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Intermolecular coupling and superconductivity in PbMo6S8 and other Chevrel phase compounds
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To understand superconductivity in Chevrel phase compounds and guide the search for interesting properties
in materials created with Chevrel phase molecules as building blocks, we use ab initio methods to study
the properties of single Mo6X8 molecules with X = S, Se, Te as well as the bulk solid PbMo6S8. In bulk
PbMo6S8, the different energy scales from strong to weak are the band kinetic energy, the intramolecular
Coulomb interaction, the on-molecule Jahn-Teller energy, and the Hund’s exchange coupling. The metallic
state is stable with respect to Mott and polaronic insulating states. The bulk compound is characterized by
a strong electron-phonon interaction with the largest coupling involving phonon modes with energies in the
range from 11 to 17 meV and with a strong intermolecule (Peierls) character. A two-band Eliashberg equation
analysis shows that the superconductivity is strong coupling, with different gaps on the two Fermi surface
sheets. A Bergman-Rainer analysis of the functional derivative of the transition temperature with respect to
the electron-phonon coupling reveals that the Peierls modes provide the most important contribution to the
superconductivity. This work illustrates the importance of intermolecular coupling for collective phenomena in
molecular solids.
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I. INTRODUCTION

Synthetic chemists are now able to assemble molecular
clusters into crystal structures with atomic precision [1],
making the search for collective and emergent properties
in those superatomic solids a timely and important topic.
The notion of bootstrapping interesting molecular proper-
ties and strong molecular interactions into important bulk
properties is an important theme in the field. For example,
the relatively high transition temperature superconductivity
in some members of the alkali-doped fullerenes is believed
to arise from intramolecular vibrational modes [2,3] whereas
in other alkali-doped fullerenes it is argued [4] to arise from
intramolecular electron-electron interactions. The recent dis-
covery of superconductivity in endohedral gallide clusters also
exemplifies the rich set of possibilities provided by molecular
solids [5].

Binary and ternary molybdenum chalcogenides, also
known as Chevrel phase compounds [6], are of great interest
in this context. Their chemical formula is MmMo6X8, where
M is a metal element and X = S, Se, Te. The bulk compound
can be viewed as a molecular crystal of Mo6X8 units on
the sites of a rhombohedral lattice, with the metal ions M

in interstitial sites. The materials have been of sustained
interest to both physicists and chemists because they can be
superconducting with transition temperatures as high as 15 K
(PbMo6S8) [7] and a high upper critical field [7–9]. Despite
some hints at unconventional superconductivity [10,11], it
is generally accepted that the electron-phonon interaction
provides the pairing mechanism [12,13]. Chevrel compounds
have also been proposed as promising multivalent cathode
materials in Mg batteries [14]. Recent experimental efforts

have been directed at synthesis of lower-dimensional Chevrel
phase compounds [15].

Since Chevrel phase compounds are built of Mo6X8 molec-
ular clusters, it is natural to approach the physics via a model
of relatively weakly coupled clusters [16–18]. But, if this
model is sufficient to understand superconductivity in Chevrel
phase compounds is still not clear: specifically, the role of
the intracluster and intercluster vibrational modes [19] in the
superconductivity needs to be established.

In this paper, we analyze PbMo6S8 as a model system to
gain insight into the role of intrasite and intersite interactions
in molecular crystals and into the specifics of superconduc-
tivity in the Chevrel materials. To approach this system, we
first calculate properties of isolated Mo6X8 molecules and use
the results to derive and parametrize effective Hamiltonians
including electron-electron and electron-phonon couplings.
We study the bulk properties of PbMo6S8, calculating elec-
tron and phonon band structures, the electron-phonon cou-
pling, and the intramolecular Coulomb interaction. Migdal-
Eliashberg theory is then used to calculate the phonon renor-
malization of the bands and the superconducting gap functions
and transition temperatures. Our key result is that the picture
of intramolecular interactions combined with weak constant
electronic hopping between molecular units is not an adequate
description of the bulk compounds. Intermolecule effects,
most notably phonons that simply do not exist in the single-
molecule case except as a translation or a rotation of model,
play a crucial role in setting the electronic properties including
superconductivity while the intramolecular couplings have
significantly weaker effects. Screening of the intramolecular
Coulomb interaction is of significant importance in Chevrel
phase compounds.
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FIG. 1. (a) Structure of Mo6X8 molecule; (b) relative HOMO,
first and second LUMO levels of neutral Mo6S8, Mo6Se8, and
Mo6Te8. The HOMO levels of all three are set to 0.

This paper is organized as follows. In Sec. II, we con-
sider isolated Mo6X8 molecules, identifying the important
low-energy degrees of freedom and interactions within the
building blocks of the solids. Sections III and IV discuss
electron and phonon band structures, Hubbard U , Hund’s ex-
change J , and electron-phonon interaction in bulk PbMo6S8.
In Sec. V, we present the consequences of the electron-phonon
interaction and diagnose which phonons are most important
for superconductivity. Section VI is a conclusion.

