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Recently published discoveries of acoustic- and optical-mode inversion in the phonon spectrum of certain
metals became the first realistic example of noninteracting topological bosonic excitations in existing materials.
However, the observable physical and technological use of such topological phonon phases remained unclear.
In this paper, we provide strong theoretical and numerical evidence that for a class of metallic compounds
(known as triple-point topological metals), the points in the phonon spectrum, at which three (two optical and one
acoustic) phonon modes (bands) cross, represent a well-defined topological material phase, in which the hosting
metals have very strong thermoelectric response. The triple-point bosonic collective excitations appearing due
to these topological phonon band-crossing points significantly suppress the lattice thermal conductivity, making
such metals phonon glasslike. At the same time, the topological triple-point and Weyl fermionic quasiparticle
excitations present in these metals yield good electrical transport (electron crystal) and cause a local enhancement
in the electronic density of states near the Fermi level, which considerably improves the thermopower. This
combination of phonon glass and electron crystal is the key for high thermoelectric performance in metals. We
call these materials topological thermoelectric metals and propose several compounds for this phase (TaSb and
TaBi). We hope that this work will lead researchers in physics and materials science to the detailed study of
topological phonon phases in electronic materials, and the possibility of these phases to introduce more efficient
use of thermoelectric materials in many everyday technological applications.
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I. INTRODUCTION

By now, an almost complete classification of possible topo-
logical fermionic excitations in noninteracting systems has
been constructed [1,2] and material examples hosting many
of these classified phases are ubiquitous. This classification
includes the so-called triple-point metals [3–7], in which a
symmetry-protected crossing of three bands occurs close to
the Fermi level, resulting in topological fermionic excitations.
Here we claim that electronic crystalline compounds also have
topologically protected bosonic excitations that result in non-
standard thermoelectric properties of the hosting materials.

Topological bosonic modes were proposed and realized
in classical mechanical systems [8–10], where oscillations of
pendulums are purely classical, but realize the same physics,
as some quantum electronic systems do [11,12]. Another
realization of topological bosonic states came from experi-
ments on photonic crystals [13–20], providing a realization
of Dirac, Weyl, and nodal line phases of bosons in a bosonic
system. Several very recent works described the realization
of topological bosonic modes in electronic systems [21–23].
For example, the appearance of a bosonic triple-point analog
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of a triple-point fermion in the phonon spectrum of several
existing compounds is discussed in Ref. [22]. Phononic Weyl
points were also reported in these metallic materials. Nonethe-
less, unlike the observable effects of topological fermionic
excitations, no observable physical effect of these topological
bosonic excitations was predicted.

The topological character of bosonic (phononic) Weyl
points can be easily proven following the direct analogy with
fermionic Weyl points. In fact, not only the methodology of
computing chiralities of electronic Weyl points can be used for
their phonon analogues, but even the same, already developed
software for fermionic topological excitations [24,25] reveals
the topology in this case. However, the topological origin of
the triple point in the phonon spectrum is more complicated
to capture.

Here we provide the proof of the topological nature of a
triple-point phonon. We add several metals to the compounds
described in Ref. [22]. Most importantly, we provide the
topology-mediated observable physical effect, proving that
the presence of triple-point phonons makes these topological
metals the most efficient thermoelectric metals of those known
to date. We show in detail that the enhanced thermoelectric
response is driven by the topological band crossings present
in the phonon spectrum.

In this work, we investigated the electronic and vibra-
tional properties of nine compounds from TaX and NbX
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FIG. 1. (a) Crystal structure of TaSb compound in WC-type
P 6̄m2 space group. Ta atoms (maroon) occupy the (2/3, 0.0, 2/3)
site, and Sb atoms (golden) occupy the (0.0, 1/2, 0.0) site. The unit
cell contains one Ta and one Sb atom. (b) Brillouin zone (BZ) of
TaSb.

(X = N, P, As, Sb, Bi) families, considering all of them to
have the tungsten carbide (WC)-type crystal structure (space
group 187). The lattice parameters, electronic band structures,
and phonon band structures of all these compounds are given
in the Supplemental Material (SM) [26]. Our calculations
reveal that TaP, TaAs, TaSb, TaBi, NbP, NbSb, and NbBi com-
pounds exhibit triple-point and Weyl fermionic excitations,
whereas, TaN and NbN compounds only have triple points in
their electronic spectrum, as shown in the SM [26].

The phonon structure of all these compounds is similar,
except for TaSb and TaBi compounds, in which an optical and
acoustic phonon mode inversion takes place in the phonon
spectrum. In the electronic spectrum, a similar band inversion
between occupied and unoccupied states is a signature of the
nontrivial topology. The same is true for crossings of optical
and acoustic phonon modes, as we prove below. We will show
that the presence of such topologically protected phonon
mode crossings (i.e., triple-point phonons) significantly
suppresses the lattice thermal conductivity, and thereby
enhances the thermoelectric performance of these special
topological metals.

