 K. For these additional runs, configurations were
sometimes taken from the nearest higher or from the nearest
lower temperature. This was done to explore if there was any
(systematic) deviation on final results, e.g., in the form of
a hysteresis, depending on whether configurations had been
cooled or heated. In addition, we occasionally checked if
the Ornstein-Zernike (OZ) analysis conducted on the con-
figurations of the last half of the relaxation run would only
necessitate a single pole to describe the density oscillations at
T > 12.5 Å.

FIG. 1. Volume per atom Vat as a function of temperature T ,
which is normalized to our estimate for the FST temperature of
T ∗ = 830 K. The straight line is a linear fit to the simulation results.

Smaller systems, most notably with N = 1000 atoms, were
also simulated. For the smaller systems, the number of relax-
ation steps was set to five times those used in the large system.

The structure was studied using the conventional radial
distribution function g(r ), which states the probability density
to find an atom a distance r from a given atom in units of the
number density ρ0, so that g(r → ∞) = 1. The long-range
density fluctuations are better analyzed using a modified pair-
correlation function defined as

G(r ) ≡ 4πr2ρ0{g(r ) − 1}. (1)

Its sine transform is proportional to the static structure fac-
tor [45].

III. RESULTS AND DISCUSSION

In our previous study [25], we established a
(quasi)discontinuous change of the apparent activation
energy deduced from the volume and energy relaxation time
τV,E(T ) of our model alloy at T ∗ = 830 ± 2 K. Specifically,
while τ (T ) was continuous, the apparent activation energy
�EV,E ≡ ∂ ln τV,E(T )/∂β with β = 1/kBT changed quite
abruptly at T ∗. At the same time, it was found that the peak
and the intensity of the specific heat cp(T ) at T ∗ decrease
with increasing system size, providing evidence against the
interpretation of the FST to result from a simple competition
between two phases. In this paper, we present an analysis of
the structural changes accompanying the FST.

A. Temperature-induced structural changes in local order

Abrupt changes in activation energies could, in princi-
ple, be induced by abrupt structural changes. The simplest
quantity defining structure is the mean number density or its
inverse, the volume per atom, which we denote as Vat. Its tem-
perature dependence is displayed in Fig. 1. No discontinuities
in V (T ) or in the thermal volume expansion coefficient α ≡
∂ ln V/∂T become obvious within the statistical uncertainty
of the data. One immediate consequence of this observation
is that it should be difficult to identify a meaningful relation
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between the so-called free volume (whatever this quantity
is precisely meant to be) and the relaxation times in the
considered melt.

A change of the thermal-expansion coefficient near the
FST had been reported earlier [27] from a molecular dynamics
model similar to ours. We believe that this conclusion was a
consequence of the large cooling rates, which were effectively
0.5 K/ps—similar to those used in many other simulations
of quenched BMGs [37]. This moved the in silico Tg to the
immediate vicinity of T ∗. In fact, with equilibration times
of O(1 μs) near T ∗, we only just managed to equilibrate
the melts (using jumps of 12.5 K near T ∗) at an effective
cooling rate of approximately 107 K/s, while the former study
equilibrated only for 100 ps after temperature changes of
100 K were followed by a 3.4 ns lasting temperature holding
process. T ∗ and Tg would no longer have been resolved from
one another with such large temperature jumps, even if the
relatively large relaxation times of 1 μs had been used. We
thus argue that the (very interesting and well conducted) study
by Zhang et al. [27] investigates the FST in a supercooled
liquid in which Tg and T ∗ are close to each other. In fact, when
we initially equilibrated our samples for shorter times, we also
observed a change of thermal expansion at T ∗.

We claim our system to be in thermal equilibrium, which
we ensured as follows: (i) getting similar numbers for the
specific heat from energy fluctuations and from the finite
difference of the internal energy, and (ii) reproducing the
correct asymptotics of the long-range density fluctuations
(LRDFs) in the melt. Usually, the LRDFs deviate noticeably
from the Ornstein-Zernike asymptotics during relaxation after
a temperature reduction in the melt; see also Eq. (3). Of
course, deep in the glass, specific heats from fluctuations and
finite difference match up again. Likewise, the long-range
structure in glasses may reflect the fluctuations that existed
in the equilibrium phase just above the glass transition [46].
However, while going through the glass transition, both tests
should produce results that deviate from those expected for an
equilibrium system.