II. MOLECULAR PROPERTIES

Molecular solids such as the Chevrel phase materials are
composed of molecular building blocks (Mo6X8 in the present
case) held together with other elements (metal ions such as
Pb, in the present case). The first step in understanding the
properties of molecular solids is to determine the relevant
orbitals of the building blocks, and the electron-electron and
electron-phonon interactions relevant to these orbitals. To
obtain this information we study properties of isolated neutral
and charged Mo6X8 molecules using density functional theory
(DFT) methods with the PW91 generalized gradient approx-
imation exchange-correlation functional [20] as implemented
in the NWCHEM package [21]. The basis set for molybdenum,
selenium, tellurium is LANL2DZ [22], and for sulfur is 6-
31G** [23,24].

Neutral Mo6X8 molecules [shown Fig. 1(a)] have the
symmetry of the Oh point group. Figure 1(b) shows that the
highest occupied molecular orbitals (HOMO) are threefold
degenerate while the lowest unoccupied molecular orbitals
(LUMO) are twofold degenerate and transform according
to the Eg representation of Oh. We focus on the LUMO
doublet here because in the bulk solids of interest the M ions
transfer electrons to the Mo6X8 clusters, so the Fermi level
lies in bands derived from these orbitals. Energetically, the Eg

orbitals are separated from other molecular orbitals by 1.0 eV
in Mo6S8; this separation becomes smaller for Mo6Se8 and
Mo6Te8. Plots of the Eg orbitals are shown in Fig. 2: each
of those two orbitals approximately consists of dx2−y2 orbitals
arising from four coplanar Mo ions.

We can estimate the intramolecular electron-electron in-
teraction U of isolated Mo6X

2−
8 from the charging energy:

U = EMo6X
3−
8

+ EMo6X
1−
8

− 2EMo6X
2−
8

and Hund’s exchange
J from the energy difference between singlet and triplet:

FIG. 2. Twofold-degenerate LUMO orbitals of neutral Mo6S8

generated by VESTA3 [25]. The value for isosurface in the plot was
chosen to be 0.02 a.u.

2J = E
singlet
Mo6X

2−
8

− E
triplet
Mo6X

2−
8

. From Table II, we can see U ≈
3.5 eV for Mo6X8 molecules. J ≈ 100 meV for all three
molecules, and is just large enough to overcome the Jahn-
Teller electron phonon coupling in Mo6X

2−
8 molecules as

discussed below.
We now turn to the electron-phonon coupling, focusing

on those modes that couple linearly to the LUMO orbitals.
Phonons couple to electron bilinearly; the electrons transform
as the Eg representation of Oh and the direct product of two
Eg representations of the Oh group can be reduced as Eg ×
Eg = a1g + a2g + eg , so we need to consider only vibrational
modes belonging to the a1g , a2g , and eg representations. The
eg mode is Jahn-Teller active, which means it can lift the
degeneracy and lower the symmetry of the molecule. The
phonon frequencies and normal mode vectors are computed
by diagonalizing Hessian matrix, leading to a phonon plus
electron-phonon Hamiltonian which we write representing the
phonons in a first quantized form using a normalized phonon
operator Q. For A-symmetry (scalar) phonons we have

H(Qα ) = h̄ωα

2

(
− ∂2

∂Q2
α

+ Q2
α

)
+ gαQαnel, (1)

where nel is the number of electrons in the LUMO states, α

labels phonon modes, and gα is electron-vibration interaction.
gα is electron-vibration interaction matrix element

gα = 〈ψ | ∂V

∂Qα

|ψ〉, (2)

where V is electron-ion interaction potential, and |ψ〉 is the
LUMO orbital.

For e-symmetry (doublet) phonon modes we represent the
mode as a two-component vector �Q = (Qx,Qz) and write

H( �Qα ) = h̄ωα

2

(
− ∂2

∂ �Q2
α

+ | �Qα|2
)

+ gα
�Qα ·

∑
abσ

d†
aσ �τ abdbσ ,

(3)

where τ is a Pauli matrix and a, b label the two states of the
electronic Eg doublet.

The adiabatic potential energy surface (APE) for phonon
mode α is defined as the ground-state eigenvalue of Eqs. (1)
and (3) with the kinetic energy (∂Qα

) terms neglected. The
difference between the value at the minimum and the value at
Q = 0 defines the phonon stabilization energy

ωeff,α = g2
αρ2

el

2ωα

. (4)
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FIG. 3. Adiabatic potential energy surface of Mexican hat shape
calculated for the eg vibrational mode of Mo6S2−

8 at 31.0 meV with
the occupation of two electrons (n = 2). Qx and Qz are degen-
erate vibrational modes, and they are renormalized by

√
h̄

mω
, thus

dimensionless. EJT is Jahn-Teller stability energy due to structural
distortion.

Here, ρel is the LUMO occupancy for the A-symmetry modes
and is the maximal orbital disproportionation (ρ = 1 for n =
1, 3 and ρ = 2 for n = 2) in the E (Jahn-Teller) case. The
coupling constants gα are determined from the calculated
APEs.

For A-symmetry phonons the APE is a parabola with mini-
mum at Qα = − gαnel

ωα
. We find two A modes, with frequencies

of 41.6 and 50.4 meV. The associated stabilization energies
are 0.2 and 7 meV, respectively, too small to be of relevance
to the issues discussed here. We neglect the A-symmetry
phonons henceforth.