In the following, we choose the compound TaSb as a
prototype for the detailed illustration of topological features
in the electronic and vibrational properties. The lowest energy
crystal structure of TaSb is shown in Fig. 1. Our calculations
indicate that this structure is stable at 0 K and at room
temperature (see SM [26]). This paper is organized as fol-
lows: After the Introduction, we demonstrate the topological
nature of electronic properties in Sec. II, and then we discuss
the topological nature of phonons in Sec. III. Section IV
deals with the thermoelectric response of triple-point metals,
which is followed by a Summary section. All the theoretical
derivations together with numerical details are presented in
the Appendix.

II. ELECTRONIC BAND STRUCTURE OF TaSb

The electronic band structure of TaSb, calculated along
the high symmetry directions of the Brillouin zone (BZ)
with spin-orbit coupling (SOC), is shown in Fig. 2(d). Fig-
ures 2(a)–2(b) represent the Sb and Ta orbitals projected fat
bands calculated in absence of SOC. Figure 2(a) indicates
that Sb–5py and Sb–5pz orbitals compose only the valence
band states near the Fermi level, whereas the Ta-3d orbitals
predominantly contribute to both the conduction and the
valence bands [see Fig. 2(b)]. One can notice the presence

of two evenly dispersed gapless points near the Fermi level,
marked by magenta circles in Fig. 2(a), along the M − K and
K − � directions. A further analysis of the electronic band
structure near K-point reveals that these gapless points belong
to a Dirac nodal line centered at the K-point. This Dirac nodal
line primarily appears due to the inverted band ordering of
Ta–dx2−y2 and Ta–dyz+zx orbitals near K-point [see Fig. 2(b)].
Additionally, the inverted band ordering of multiple Ta–d

orbitals along the � − A direction yields another fourfold de-
generate gapless nodal line (marked by a magenta rectangle).
This nodal line is protected by the C3v rotational symmetry
of the crystal and it is composed of Ta–dz2 , dx2−y2 , dzx , dxy

orbitals.
In the presence of SOC, the spin degeneracy of electronic

bands is lost except at the time-reversal-invariant-momenta
(TRIM) points. The Dirac nodal line surrounding the K-point
disappears and an energy gap opens along the M − K −
� path [Fig. 2(d)]. The SOC-induced energy gap is about
∼ 0.18 eV at this point, due to the large SOC of Ta and Sb
atoms. A careful analysis of the bands away from the high-
symmetry direction manifests that the gapless Dirac nodal
line breaks into pairs of gapless Weyl points located at the
same energy near the K-point. These pairs of Weyl points
share opposite topological charge and they feature a source
and a sink of Berry curvature in momentum space. These
Weyl points are of type-I character and they have already been
discovered in experiments [27–29]. Although SOC breaks the
Dirac nodal line into type-I Weyl points, it does not destroy the
gapless nodal line along � − A completely. However, SOC
partially lifts the degeneracy of the gapless nodal line from
fourfold to twofold. It is noteworthy that the gapless nodal line
lies exactly at the Fermi level. Two triply degenerate gapless
nodal points (TP1 and TP2) appear at the ends of the nodal
line as depicted in Fig. 2(d). These gapless points, known
as triple points, emerge at the touching point of three bands
(two valence and one conduction band) near the Fermi level
as shown in the inset of Fig. 2(d) and are protected by the
C3v rotational symmetry and vertical mirror symmetries of the
crystal [3]. The exact location of the triple points along � − A

path are: TP1 (0, 0, 0.298 2π
c

) and TP2 (0, 0, 0.398 2π
c

).
The existence of three-component fermions has been re-

cently confirmed by angle-resolved photoemission spectro-
scopic (ARPES) measurements on MoP crystals [7]. The
work of Ref. [3] predicted the existence of two topologically
distinct types of triple-point metals (type A and type B). These
two types can be easily classified by looking at the crystal
symmetry of a system and the total number of accompanying
nodal lines. The conditions for the appearance of the two types
of triple-point fermions, the topological differences between
them, and a list of hosting space groups are given in detail
in Ref. [3]. All the TaX and NbX (X = P, N, As) family
compounds having P 6̄m2 space group host topologically
protected type-A triple-point fermions, connected by a single
nodal line (see SM [26]).