A smoothly evolving density does not necessarily imply
a smoothly evolving local structure since two distinct struc-
tures may still have a similar density. The most generic way
to characterize local order is through the radial distribution
function g(r ). The partial g(r ) related to Zr atoms is shown
in Fig. 2 at a temperature just above and another temperature
just below T ∗. No changes can be resolved in the shown range
of r . A similar comment applies to all other partial radial
distribution functions including the mixed ones, which are not
shown explicitly.

Another local quantity, which has recently enticed some
interest in the literature [28,47–50], is the mean-bond length
a. In principle, a is difficult to define in a liquid since
no reference positions of atoms exist as in crystals. Even
in crystals, there is overlap between the nearest- and next-
nearest-neighbor peak in g(r ), making an accurate determi-
nation of instantaneous bond lengths (which exceeds the ones
associated with the crystallographic positions due to thermal
fluctuations normal to the bond) from the analysis of g(r )
alone inaccurate. In order to better define local bonding and
to discriminate between contributions from first and more
distant neighbors, Voronoi tessellation can be made. Recently,

FIG. 2. Zr-Zr radial distribution function for two temperatures:
one above (T = 850 K) and one below (T = 825 K) the FST
temperature.

we demonstrated that the mean bond lengths deduced from
Voronoi tessellations and that of a skewed-normal-distribution
(SND) analysis of the first peak of the radial probability
density defined as

Pr(r ) ≡ 4πr2g(r )ρ0 (2)

match much more closely than those deduced from averaging
the bond length up to, say, the first minima in either g(r ) or
P (r ) (the integral over which states the average number of
neighbors contained in the shell) [49]. An example of such a
SND analysis is shown in the inset of Fig. 3, while the mean
bond length deduced from such analyses is shown in the main
panel as a function of temperature. The aZr−Zr(T ) relation
for the smaller N = 1000 sample (not shown) was essentially
indistinguishable from that of the N = 8788 system, although

FIG. 3. Main panel: Zr-Zr nearest-neighbor distance aZr−Zr ob-
tained by a SND analysis. Straight lines are linear fits to the simula-
tion data above and below T ∗. The temperature is normalized to our
estimate for the FST temperature of T ∗ = 830 K. Inset: Example of
a SND analysis performed on the first peak in the radial probability
density Pr(r ).
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it had been cooled at a rate effectively five times smaller than
the large sample.

Figure 3 reveals that the thermal expansion of the mean
bond length is considerably reduced in the strong phase as
compared to the fragile phase. This observation supports pre-
vious interpretations of experimental x-ray spectra obtained
for a five-component BMG [12] having a similar relative
number of the dominating Zr and Cu atoms as our model alloy.
However, the bond expansion coefficient remains positive also
at T < T ∗, while previous works deducing bond lengths and
neglecting overlap effects of adjacent peaks in g(r ) found it
to be negative [28,47,48]; see also the thorough discussion of
this issue in a recent review article [50].

At this point, we cannot yet convincingly explain how a
kink in a(T ) can have so little effect on V (T ). However,
a first hint can be obtained from the simulations by Zhang
et al. [27], who conducted a careful Voronoi analysis of a
BMG forming melt. They found asymmetry in the Voronoi
polyhedra to suddenly increase above T ∗. Such a structural
change can lead to a change of mean bond lengths without
affecting volume. The simplest case to illustrate this argument
is to consider a perfect square lattice, in which one atom is
moved a small distance parallel to a diagonal. This preserves
the total volume, but increases the mean bond length.

B. Temperature-induced structural changes in long-range order

Following results of Ornstein and Zernicke [39], density
correlations in three-dimensional liquids (with sufficiently
quickly decaying direct atom-atom interactions) can be de-
scribed as a superposition of damped sinusoidal functions [40]
according to

G(r ) =
∑

l

Gl r e−r/ζl cos(klr − ϕl ), (3)

where Gl is a parameter of unit inverse squared length, ζl a
correlation length, kl is a wave number, and ϕl is a phase. The
asymptotic behavior at large r is dominated by the summand
l having the largest correlation length ζl . In nonmonoatomic
fluids, the asymptotic behavior is described by the same com-
plex wave number ql = kl + i/ζl , while the parameters Gl and
ϕl must be indexed with the respective atomic indices [51].
As mentioned in Sec. II, we focus on G(r ) [see also Eq. (1)]
rather than on g(r ) because g(r ) has poor resolution at large r .