For the E (doublet) phonons, the APE has the familiar
“mexican hat” form shown for one of the phonons in Fig. 3.
At the quadratic level considered here, the theory has the
full O(2) symmetry in the phonon modes, so energy is a
function only of ρ = | �Q|. Higher-order terms in Q lift the
degeneracy leading to three degenerate minima (visible on
close inspection in Fig. 3) as required by the Oh symmetry.
We find two E-symmetry modes; their frequencies, linear
coupling parameters, and stabilization energies as function of
occupations of LUMO states are listed in Table I for Mo6S8.
The coupling of the mode at high frequency is much larger
than that of the mode at low frequency. As the occupation
number increases, the vibrational modes become slightly
softer and the linear coupling parameter g becomes weaker.
The total stabilization energy is the sum of the stabilization

TABLE I. Quadratic frequency, linear coupling energy, and the
Jahn-Teller stabilization energy for occupation number n = 1, 2, 3.
For the neutral molecule, ω1 = 32.8 meV and ω2 = 29.9 meV. For
occupation n = 4, the Jahn-Teller effect is no longer active, but mode
softening is still visible.

Occupation n = 1 n = 1 n = 2 n = 2 n = 3 n = 3
modes ω1 ω2 ω1 ω2 ω1 ω2

ω (meV) 31.8 28.4 31.0 27.8 28.5 27.3
g (meV) 49.4 27.0 46.0 23.8 38.8 18.8
k = g/ω 1.55 0.95 1.48 0.86 1.36 0.69
EJT (meV) 38.4 12.8 136.2 40.8 26.4 6.5

TABLE II. Total Jahn-Teller stabilization energy, charging en-
ergy, and Hund’s exchange for Mo6X

2−
8 .

Mo6S2−
8 Mo6Se2−

8 Mo6Te2−
8

EJT (meV) 186 145 86
J (meV) 103 100 90
U (eV) 3.7 3.5 3.4

energies of the two modes and is shown in Table II for the
three different choices of calcogen ions. As the chalcogenide
elements become heavier, the Jahn-Teller stabilization energy
decreases significantly, which correlates with the manner
in which size and flexibility of the molecules change with
chalcogenide element.

In the isolated singly charged molecule Mo6X
1−
8 , the Jahn-

Teller effect (EJT ≈ 50 meV) is unopposed and we expect
the molecule to distort away from a cubic shape. For the
doubly charged Mo6X

2−
8 , the Jahn-Teller energy is about four

times as large as it is for the singly charged case, however,
the distortion energy is reduced by the Hund’s exchange J

(≈100 meV). Our calculation indicates a spin-triplet ground
state for Mo6X

2−
8 , but the energy difference is small enough

that this conclusion should be treated as preliminary. The
large value of the onsite Coulomb interaction, which is much
greater than the n = 2 Jahn-Teller stability energy, implies
that an ensemble of singly charged molecules will not dispro-
portionate into bipolarons.

The Jahn-Teller stabilization energy is a useful measure
for comparing the relative strengths of the Jahn-Teller effects
across different material families. The stabilization energy
186 meV we find for Mo6S8 at n = 2 is smaller than the
500 meV found in LaMnO3 [26] or the 215 and 341 meV
found for LiMnO2 and LiCuO2 [27].

III. BULK COMPOUND: ELECTRONIC PROPERTIES

A. Electronic band structure

We next study the electronic structure of PbMo6S8 solid
via DFT calculations with PBE as exchange-correlation func-
tional [28], as implemented in the QUANTUM ESPRESSO pack-
age [29]. Unless otherwise noted, the structures are fully
relaxed both in terms of atomic positions and lattice constants.
Norm-conserving separable dual-space Gaussian pseudopo-
tentials [30] were used for all elements. The kinetic energy
cutoff for wave functions is 80 Rydberg and the convergence
threshold for force is 1.0 × 10−4 Hartree/bohr. Structural
relaxations are done with 4 × 4 × 4 Brillouin zone grid; and
band structure calculations are also done with density gener-
ated on that k-point grid.

The left panel of Fig. 4 shows the band structure and
density of states (DOS) of PbMo6S8. The relaxed lattice
constant and bond angle are a = 6.55 Å and α = 89.12◦, in
good agreement with experimental values of a = 6.55 Å and
α = 89.33◦ [31]. Consistent with the single-molecule results,
we see that only two bands cross the Fermi level; these are
derived from the Eg states discussed above. The bandwidth of
the two Eg-derived bands is W ≈ 0.7 eV. Near the R point
the energy of the Eg bands is lower than that of the other
filled bands, but there are no band crossings, thus no band
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FIG. 4. Band structure (left panel) and density of states (right
panel) of PbMo6S8. Since the unit cell is very close to be orthorhom-
bic, we used high-symmetry points of simple orthorhombic lattice in
band structure. The Fermi level is set to 0.

entanglement, enabling a straightforward Wannier analysis
of the two conduction bands. The right panel shows the
total density of states and its projection onto the component
atoms. The dominant contribution to the density of states near
Fermi surface is from Mo orbitals, with some contribution
from S and negligible contribution from Pb. The Fermi level
is at a local and sharply peaked maximum in the density
of states, consistent with previous arguments by Andersen
and co-workers [18] based on the pressure dependence of
the superconducting transition temperature. The total DOS at
Fermi level is NBS = 10.8/(eV unit cell), about a factor of 4
smaller than the experimental value Nγ = 44.4/(eV unit cell).
(See Ref. [32] and references therein.) The dominant source
of the difference is the electron-phonon coupling, as we will
show below.