Although there is no clear signature of Weyl points near the
gapless nodal line and the triple points in Fig. 2(d), previous
works reported the presence of type-II Weyl points near such
gapless nodal lines [3,4]. Therefore, to pin down the location
and chirality of all Weyl points, we perform a comprehensive
analysis of the electronic structure near the Fermi level. We
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FIG. 2. (a) and (b) represent the electronic band structure calculated without inclusion of SOC. Projection of the Sb-p atomic orbitals is
shown in panel (a) while projection of Ta-d orbitals is shown in panel (b). The magenta circles mark the location of points that belong to a
Dirac nodal line centered at K-point, and magenta rectangle depicts the location of gapless nodal line present along the � − A path. Panel
(d) represents the electronic band structure calculated with SOC. The inset of panel (d) shows the enlarged view of the gapless nodal line.
The locations of triple points (TP1 and TP2) at the end of the gapless nodal line are marked by black circles. For better visibility, bands
near the Fermi level are plotted in different colors. Location of all the Weyl points present in the Brillouin zone are shown in panel (e). (For
their exact locations, see Table I). Red (blue) spheres denote the Weyl points having positive (negative) chirality. The green lines mark the
location of the gapless nodal line. Six pairs of Weyl points that appear in the shaded kx − ky plane are of type I, while the other six pairs of
Weyl points that surround the gapless nodal line are of type II. Panels (c) and (f) show the Fermi surface calculated at E − EF = 0.0 eV and
E − EF = −0.024 eV, respectively. One can observe the formation of type-II Weyl points as touching points of electron and hole pockets
along the � − A path.

evaluate the energy gap (�E) between the N th and (N + 1)th
bands in the 3D BZ; i.e., �E = E(N + 1) − E(N ). Here, N

is the total number of occupied bands. Such obtained gapless
points mark the location of Weyl points, and the obtained gap-
less line is a representative of the nodal line in BZ. We further
integrate the Berry curvature in a small sphere enclosing each
individual Weyl point, and thus we calculate the topological
charge of each Weyl point [24,25]. Figure 2(e) shows the
location and topological charge of all Weyl points. We observe
that six pairs of type-I Weyl points appear near kz = 0 plane
at E − EF = −7 meV energy. The exact location of a pair
of Weyl points close to the K-point is (according to the tight-
binding calculations): (0.486 2π

a
, −0.243 2π

b
, ± 0.0421 2π

c
). We

also observe two gapless nodal lines (marked by green color)

TABLE I. Coordinates of Weyl points and triple points (TP)
present in TaSb.

Coordinates

Triple-points (TP) TP1
(
0.0, 0.0, ±0.298 2π

c

)
TP2

(
0.0, 0.0, ±0.398 2π

c

)
Weyl-points (type I) near K

(
0.486 2π

a
, −0.243 2π

b
, ± 0.0421 2π

c

)
Weyl-points (type II) near TP

( ± 0.034 2π

a
, ±0.034 2π

b
, ± 0.357 2π

c

)
( ± 0.06 2π

a
, 0.00, ± 0.357 2π

c

)

connecting the triple points TP1 and TP2 in the full BZ.
Surprisingly, we discover three additional pairs of Weyl points
located near each gapless nodal line. These Weyl points ap-
pear at kz = ±0.357 ( 2π

c
) near E − EF = −24 meV energy.

The energy band dispersion near these Weyl points suggests
that these Weyl points have type-II character [30]. The type-II
Weyl fermions appear at the touching points of the electron
and hole pockets in reciprocal space, which happens due to
the tilted linear dispersion of spin nondegenerate bands near
Fermi level.

We illustrate the evolution of the Fermi surface calculated
at different energy values in Figs. 2(c) and 2(f). One can evi-
dently observe the formation of both type-I and type-II Weyl
points in the Fermi-surface plots. The touching of electron and
hole pockets forming six isolated type-II Weyl points can be
noticed in Fig. 2(f).

The presence of Weyl points in the bulk suggests the
existence of ARPES-observable open Fermi arcs at the surface
of Weyl semimetals [31]. Therefore, we study the topological
features of surface states by means of the tight-binding model
constructed using the maximally localized Wannier functions
method [32,33], using WANNIERTOOLS software [25]. The re-
sults for different terminations of (100) and (001) surfaces are
presented in the SM [26]. The positive and the negative Weyl
points project themselves onto each other on the (001) surface,
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thus making the Fermi arc invisible on the (001) surface of
BZ. However, we do observe open Fermi arcs connecting
opposite Weyl points on the (100) surface, where the projected
Weyl points do not neutralize their nontrivial features (see
SM [26]). Since the Weyl points are well dispersed on the
(100) surface, the connecting Fermi arcs are quite long in
momentum space which makes them accessible in ARPES
measurements.

III. TOPOLOGICAL PHONONS IN TaSb

All the considered compounds have two atoms per primi-
tive unit cell, hence having six phonon bands (three acoustic
and three optical) in the spectrum. It is shown in Appendix A
that a phonon triple point appears in those compounds, where
the masses of atoms forming the material satisfy the following
condition for phonon mode inversion: The frequency gap �

between the acoustic and optical phonon bands at the A-point
of BZ has to become negative for these bands to invert:

� ∝ √
β‖ −

√
β⊥

m

M
. (1)

Here, β‖ and β⊥ are the in-plane and out-of-plane second-
order interatomic force constants between the atoms of masses
m and M (m < M), respectively.