Several radial distributions G(r ) were measured for dif-
ferent atom pairs, i.e., Zr-Zr, Zr-Cu, and Cu-Cu, in the same
way as presented exemplarily for Zr-Zr at two different tem-
peratures in Fig. 4. Within (small) stochastic uncertainties, the
location of the complex wave numbers (or “poles”) ql = kl +
i/ζl was identical for all considered correlation functions.
Since statistics are best for Zr-Zr in our alloy, it was decided
to present results on that atom pair in the following.

It can be observed that the (temperature-scaled) functions
G(r ) shown in Fig. 3 superimpose within line width up to a
distance of, say, r ≈ 15 Å. However, they become distinct at
large separation, i.e., the decay length is apparently slightly
increased for the temperature just below T ∗ as compared to
that just above T ∗. A more detailed analysis of the temperature
dependence of the asymptotic decay length ζ is shown next in
Fig. 5.

FIG. 4. Temperature-scaled G(r ) for two temperatures: one
above and one below the FST. Inset: Fit of G(r ) at T = 850 K.
Symbols represent simulation data, while the lines are produced
using the asymptotically dominant term on the right-hand side of
Eq. (3).

In contrast to all other properties considered so far, the
density correlation length ζ changes discontinuously near T ∗,
when temperature is resolved with �T = 12.5 K. Usually, we
would have considered such a change to be a clear indication
of a first-order phase transformation, which might potentially
be smeared out. Since a previous analysis of the specific heat
revealed subextensivity [25], we can exclude the possibility
of a first-order thermodynamic phase transformation and by
extension exclude the possibility of a true discontinuity of
any property as a function of temperature [52]. We therefore
also argue that the transition of ζ through the FST has to be
continuous. Indeed, a more refined temperature grid near T ∗
reveals the crossover to be continuous.

Our study is not the first one to report a sudden change
in the long-range density correlations at a given tempera-
ture. Experiments on binary hard-sphere mixtures revealed
similar phenomena with changing composition—rather than

FIG. 5. Correlation length of the long-range density fluctuations
as a function of reduced temperature. Lines are fits to data above and
below T ∗.
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FIG. 6. Example for a temperature-scaled G(r ) deduced from a
sample that had only been partially equilibrated at T = 775 K, one
time by 40 ns and one time by 700 ns. Data for an equilibrated
sample at T = 850 K, which is identical to the one shown in the
inset of Fig. 4, is included here to compare the data quality. OZ
fits cover the same range of distances as in Fig. 4 (green lines for
T = 775 K, red line for T = 850 K). Note that the symbols only
reflect every seventh data point. Other data points were skipped to
facilitate the comparison between OZ analysis (lines) and simulation
data (circles).

with temperature [53]. Statt et al. [53] demonstrated that this
crossover could be rationalized without having to postulate a
phase transition. If the long-range asymptotics are described
with a two-pole approximation to G(r ), the imaginary part
of the two poles can be identical at the same temperature T ′
while their real parts differ. Thus, one pole is asymptotically
dominant above T ′, while the other is dominant below T ′.
This scenario clearly does not apply to our system, as the cor-
relation length (i.e., the imaginary part of the complex wave
vector) is discontinuous, while the real part is continuous. For
our system, the sudden change of G(r → ∞) at T ∗ is not due
to one pole becoming more important than another one.

C. Density correlations during relaxation

While the analysis of nonequilibrium systems is not part
of this study, we wish to corroborate our claim that the
long-range density oscillations deviate noticeably from the
Ornstein-Zernicke asymptotics during relaxation after a tem-
perature reduction in the melt. Towards this end, we present
data on G(r ) at the lowest temperature, namely, T = 775 K,
which was simulated but not deemed sufficiently equilibrated
to be included in the equilibrium data of this work.