Using the WANNIER90 [33] implementation of the max-
imally localized Wannier function method [34] we studied
the two Eg bands around Fermi level in some detail. From
our calculation, the total occupation of these two bands is
2.0, which is consistent with a scenario in which each Pb
transfers two electrons to a Mo6S8 cluster. The occupations
of the lower and higher bands are 1.41 and 0.59, respectively.
Two Fermi surfaces formed by the lower and higher bands are
shown in Fig. 5. For PbMo6S8, two sheets of Fermi surfaces
can be found, but they are not always well separated. This
has implications for superconducting order parameters, as we

FIG. 5. Depiction of the Fermi surface of PbMo6S8 formed by
the lower band (left panel) and the higher band (right panel) in the
primitive cell of the reciprocal lattice. Both plots were generated by
the XCRYSDEN package [35].

FIG. 6. Density of states at the Fermi level of PbMo6S8 in the
XY planes through the � point (left panel) through the R point (right
panel).

will discuss in Sec. V B. The Fermi surface associated with
the lower band centered around � point is holelike and the
Fermi surface associated with the higher band is electronlike.
Two-dimensional cuts of the Fermi surfaces are shown in
Fig. 6. On the XY plane through the R point (right panel), two
separated Fermi surfaces are clear with the larger one as the
electron pocket. It should be noted that two Fermi sheets touch
each other at some places in the Brillouin zone. For example,
at the � point, two bands can be found at Fermi level.

B. Electron-electron interactions

We performed constrained random phase approximation
(cRPA) calculations of the effective interactions between
electrons in the two frontier bands, following the approach
developed by Aryasetiawan et al. [36]. The polarization ma-
trix in reciprocal space was calculated in the random phase
approximation as implemented in the BERKELEYGW package
[37] with a 2 × 2 × 2 k-point mesh, 100 unoccupied states,
and kinetic energy cutoff of 5 Ry for the polarization matrix.
The result is divided into contributions between states in the
low-energy sector (P le), which consists of two bands crossing
the Fermi level, and processes involving transitions in at least
one other band (P r ) as

P tot
GG′ (q) = P le

GG′ (q) + P r
GG′ (q). (5)

A dielectric matrix representing screening by the other de-
grees of freedom is constructed from P r as

εGG′ (q) = δGG′ − νGG′ (q)P r
GG′ (q), (6)

and the partially screened interaction is defined as

W (r, r′) = 4π

�

∑
qGG′

νGG′ (q)ei(q+G)·rε−1
GG′ (q)ei(q+G′ )·r′

, (7)

where νGG′ (q) is the bare Coulomb interaction and � is the
volume of the unit cell.

The effective on-molecule interactions, namely, the Hub-
bard U and Hund’s exchange coupling J , are obtained by pro-
jecting W onto the two Eg orbitals of the isolated molecule:

Unm =
∫∫

dr dr′φ∗
n (r)φn(r)W (r, r′)φ∗

m(r′)φm(r′), (8)

Jnm =
∫∫

dr dr′φ∗
n (r)φm(r)W (r, r′)φ∗

n (r′)φm(r′). (9)
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TABLE III. The values of the bare and screened local interac-
tions in eV.

Ubare UcRPA U ′
bare U ′

cRPA
Jbare JcRPA

5.36 0.28 5.07 0.18 0.139 0.044

The bare and screened local electron-electron interactions
are listed in Table III. The bare interactions are larger than
the charging energies reported in Sec. II because the isolated
molecule calculations include relaxation of other electronic
degrees of freedom (on-molecule screening). We find that
the screening is almost complete; the screened interactions
are factors of ∼20 less than the bare interactions, in contrast
to other other molecular materials including κ-ET organic
[38], alkali-doped C60 and aromatic compounds [39]. The
strong reduction of the interaction can be understood in terms
of the very large dielectric constant arising from the rest of
the bands εcRPA = limG+q→0 1.0/εcRPA

GG
−1

(q) = 24.0. We also
observe that, in contrast to the simple perovskite transition
metal oxides even the Hunds coupling is significantly
renormalized, consistent with reported results for organic
molecular materials [39].

Given the bandwidth W ≈ 0.7 eV found in band structure
calculations, the interaction strengths we find confirm that
PbMo6S8 is far from the Mott transition regime and that local
correlation effects may be neglected. We may simply consider
the material to be metallic with essentially weak electronic
correlations.