This relationship is verified by our calculations: � de-
creases systematically with the increase of m/M ratio.
For TaN (m/M = 0.0774), TaP (m/M = 0.1711), and TaAs
(m/M = 0.414) compounds, the obtained � values are 200.5,
115.1, and 14.4 cm−1, respectively, but for TaSb (m/M =
0.6731) and TaBi (m/M = 0.8658) compounds � become
negative (−16.7 and −27.8 cm−1, correspondingly) indicat-
ing the inversion of phonon modes in the BZ. In addition
to increasing m/M ratio, β⊥ > β‖ condition is essential to
observe the phonon mode-inversion in the BZ. Results of Li
et al. [22] further corroborate the aforementioned relationship
(see Appendix A).

We thus conclude that while the electronic properties of
TaSb in P 6̄m2 group are similar to those of other triple-point
metals of TaX and NbX family (X = N, P, As), the phonon
spectrum of TaSb and TaBi compounds makes them distinct
from the other triple-point metals in the considered material
set. In particular, we observe that one acoustic band (No..
3) and two degenerate optical bands (No. 4 and No. 5) in
TaSb and TaBi compounds intersect each other along the �-A
path forming two triply degenerate phonon points (TDP) as
shown in Fig. 3(a) for TaSb. The atomic vibrations corre-
sponding to these phonon bands are illustrated in Figs. 3(b)–
3(d). The TDPs are located at frequency ≈145 cm−1 and
at q = (0, 0,±0.428). The phonon mode inversion can be
noticed above the TDP (along kz), where two degenerate
optical phonon bands (No. iv and No. v) unusually appear
at lower frequencies than the acoustic phonon band (No. iii).
The phonon mode inversion, at the high-symmetry point A(0,
0, ±π

c
), is indicative of the nontrivial topological nature of

the vibrational properties in TaSb compound. Despite the
isoelectronic similarity of all the considered compounds, such
phonon band-inversion along �-A path present only in TaSb
and TaBi, is due to the fact that atoms of relatively similar
masses constitute these compounds.

Topological classification of noninteracting fermionic ex-
citations is built from the symmetry analysis of tight-binding
models. Analogously, topological classification of phonons
(bosonic excitations) can be built from the analysis of dynam-
ical matrices (a good, although not fully complete in terms of
various symmetry constraints, exposition of this approach is
presented for mechanical vibrations in Ref. [9]).

Starting from this point of view, let us now prove that the
TDP indeed has a topological origin, for which a topological
invariant can be defined (see Appendix B for more details).
To capture the presence of fermionic triple points in the band
structure, two triple points are enclosed into a surface in the
BZ. Computation of the Wilson loop of lower-lying bands
on this surface gives a robust topological signature of triple
fermionic points in metals [3]. Although TDPs also appear
in pairs in the BZ, unlike the case of Weyl points, a direct
analogy to the fermionic approach to obtain the topological
invariant does not work for TDPs.

However, we can still find the path to define a topological
invariant if we keep in mind that type-A triple points in
electronic band structure are connected by a single nodal line,
which is topologically trivial, having the 0 value of the Berry
phase (φB) of occupied bands on any circular path enclosing
it. Nonetheless, the hidden topology is revealed by applying
the Zeeman field [3], which splits the two triple points into
four Weyl points.

We apply a similar trick here to capture the topology of
TDPs. Instead of the Hamiltonian in the electronic case, we
deal with the dynamical matrix, the eigenvalues of which,
similar to the type-A triple point electronic Hamiltonian case,
connect the two TDPs by a degenerate line (this line in
Fig. 3(a) is formed by the degenerate phonon bands iv and
v). The degeneracy between phonon bands 4 and 5, as well
as between bands iv and v, occurs due to the presence of
C3v symmetry in the considered crystal lattice, because the
xx and yy force constants transform like x and y coordi-
nates. The latter transform in the same way as px and py

orbitals that in the C3v group form a two-dimensional irre-
ducible representation E, thus enforcing the degeneracy seen
in Fig. 4(a). The degeneracy line (not a loop, but an open line)
in the BZ of bands iv and v is illustrated in Fig. 4(d).

Analogously to the nodal line in type-A electronic triple
points, this line of degenerate modes iv and v [on the right
side of the crossing point in Fig. 3(a)] carries 0 Berry phase
(φB) computed for the lower-lying phonon bands around the
path S1 of Fig. 4(d). To reveal the topology of the TDP, we
use the trick similar to Zeeman splitting mentioned above. To
do that, we modify the entries in the dynamical matrix in a
way that corresponds to changing the semiclassically under-
stood “spring constants” connecting atoms along the x and
in the y directions (that can be related to the corresponding
interatomic bond strength). This modification splits the de-
generacy of the phonon nodal line, as illustrated in Figs. 4(b)
and 4(c).