The sampling for Fig. 6 was done as follows: The initial
configuration was taken from T = 787.5 K and equilibrated
at the new temperature over 40 ns and then for another
660 ns. These numbers need to be set into relation with the
(estimated) energy-correlation time of 15 ns, as deduced from
the data presented in Fig. 2 of Ref. [25]. G(r ) was averaged
over the time intervals 40 < t < 80 ns and 700 < t < 740 ns,

respectively. The agreement between OZ asymptotics and
measurement turns out noticeably less satisfactory than in the
inset of Fig. 4, which had also been averaged over 40 ns,
however at T = 850 K. While symbols and fits overlap within
symbol size in the range 10 < r < 25 Å in the equilibrated
T = 850 K sample (our admittedly somewhat arbitrary extra
criterion for equilibration to be satisfactory), this is not the
case for the T = 775 K system. After the relatively short
relaxation time of trelax = 40 ns, which is still almost three
times τE, the OZ fit already fails at relatively short distances,
while the first clear discrepancies move to larger values of
r for trelax = 700 ns, disregarding, of course, the deviations
between fit and MD data at small r , where density correlations
are not yet dominated by a single pole.

It may seem pedantic to judge the OZ analysis of the
trelax = 700 ns as a sign of insufficient equilibration, as the
green line is only marginally outside the symbol size for
r > 25 Å. However, we noticed that the values of ζ deduced
from fits of the given quality can lead to errors of more than
�ζ = O(0.2 Å). The observed need for excessively large
relaxation times is in line with the realization by Coslovich
et al. [54] that producing true equilibrium values of certain
properties, e.g., for the specific heat, can require equilibration
times of more than 100 τE.

IV. CONCLUSIONS

Using molecular dynamics, we investigated structural
changes—particularly as characterized through the modified
radial distribution function G(r )—at the fragile-to-strong
transition (FST) in a bulk-metallic-glass forming melt. We
identified a (quasi)discontinuity in the density correlation
length ζ at the FST temperature T ∗, where ζ abruptly in-
creased by O(10%) upon a O(1%) temperature change upon
cooling. Above and below T ∗, an O(1%) temperature increase
induced only an O(0.3%) decrease of ζ . Such a clear signal
would usually have to be interpreted as a first-order phase
transition because a discontinuous change in G(r ) implies a
discontinuity in (two-body) entropy [55]. What prevents us
from drawing this conclusion is that local changes in G(r )
could not be ascertained at the FST and, more importantly, a
former study found the specific heat to be subextensive [25].

The particle numbers beyond which the subextensivity of
the specific-heat peak of our system becomes small is N ≈
200, which translates roughly into a system size of 4 nm3.
This volume is close to the one of a cubic cell having a linear
dimension equal to three times the correlation length, in which
case an atom i sitting halfway between another atom j and
its first periodic image j ′ has a distance of 1.5 ζ to either
one. A possible—and certainly speculative—explanation of
the subextensivity of cp resulting from the G(r ) analysis is
that a cluster with a radius of the liquid correlation length
behaves solidlike. Only the coupling to a liquid in a larger cell
prevents or significantly reduces the tendency of the central
cluster to undergo a process akin to a phase transformation. If
this speculation were true, a large peak in the specific heat at
the FST should go hand in hand with a larger liquid correlation
length ζ .

It also seems as though periodically repeated finite systems
show a peak in the specific heat at the temperature where the
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linear cell size L is slightly larger than twice the correlation
length ζ . In our previous work [25], the N = 96 sample with
〈L〉 = 12.33 Å had a distinct maximum just below T ∗, where
ζ ≈ 5.6 Å = 0.454〈L〉, while an N = 48 sample with 〈L〉 =
9.74 Å revealed a maximum at T = 1100 K, where ζ ≈
4.4 Å = 0.452〈L〉. In contrast, larger systems did not reveal
any anomalies at 1100 K. Thus, a small system could appear
to undergo a (smeared-out) transformation simply because ζ

is roughly half the linear size of the simulation cell.
Finally, we wish to note that we believe that an Ornstein-

Zernike-based analysis can be beneficial for the study of
complex liquids and should actually be routinely used for this
reason: first, it allows the simulator to ensure that the system
is large enough (i.e., the linear dimension of the cell should
be ideally at least three times the correlation length ζ ) to be
meaningful, but not wastefully large so that—assuming a fixed
computational contingent—the smallest possible quenching
rates can be studied. Second, the Ornstein-Zernike analysis

is a reliable tool to ensure that (metastable) equilibrium is
reached. After a short, but of course not too short, relaxation,
we always observed clear differences between the analytical
asymptotic form and simulation results. Agreement always
necessitated long, and at the lower temperature painfully long,
equilibration of the samples.
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