IV. PHONON BAND STRUCTURE AND
ELECTRON-PHONON COUPLING

A. Phonon band structure

Starting from the fully relaxed electronic structures pre-
sented in the previous section, we used density functional

perturbation theory (DFPT) [40] to calculate the phonon
band structure and density of states shown in Fig. 7. The
calculated phonon density of states agrees reasonably well
with the density of states inferred from neutron scattering
experiments [41]. Both calculation and experiment show a
sharp peak at about 4 meV, and two gaps around 17 and
40 meV.

We have calculated the normal modes and find that the
sharp peak in the phonon DOS at 4 meV arises from
two modes with large Pb displacements (these modes also
contribute to the very large dielectric constant), in agreement
with the experimental observation that the peak is absent in
Chevrel phase compounds without Pb ions [41,42]. Previous
work had suggested that the minimum in the DOS at 17 meV
marked the separation between internal (on-molecule) and
external (intermolecular) vibrations [41,43]. We find two in-
ternal modes below 17 meV, which suggests hybridization
between internal and external modes is present below 17 meV,
similarly to the result found with Born–von Kármán lattice
dynamics calculations with Lennard-Jones potentials [44].

B. Electron-phonon coupling

We have used DFPT to calculate the matrix elements
gυ

ij (k, p) describing the scattering of an electron at momentum
p in band j to momentum k in band i by emission or
absorption of a phonon mode υ at momentum k − p. The
calculations were performed on a 4 × 4 × 4 grid in the Bril-
louin zone and then interpolated onto fine grids via electron
and phonon Wannier functions following Refs. [45,46] as
implemented in the EPW code [47]. The fine electron grid
is 32 × 32 × 32 and the fine phonon grid is 16 × 16 × 16.
Computationally, phonon coarse grid is the most expansive
one to increase. When phonon coarse grid expands from 23

to 33 and 43, calculated total electron-phonon coupling λtot

goes from 1.10 to 2.15 and 2.29. Convergence with respect
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FIG. 7. Calculated phonon band structure (left panel), and calculated phonon density of states and measured neutron weighted phonon
density of state (right panel), from Ref. [41].
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FIG. 8. Band-resolved electron-phonon interaction functions
α2F from Eq. (10) and electron-phonon coupling constants from
Eq. (11).

to electron and phonon fine grid is quite good. Difference
of λ between grids of size 243, 123 and 323, 163 is smaller
than 0.1.

From the matrix elements we calculate the band-resolved
electron-phonon coupling function α2F as

α2Fij (ν) = 1

Ni (0)

∑
k,p,υ

∣∣gυ
ij (k, p)

∣∣2
δ
(
εi

k

)
δ
(
ε

j

k−p

)
δ
(
ν − ωυ

p

)
,

(10)

and the band-resolved total energy-phonon coupling constant
as

λij = 2
∫ ∞

0

α2Fij (ν)

ν
dν. (11)

Band-resolved electron-phonon spectral functions and cou-
pling constants are shown in Fig. 8. The four αFij have similar
structures, and give similar coupling constants. This is very
different from the two-band superconductor MgB2, for which
intra-band coupling is much stronger than interband coupling
[48]. We believe the difference arises because in MgB2 the
two bands arise from physically distinct π and σ orbitals
whereas in the present case the two bands come from an
on-molecule doublet.

The total coupling λtot = ∑
ij λijNi (0)/[Ni (0) +

Nj (0)] = 2.29, is exceptionally large, larger than others
found in other materials with strong electron-phonon
couplings [49]. Density state at Fermi level derived from
experimental specific heat Nγ = 44.4/(eV unit cell) (see
Ref. [32] and references therein). Our band structure
calculations combined with electron-phonon coupling gives
NBS × (1 + λ) = 36.3/(eV unit cell). The value is consistent
with that estimated by Andersen and collaborators [18] but
inconsistent with other published estimates [32].

From Fig. 8, one sees that the modes with largest coupling
lie in the frequency range from 11 to 17 meV. At the � point,
Pb-dominated modes form a low-lying transverse doublet
around 5 meV and a longitudinal singlet around 10 meV.
After these three modes, five modes can be observed below

the gap at 17 meV. The atomic movement associated with
these five phonon modes at the zone center (� point) and
zone boundary (X point) are represented in Fig. 9. At the
zone center, these five modes exhibit torsional character.
External torsional modes have previously been suggested to
be important for superconductivity based on a molecular
crystal model [43]. At the zone boundary, these five modes
show a character consistent with physics of dimerization, as
a whole cluster rigidly moves towards its counterpart in the
neighboring unit cell, albeit some mixing with other modes.
Phonon modes with these characteristics are consistent with
Peierls coupling [50]. At the zone center, phonons are limited
to one unit cell, and rotations can impact the electron hopping
between molecules by changing overlaps between molecular
orbitals since molecular orbitals are generally not spherical
(as shown in Fig. 2). At the zone boundary, phonons are
extended to two neighboring unit cells, and dimerization can
modify electron hopping by changing the distance between
molecules. Based on the above observations, we conclude that
in Chevrel phase compounds the most important contributions
to the electron-phonon coupling are Peierls-type couplings
from 11 to 17 meV.