It turns out that such a splitting gaps the phonon bands
4(iv) and 5(v) along the (�-A) direction of the BZ. However,
away from this line we still see the nodal loops formed by the
inverted bands iv and v. Computation of φB of the lower-lying
phonon bands along the path S2 linked with this degeneracy
loop gives φB = π , thus proving the topological nature of the
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Band 3 (iii) Band 4 (iv)
(b) (c) (d)

Band 5 (v)
(a)

i, ii
iv, v
iii

FIG. 3. (a) Part of the phonon spectrum of TaSb. The triply degenerate point (TDP), at which phonon bands 3(iii), 4(iv), and 5(v) meet is the
topologically protected triple point of phonons (another such point is located in the other direction in the BZ on the same C3v-symmetric line).
Panels (b)–(d) explicitly illustrate the atomic vibrations corresponding to the overlapping phonon modes 3(iii), 4(iv), and 5(v), correspondingly.
The enumeration of phonon bands is made with numbers (1..6) and (i..vi) “before” and “after” the crossing point, to stress the change in phonon
band ordering by using different number styles for ordinary and inverted phonon band orderings.

TDPs, just like the splitting of electronic triple points into four
Weyl points by the Zeeman field proves the topological origin
of type-A fermionic triple-points.

Despite this proof of the topological origin of TDPs, the
more important question is the observable physical conse-
quences, associated with these topological phonon modes.
Although our calculations of the surface phonon spectrum
of TaSb reveal topological surface modes, they are not really
observable, being heavily intermixed with the bulk modes (see
SM [26]). The work of Ref. [22] demonstrated evidence of
similar nontrivial surface modes (open Fermi arcs) in TiS and
HfTe compounds that also host TDPs in their phonon spectra.
However, similar to the case of TaSb, the phonon surface

modes in these compounds are also buried in the projection
of bulk phonon modes. For this reason, we explore another
possible signature of nontrivial topological excitations, that
is, transport properties. Of these properties, the one closely
related to phonons (although with a large contribution from
electrons as well), is the thermal transport [34]. For this
reason, we study the effect of the phonon TDPs on the
thermoelectric properties of hosting metals, and find them to
be among the most efficient metallic thermoelectrics.

IV. ENHANCED THERMOELECTRIC RESPONSE

The performance of thermoelectric materials at tem-
perature T is usually determined by the figure of merit,

s1 s2 s3

 0

 1

 2

 3

 4

 5

A A

F
re

qu
en

cy
 (

T
H

z)

1

2
3

4
5

i,ii
iv,v

ii iiii
iv, v
i, ii

 0

 1

 2

 3

 4

 5

A A

F
re

qu
en

cy
 (

T
H

z)

1

2 3

4
5

i
ii
v

iiiii
v
i
ii, iv

 0

 1

 2

 3

 4

 5

A A

F
re

qu
en

cy
 (

T
H

z)

1

2 3

45

i,ii
iv
v

iiiiii
v
i, ii
iv

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a) The phonon spectrum of TaSb along the C3v-symmetric line of the BZ. Doubly degenerate phonon bands (4,5) and (iv,v) can
be seen. (b) The phonon spectrum of TaSb with the xx and yy force constants in the dynamical matrix made unequal for Ta. The degeneracy
of (4,5) and (iv, v) is lifted. (c) The phonon spectrum of TaSb with the xx and yy force constants in the dynamical matrix made unequal for
Sb. The degeneracy of (4,5) and (iv, v) is lifted. (d) The nontopological open nodal line formed in the BZ by bands iv and v of panel (a). The
loop S1 encircles this line, but φB (S1) = 0. (e) The closed nodal loop formed by bands iv and v in the BZ for the case of panel (b) away from
the �-A line. The contour S2 links with this loop and φB (S2) = π . (f) The closed nodal loop formed by bands iv and v in the BZ for the case
of panel (c). For a contour S3 linked with this loop, φB (S3) = π .

114204-5



SINGH, WU, YUE, ROMERO, AND SOLUYANOV PHYSICAL REVIEW MATERIALS 2, 114204 (2018)

FIG. 5. (a) Variation of different components of lattice thermal
conductivity tensor (κph) against temperature T for TaN and TaSb
along x, y, and z directions of crystal. (b) Comparison of maximum
zT (red) and Seebeck coefficients (blue) obtained for electron doping
at 300 K (circles) and 800 K (squares).

zT = S2σ
κel+κph

T , where quantities S and σ are Seebeck co-
efficient and electrical conductivity, whereas, κel and κph

are the electronic and phononic (lattice) contributions to the
thermal conductivity of material. A combination of large S

and large σ together with a small κ (=κel + κph) is required
to achieve large zT . In other words, a good thermoelectric
is a good conductor of charge carriers (i.e., electron-crystal)
and a bad conductor of phonons (i.e., phonon-glass). Thus,
in case of metals hosting coexisting topological electron and
phonon excitations, we expect a significant benefit toward the
enhancement of zT .

First, the presence of topologically protected phonon band
crossings considerably suppresses the lattice thermal conduc-
tivity due to the increased phonon scattering centers (see
SM [26] for more details). The κph (and the phonon mean
free path) in TaSb is almost two orders in magnitude smaller
compared to that of in TaN, which is a metal without TDPs
(Fig. 5 and more details in the SM [26]). According to the
Wiedemann-Franz law, κel = L0T σ , where L0 is the Lorenz
number and τ is the electron-phonon relaxation time [35].
Since σ/τ ∼ 1020 1/� ms at low-doping concentrations for
all the studied metals, the κel (which mainly governs κ at
high T ) is also in the same order of magnitude for all TaX
compounds. Therefore, reduction in κph (which dominates κ

at low T ) causes a net decrease in κ of TaSb and TaBi (see
SM [26]).

Second, there is an increase in the Seebeck coefficient (S)
of TaSb and TaBi. In particular, we notice a local enhancement
in the electronic density of states (DOS) near the Fermi
level as we go from TaN to TaBi. This occurs due to the
flattening of electronic bands at the Fermi level in TaSb and
TaBi compounds (see SM [26]). According to the Mahan-Sofo
theory [36], such a situation yields an increase in S, which in
turn improves zT . In general, the sharper is the local increase
in DOS at the Fermi level, the larger is the enhancement in S.
Decrease in κph and an increase in S combine to improve the
overall thermoelectric efficiency zT .

In Fig. 5, we compare the zT of all the TaX family
compounds considered in this work, as well as one of the

previously predicted TDP compounds HfTe [22]. Comparison
of other thermoelectric quantities is presented in Appendix C.
Although the illustrated zT of these compounds is smaller
than that of the best-known narrow band gap semiconduc-
tor thermoelectrics (having zT ≈ 1), it is among the best
known thermoelectric metals and performs much better com-
pared to nontopological metals, for which zT ranges from
0.0001−0.001 [37–39]. Notably, we find that HfTe, a triple-
point metal hosting TDPs predicted in Ref. [22], exhibits con-
siderably large zT (maximum zT = 0.35 at 300 K and 0.42 at
800 K for electron doping case) compared to that of TaSb and
TaBi compounds due to its relatively large Seebeck coefficient
(maximum S = 129 μV/K at 300 K and 149 μV/K at 800 K
for electron doping). The results that we obtain here for TaSb,
TaBi, and HfTe triple-point metals put these materials in the
list of the best thermoelectric metals known to date, along with
a lower symmetry (space group #109) TaAs [40] and recently
reported HgTe [41].

V. SUMMARY

In summary, our work provides an illustration of the
use of topological phases of phonons in existing electronic
compounds and materials TaSb and TaBi, which combine
electronic and bosonic (phononic) topological phases. The
associated topological excitations—fermions and phonons—
give rise to enhanced thermopower and thermoelectric re-
sponse in considered metals. The topological phonon modes
considerably suppress the lattice thermal conductivity without
disrupting the electronic transport in the bulk crystal, whereas
the topological electronic bands near the Fermi level give rise
to a local increase in the DOS at the Fermi level causing
an increment in the thermopower. Having illustrated the ap-
proach to prove the topological phase of phonon spectrum and
the role of nontrivial phonon modes on the thermal transport
properties, we hope this work will motivate further studies of
the effects of topologically nontrivial phonons on the mate-
rial properties, including thin films and metal/semiconductor
heterostructures, where the effects of topology and phonon
scattering can be more pronounced. Since the topological
nontriviality of bulk phonon modes guarantees the existence
of gapless phonon surface states, which highly overlap with
the bulk phonons (in the studied materials) providing more
phonon scattering channels and causing further reduction of
the lattice thermal conductivity in 2D, it would be inter-
esting to investigate the properties of the topological ther-
moelectric metals in 2D as well as in specially designed
metal/semiconductor heterostructures.
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APPENDIX A: PHONONS BAND-INVERSION IN TaSb

We observe that one acoustic branch (No. 3) and two
degenerate optical branches (No. 4 and No. 5) intersect
each other along the � − A path, forming a gapless triple-
degenerate-point (TDP) as marked in Fig. 3(a). To rule out
the possibility of artifacts in the plotting, we analyze the
polarization of each phonon eigenvector along the � − A path
calculated using a very dense q mesh. Our results remarkably
confirm that the phonon band crossing at TDP is real. The
TDP is located at frequency 145 cm−1 and at (0, 0, 0.428) q

point. It is worth mentioning that this phonon band inversion
along � − A path is missing for the case of other triple-point
metals (except TaBi), even though all triple-point metals share
isoelectronic properties. One main reason of the existence of
phonon band inversion is the fact that the atoms of almost
equal masses constitute the TaSb and TaBi compounds. When
there is a significant difference in the mass of the constituent
atoms, the above-mentioned phonon band crossing does not
take place and a wide frequency gap appears in the phonon
spectrum.