To further understand the physics of those phonon modes,
we calculated the variation of band structure due to the
atomic displacement of the mode shown in Fig. 9(e). As we
can see in Fig. 10, for the 11th phonon mode at � point,
the bandwidth increases with atomic displacement; but the
degeneracy from the � point to the R point is preserved.
This degeneracy implies the phonon mode has no Jahn-
Teller character; the increase of bandwidth illustrates that
the main effect is an increase in the overlap of each Mo6S8

unit. This is the expected behavior from Peierls coupling:
intermolecular hoppings vary with vibrations, but intramolec-
ular states remain stationary. All information presented
leads to the conclusion that strongest electron-phonon cou-
pling in Chevrel phase compounds occurs via Peierls active
modes.

V. CONSEQUENCES OF THE ELECTRON-PHONON
INTERACTION

A. Normal-state self-energy

The normal-state self-energy due to the electron-phonon
interaction was calculated in the Migdal approximation, us-
ing the one-loop diagram with noninteracting electron and
phonon Green’s functions and electron-phonon matrix ele-
ments obtained from our band structure. We separate the
integral over the electron momentum into an energy and a
Fermi surface integral and focusing on the band-diagonal
terms in the self-energy we obtain

�ii (z) =
∫ ∞

−∞
dε

∑
lυ

∫ ∞

0
dν α2Fil (ν)

×
[

1 + nυ
ν − f (ε)

z − (ν + ε)
− nυ

ν + f (ε)

z − (−ν + ε)

]
. (12)

Here, i, l label the electronic bands, and υ labels phonon
modes.

After analytically continuing the frequency argument z to
the real axis, we compute the electron spectral function at
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FIG. 9. The five �-point phonon modes of PbMo6S8 with energies in the range of 11.0 to 15.6 meV (a)–(e) and the X point (f)–(j) of
Brillouin zone, Pb atom is at one vertex of the cubic unit cell. Green arrows represent real-space motion of atoms in the displayed phonon
modes. Each subplot was generated by the XCRYSDEN package [35].

T = 0 as

Ai (k, ω) = 1

π
Im

(
1

ω − εi (k) − �ii (ω − iδ)

)
. (13)

Results are shown in Fig. 11. We see that the electron-phonon
interaction significantly modifies the dispersion only for ener-
gies within ∼20 meV of the Fermi surface, leading to velocity
renormalization of a factor of 2–3 at these energies. The near
correspondence of bare and renormalized velocities at higher
energies shows that phonons at higher frequencies, including
the internal Jahn-Teller modes at ∼30 meV, have a relatively
small effect on the spectrum.

B. Superconductivity

With band-resolved electron-phonon spectral function de-
fined in Eq. (10) and the self-energy evaluated in the Migdal
approximation, we study strong coupling two-band supercon-

-0.6

-0.4

-0.2

0

0.2

0.4

En
er

gy
 (e

V
)

α=0.0
α=0.5
α=1.0

FIG. 10. Band structure of the 11th phonon mode at the � point,
as shown in Fig. 9(e). Atomic poitions X for each calculation are de-
termined by X = X0 + αu. X0 are the equilibrium atomic positions
and u is the phonon mode displacement from the DFPT calculation.

ductivity using the Eliashberg equations, following previous
work on MgB2 [51] and Mg1−xAlxB2 [52]. The equations may
be written on the imaginary axis as

�i (iωn)Zi (iωn) = πT
∑
m,j

[λij (iωm − iωn) − μ∗
ij ]

× �j (iωm)√
ω2

m + �2
j (iωm)

, (14)

Zi (iωn) = 1 + πT

ωn

∑
m,j

λij (iωm − iωn)
ωm√

ω2
m + �2

j (iωm)
,

(15)

FIG. 11. False-color representation of electron spectral function
with (shaded) and without (white line) electron-phonon interactions
for near Fermi-surface momenta along the line from the R to the X

point of the Brillouin zone.

114801-7



JIA CHEN, ANDREW J. MILLIS, AND DAVID R. REICHMAN PHYSICAL REVIEW MATERIALS 2, 114801 (2018)

0 50 100 150 200
 ω  (meV)

-6

-4

-2

0

2

4

6

8

Δ
 (m

eV
)

Re Δ : lower band
Im Δ : lower band
Re Δ: higher band
Im Δ: higher band

FIG. 12. Real and imaginary parts of the two gap functions as a
function of energy as extracted from Padé approximants

where �(iωn) and Z(iωn) are superconducting gap and renor-
malization function; ωn are discrete Matsubara frequencies at
temperature T , and λij is

λij (iωm − iωn) = 2
∫ ∞

0
d�

�α2Fij (�)

�2 + (ωn − ωm)2
. (16)

We estimated the Coulomb pseudopotential μ∗
ij within this

theory via μij = U
√

Ni (0)Nj (0). U = 0.28 eV used here
is from a cRPA calculation, which gives μij ≈ 1.4. The
Coulomb pesudopotential reduced by retardation effects leads
to [53]

μ∗
ij = μij

1 + μij ln(Eele/ωph)
. (17)