The nature of the atomic vibrations corresponding to each
phonon eigenmode near the TDP is shown in Figs. 3(b)–
3(d). The third phonon band corresponds to the acoustic (in-
phase) vibration of Ta and Sb atoms oscillating in a plane
perpendicular to the x − y plane of cell. On the other hand, the
fourth and fifth phonon bands represent the optical vibrations
(out-of-phase) of Ta and Sb atoms in the x − y plane of cell.
These two optical phonon branches are degenerate along the
� − A path due to the crystal symmetry of TaSb compound.
At a q point below the TDP, the acoustic mode (third band)
has lower frequency than that of the optical modes (4 and
5). However, above the TDP, the acoustic mode unusually
attains higher frequency compared to the frequency of the
optical modes, thus leading to a band inversion in the phonon
spectra along with formation of a triple-degenerate point
along � − A path. Also, the Ta atom oscillates with a larger
amplitude in the inverted acoustic mode (third band). The
TDP is protected by the C3v rotational symmetry of the TaSb
crystal. The excitations near the TDP yield three-component
bosonic quasiparticles in the present system.

The competition of the in-plane and out-of-plane inter-
atomic force constants between the atoms of comparable mass
could be the primary reason of the phonon-band inversion in
TaSb and TaBi compounds. Therefore, we study the vibra-
tional modes of a diatomic system considering a harmonic
approximation for the interatomic potential. Our analysis sug-
gests that the frequency gap (�) between the optical (branch 4
or 5) and acoustic phonon branches (branch 3) at the BZ edge
(0, 0, π

2 ) is

� =
√

2β‖
m

−
√

2β⊥
M

, (A1)

∆

*

*
*

FIG. 6. Normalized phonon frequency gap (�) calculated near
the A-point of BZ for the set of nine compounds reported in Ref. [22].
A negative value of � implies the presence of phonon band inversion.
Only three compounds (marked with asterisk) show negative �.

i.e.,

� ∝ √
β‖ −

√
β⊥

m

M
. (A2)

Here, β‖ and β⊥ are the in-plane and out-of-plane second-
order interatomic force constants between the atoms of mass
m and M (m < M), respectively. We observe that the fre-
quency gap (�) decreases systematically with increase in the
m/M ratio. In addition to increasing m/M ratio, β⊥ > β‖
condition is essential to observe the phonon band inversion
at the BZ edge.

To further test the validity of Eq. (A2) for phonon band
inversion, we apply it on the data reported by Li et al. [22].
Figure 6 shows the calculated � (=√

β‖ − √
β⊥ m

M
) for nine

different compounds using the data from Ref. [22]. Here, we
used normalized � by dividing it by the constant factors.
Used atomic masses are given in the SM [26]. We notice that
only three out of nine compounds can have negative �, and
therefore only these three compounds (TiS, ZrSe, and HfTe)
can host TDP in their phonon spectrum, which is consistent
with the predictions in Ref. [22].

APPENDIX B: THEORETICAL DEMONSTRATION OF
THE NONTRIVIAL TOPOLOGY OF PHONON MODES

IN TaSb

Assuming uα
l,s is the displacement of the sth atom in the

lth unit cell along α (α = x, y, z) direction, the total potential
can be expanded according to uα

l as

� = �0 + 1

2

∑
l,s,α

∑
l′,s ′,β

�l−l′
αβ,ss ′u

α
l,su

β

l′,s ′ + ... (B1)

where the first derivation is zero, due to the equilibrium
state. The second derivation coefficient represents the force
constant, which can be calculated in the first-principle
calculations. There is a very important relation:∑

l′
�l−l′

αβ,ss ′ = 0. (B2)

So, �0
αβ,ss ′ = −∑

l �=0 �l
αβ,ss ′
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1.6×1012

1.4×1012

1.2×1012

1×1012

8×1011

6×1011

4×1011

2×1011

FIG. 7. (a) Maximum of Seebeck coefficient or thermopower, (b) maximum of electrical conductivity (σ/t) obtained at 300 K and 800 K,
(c) maximum power factor at 300 K and 800 K, and (d) the theoretical maximum of zT . Above data is for the electron doping case.

In TaSb system, s = Ta, s ′ = Sb. Under the C3v symmetry,
�0

xx,ss should be the same as �0
yy,ss , which leads to a trivial

nodal line linking two triple points along A − � − A shown
in Figs. 4(a) and 4(d). A trivial nodal line means that the Berry
phase along a close around the nodal line, like S1 in Fig. 4(d),
is zero. To study the topological structure of the nodal line in
the spinless system, we studied two cases by manually modi-
fying the lattice constant. One is that �0

xx,T a−T a �= �0
yy,T a−T a ,

the other is �0
xx,Sb−Sb �= �0

yy,Sb−Sb. The band structure and
the nodal lines are shown in Fig. 4(a) and Figs. 4(d)–4(f),
respectively. It is shown that the trivial nodal line would
deform to a nontrivial nodal line with π Berry phase.

APPENDIX C: COMPARISON OF THERMOELECTRIC
PROPERTIES

In Fig. 7 we compare the maxima of various thermoelectric
properties of TaX obtained for electronic doping case. We
also compare the thermoelectric properties of TaX with two
other similar compounds predicted by Li et al.—HfTe and TiS
[22]. We notice relatively smaller magnitude of thermoelectric
effects for hole doping case (more details in the SM [26]).