The typical electron energy Eele is approximated by the half-
bandwidth of Eg bands: W/2 ≈ 0.35 eV, and the relevant
phonon frequency ωph ≈ 12 meV. (See the Bergmann-Rainer
analysis below.) This method yields a Coulomb pseudopoten-
tial value of μ∗

ij ≈ 0.24.
Equations (14) and (15) were solved on the imaginary axis

and the gap functions were analytically continued to the real
axis via Padé approximants [54], as shown in Fig. 12. Super-
conducting gaps at the Fermi level as function of temperature
are shown in Fig. 13. The Tc from our calculation is found
out to be 18.8 K, which is larger than experimental value
of 15 K by about 25%. In the framework of the two-band
isotropic Eliashberg equations used in this work, two possible
reasons for this are the inadequate treatment of the Coulomb
interaction and the anisotropy of Fermi surfaces. As shown
in recent work [55,56]. retardation effects are less effective
in systems with strong coupling and narrow bands, which is
the case for Chevrel phase compounds. In order to reproduce
the experimental Tc with the calculated α2Fij , the Coulomb
pseudopotential would need to be μ∗

ij ≈ 0.9. We found two
isotropic superconducting gaps are �1 = 3.93 meV and �2 =
3.59 meV. Earlier tunneling spectroscopy had � = 2.4 meV
[57]; more recent experiment shows �1 = 3.1 meV and �2 =
1.4 meV [13]. The large gap from our calculation is reason-
able, but the overestimation of the smaller gap is significant.
This discrepancy may arise from an exaggeration of α2F from

2 4 6 8 10 12 14 16 18 20
T (K)

0

1

2

3

4

 Δ
0 (m

eV
)

Lower band
Higher band

FIG. 13. Calculated superconducting gaps as function of
temperature.

the DFPT calculations. Anisotropic calculations based on α2F

from DFPT also overestimate Tc for multiband superconduc-
tors such as MgB2 [58] and Ca-intercalated bilayer graphene
[59].

Earlier interest in Chevrel phase superconductors stemmed
from their very high upper critical field Hc2, which can be
related to coherence length ξ0 via Hc2 ∝ 1/ξ 2

0 . Indeed, a
very short coherence length (20 Å) has been reported based
on magnetic measurements [60]. We can estimate coherence
length within BCS theory via the superconducting gap and
the Fermi velocity ξ0 = h̄vF

π�
. We calculated the Fermi veloc-

ities for two bands based on the DFT band structure, and
they are renormalized by the electron-phonon coupling as
v∗i

F = vi
F /(1 + ∑

j λji ). For the lower band v∗lb
F = 1.09 eV Å,

ξ ∗lb
0 = 173 Å and for the higher band v∗hb

F = 0.85 eV Å,
ξ ∗hb

0 = 136 Å. The calculated coherence length is about one
order of magnitude larger than the those reported in experi-
ment. This is not necessarily a contradiction with experiment,
Chevrel phase superconductors are known to be found in
the dirty limit [32,61], which implies measured coherence
length is not an intrinsic property of pure crystal. Previously,
the mean-free path l was estimated to be about 4 Å [62].
ξ = √

l × ξ ∗ gives a coherence length about 25 Å, which is
very close to reported experimental number 20 Å.

We now extend the calculations to the other Chevrel phase
compounds, assuming the electron-phonon matrix elements
gυ

ij (k, p) take on values of those of PbMo6S8, but using
the material-specific electronic band structures. Five Chevrel
phase compounds were studied, and they can be put into two
categories: M2+Mo6S8 and M3+Mo6S8, corresponding to two
distinct doping levels for the Mo6X8 units. It is established
that Yb, Sn, and Pb belong to the first type and Y and La
belong to the second type [61]. As shown in Table IV, the
main difference between those two types is the occupation of
lower band around Fermi level. For M2+Mo6S8, occupation of
the lower band is incomplete, so there still is large DOS at the
Fermi level. For M3+Mo6S8, the occupation of the lower band
is close to full and the occupation of higher band is close to
half. As a result, the lower band has very little contribution
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TABLE IV. Experimental and calculated values of Tc, lattice constants, and the DOS for five Chevrel phase compounds. 1 and 2 label the
lower and the higher band. Experimental data are from Refs. [61,63].

Expt. Tc Calc. Tc Expt. a (Å) Calc. a (Å) N1(0) N2(0) N (0)tot

PbMo6S8 15.0 18.8 6.55 6.55 5.66 5.10 10.78
SnMo6S8 13.0 17.2 6.52 6.52 6.12 4.30 10.42
YbMo6S8 8.8 16.2 6.50 6.49 3.52 6.74 10.26
LaMo6S8 7.1 11.0 6.51 6.52 0.94 6.60 7.54
YMo6S8 3.0 7.6 6.45 6.46 0.28 5.58 5.96

to the DOS at the Fermi level, and one finds effectively a
single-band situation.

As shown in Table IV, our calculations reproduce the ex-
perimental trends across material family very well. The lattice
constants are quantitatively reproduced as is the variation of
the transition temperatures. The calculated transition temper-
atures correlate with the total density of state at the Fermi
level. This correlation can also explain that PbMo6S8 has the
highest Tc in Chevrel phase compounds since Pb2+ has largest
ionic radius in the family of M2+Mo6S8 compounds. Our
calculation overestimates the absolute transition temperatures,
with the overestimation being larger for the lower Tc values.
A more detailed study of electron-phonon coupling across the
entire material family is an important topic for future research.

To further address the question of which phonon modes
are most important for superconductivity, we calculate the
functional derivative of Tc with respect to α2Fij (ω) following
the scheme invented by Bergmann and Rainer [64], and later
extended to two-band systems by Mitrović [65]. The interband
spectral functions are not independent: α2Fij (ω)/α2Fji (ω) =
Nj (0)/Ni (0). Only their combination as expressed through
the off-diagonal spectral function defined in Eq. (18) is mean-
ingful [66]:

α2Fod (ω) = Ni (0)α2Fij (ω) + Nj (0)α2Fji (ω)

Ni (0) + Nj (0)
. (18)

Functional derivatives of relevant quantities are shown in
Fig. 14. Since the three α2Fij are not very different, it is
expected that their functional derivatives show similar fea-
tures. At low frequencies, the functional derivatives increase
linearly with frequency, and they reach a maximum at about
12 meV. This number is close to earlier suggestions based on
the comparison of low-frequency phonons in PbMo6S8 and
PbMo6Se8 [41–43].

As shown in Sec. II, Jahn-Teller active intramolecular
modes are found at much higher frequencies than 12 meV.
The Bergmann-Rainer analysis shows their relevance to su-
perconductivity is eclipsed by modes at lower frequencies.
Combined with the fact that phonons from 11 to 17 meV have
the most important effect on the normal-state spectrum, it is
clear that phonon modes in this frequency range are the drivers
of superconductivity in Chevrel phase compounds.

This finding is significant because intermolecular phonon
modes are generally thought to not be relevant for
superconductivity because low-frequency phonon modes are
less pertinent for superconductivity than the high-frequency
ones [67]. As mentioned in Sec. I, superconductivity in
faced-centered-cubic X3C60 is thought to mainly arise from

intramolecular vibrational modes [2,3]. On the other hand,
Peierls couplings are frequently discussed in the context of
metal-insulator transitions in low-dimensional materials. In
particular, it has been shown for one-dimensional organic
conductors, the Peierls instability suppresses superconductiv-
ity at lower temperatures [68–70]. Our work shows that the
Peierls coupling is important for superconductivity in three-
dimensional (3D) crystals such as Chevrel phase compounds.

VI. CONCLUSION

We studied intramolecular and intermolecular interactions
in Chevrel phase compounds, using PbMo6S8 as a model
compound. Band structure calculations revealed two bands
around the Fermi level which originate from two Eg molecular
orbitals and are about 0.7 eV wide. Constrained random phase
approximation calculations estimated an onsite Hubbard U

value of U = 0.28 eV and a value of Hund’s exchange
J = 0.04 eV. Moreover, quantum chemistry calculations of
isolated molecules were carried out to parametrize the Jahn-
Teller effect in Mo6X8 molecules. The Jahn-Teller stability
energy is EJT = 0.18 meV, which is smaller than the band ki-
netic energy and intramolecular Coulomb interaction values,
but larger than the Hund’s exchange. This energetic ordering
is consistent with a metallic ground state. If the band kinetic
energy can be reduced via methods like chemical intercalation
to the extent that materials are in the strongly correlated
regime, the ground state could be a nonmagnetic insulator

0 20 30 1 0 40
ω (meV)

0

0.5

1

1.5

2

2.5

δT
c / 

δα
2 F 

α2Ftotal

δTc / δα2F11

δTc / δα2F22

δTc/ δα2Fod

FIG. 14. Total electron-phonon spectral function, and functional
derivative of Tc with respect to band-resolved spectral function. 1 and
2 label the lower and higher band.
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because molecular Jahn-Teller effect suppresses Hund’s cou-
pling [71].

Density functional perturbation theory calculations with
Wannier interpolations yield very strong electron-phonon cou-
pling values, with λtot = 2.3. Visible modifications to the
electronic bands near the Fermi level can be found in our
calculated ARPES spectra. Band-resolved electron-phonon
spectral functions reveal that the largest couplings are due to
phonon modes in the frequency range from 11 to 17 meV.
Phonon modes in this frequency range show the characteris-
tics of Peierls-active modes.

Superconductivity was studied by two-band Eliash-
berg equations, with band-resolved electron-phonon spectral
functions. Superconducting properties, Tc, and the larger
superconducting gap are all in reasonable agreement with
experiments. Our current theory overestimates the smaller
superconducting gap. A Bergmann-Rainer analysis revealed
that the most important phonon modes for superconductivity
have frequencies around 12 meV, which is the spectral loca-
tion of the largest electron-phonon coupling in PbMo6S8. To

conclude, our work showcases the importance of intermolec-
ular couplings for collective electronic behavior in molecular
solids by illustrating a vital aspect that is overlooked in the
standard molecular crystal model [72]. Internal Jahn-Teller
active modes, which should be important for ground-state
magnetic properties in the strongly correlated regime, are
not responsible for superconductivity in Chevrel phase com-
pounds.
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