APPENDIX D: NUMERICAL DETAILS

Density functional theory-based first-principles calcula-
tions were carried out using the projector augmented-wave

(PAW) method as implemented in the VASP code [42,43]. We
used the PBE exchange-correlation functional as parametrized
by Perdew-Burke-Ernzerhof [44]. The SOC was employed by
a second-variation method implemented in the VASP code.
We considered five valence electrons of Ta (5d36s2) and
five valence electrons of Sb (5s25p3) in the PAW pseudo-
potential. The lattice parameters were optimized until the
Hellmann-Feynman residual forces were less than 10−4 eV/Å
per atom. For convergence of the electronic self-consistent
calculations, a total energy difference criterion was defined
as 10−8 eV. We used 600 eV as kinetic energy cutoff of
the plane-wave basis set and a �-type 10 × 10 × 10 k-point
mesh was employed to optimize the lattice parameters and
the self-energy. The phonon calculations were performed for
a 2 × 2 × 2 supercell. The PHONOPY code [45] was used for
the phonons post-processing. SOC was included in the phonon
calculations. To verify the stability of the TaSb compound at
room temperature, we performed room temperature molecular
dynamics (MD) simulations for more than 9800 fs with a time
step of 1 fs. The SOC was included in the MD simulations.
In MD simulations, we employed a supercell of size 4 ×
4 × 4 to guarantee the decay of interatomic force constants
within the supercell dimensions. The topological charge of the
Weyl points and the surface state spectrum were calculated
using the open-source WANNIERTOOLS code [25]. This code
is based on the iterative Green’s function mechanism and
it performs the postprocessing of the Wannier tight-binding
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model Hamiltonian obtained from the WANNIER90 [46]. We
used Ta s, p, d, and Sb s, p orbitals as the initial projectors for
construction of the Wannier tight-binding Hamiltonian. De-
tails regarding the crystal structure and its stability are given in
the SM [26].

1. Thermal conductivity and anharmonic high-temperature
phonons

To accurately describe the high temperature anharmonicity
of TaSb and TaN, we used ab initio molecular dynamics in
combination with the temperature dependent effective poten-
tial technique (TDEP) [47–49] to extract effective interatomic
force constants at finite temperature. The ab initio molecular
dynamics simulations were carried out using the PAW method
as implemented in VASP [42,43]. The simulation cell was
constructed from a 4 × 4 × 4 repetition of the unit cell (128
atoms). We used a set of seven volumes around equilibrium
and ran molecular dynamics at 300 K using the �-point for
BZ integration and an energy cutoff of 600 eV for about
10 000 time steps to ensure good coverage of the phase
space. The temperature was controlled with a Nose-Hoover
thermostat [50,51]. A 1.0 femtosecond time step was used
in the MD calculations. From the forces obtained from un-
correlated configurations (one every 50 frames), folding into
the unit cell is performed and the temperature dependent of
the harmonic and anharmonic interatomic force constants are
obtained. With this information, we obtain the lattice thermal
conductivity.

For the other topological materials, we have used a
slightly different approach. We have generated a series of 150
different uncorrelated configurations with a Gaussian distri-
bution around a predefined temperature (lower than the Debye

temperature). For each of those configurations, the forces are
calculated from first principles and the same methodology
described in the previous paragraph was followed. We find
a very good convergence of results obtained from 150 un-
correlated configurations and that of obtained from the MD
simulations described in the above paragraph.

2. Details of the thermoelectric properties calculations

We perform the calculation of the thermoelectric properties
such as the thermopower or Seebeck coefficient (S), electrical
conductivity (σ ), the power factor (S2σ/τ ), and the theoretical
maximum figure of merit (zT ). These thermoelectric proper-
ties were obtained using the solution of Boltzmann transport
equations within the constant relaxation time approximation
as implemented in the BoltzTrap code [52,53]. This theory
allows us to calculate the Seebeck coefficient tensor indepen-
dently of the electronic relaxation time (τ ) while the electronic
conductivity is dependent on τ . The code utilizes the rigid
band approximation to change the carrier concentration by
rigidly shifting the chemical potential (μ) into valence or
conduction bands while the effects of temperature on the
electronic bands are neglected. The carrier concentration was
considered from range −1 × 1021 to 1 × 1021 cm−3. The
results obtained within the BoltzTrap code have shown very
good agreement with experimental measurements, specially
for bulk materials [54,55]. The lattice thermal conductivity
evaluated from the TDEP code was used to estimate zT .
The relaxation time (τ ) obtained from the first-principles
calculations (electron-phonon interaction) was found to vary
in the order of 1 ps with increasing temperature. Therefore,
we decided to choose τ = 1 × 10−12 s. However, we observe
negligible changes in zT with varying τ in ps range. This is as
expected for systems with small κph and relatively large κel.
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