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Magnetoresistance of semimetals: The case of antimony
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Large unsaturated magnetoresistance has been recently reported in numerous semimetals. Many of them
have a topologically nontrivial band dispersion, such as Weyl nodes or lines. Here, we show that elemental
antimony displays the largest high-field magnetoresistance among all known semimetals. We present a detailed
study of the angle-dependent magnetoresistance and use a semiclassical framework invoking an anisotropic
mobility tensor to fit the data. A slight deviation from perfect compensation and a modest variation with
magnetic field of the components of the mobility tensor are required to attain perfect fits at arbitrary strength
and orientation of magnetic field in the entire temperature window of study. Our results demonstrate that large
orbital magnetoresistance is an unavoidable consequence of low carrier concentration and the subquadratic
magnetoresistance seen in many semimetals can be attributed to field-dependent mobility, expected whenever
the disorder length scale exceeds the Fermi wavelength.
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I. INTRODUCTION

Detailed studies of magnetoresistance have been carried
out in a large variety of systems ranging from ferromagnetic-
metallic multilayer devices [1], manganite perovskites [2],
and doped semiconductors [3]. The large increase in the resis-
tivity of semimetals, which appears when the magnetic field is
applied perpendicular to the orientation of the electric current,
has been known for a long time [4]. Recently, such a large
orbital magnetoresistance has been observed in many dilute
metals. The list includes three-dimensional Dirac systems
(Cd3As2 [5]), Weyl semimetals (WTe2 [6], NbP [7] or WP2

[8,9], LaBi [10]), but also ‘trivial’ semimetals (LaSb [11],
gray arsenic [12]). Reporting on the large magnetoresistance
in WTe2, Ali et al. [6] contrasted its unsaturated B2 behavior
to the quasilinear and eventually saturating high-field magne-
toresistance of well-known semimetals such as bismuth and
graphite. Soon afterwards, WTe2 was identified as a type-II
Weyl semimetal [13]. During the last three years, the link
between amplitude and the field dependence of magnetore-
sistance and its possible link to nontrivial electronic topology
became a subject of debate and motivated numerous studies.

Here, we present the case of elemental antimony, a
semimetal with high mobility carriers [14,15] and topolog-
ically nontrivial surface states [16]. Its large magnetoresis-
tance, reported by Brandt and collaborators [17] decades
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ago, has escaped the attention of the community explor-
ing high-field large unsaturated magnetoresistance (see, i.e.,
Refs. [5–12,18–21]). It is true that [17] did not scruti-
nize the amplitude of the magnetoresistance, the subject of
the present letter, comparing Sb with other, topological or
trivial, semimetals. The carrier density of Sb is n � p �
5.5 × 1019 cm−3 [23]; it is comparable to WTe2 (n � p �
6.6 × 1019 cm−3 [22]) and two orders of magnitude larger
than bismuth (n � p � 3 × 1017 cm−3 [24]). We show that
in a reasonably clean Sb single crystal, a magnetic field
of 56 T enhances resistivity by a factor of �ρ

ρ0
= 3 × 106.

This is one order of magnitude higher than what was re-
ported in WTe2 [6] and comparable with what was observed
in WP2 [8]. The field dependence of magnetoresistance is
close to (but slightly different from) quadratic. We present
an angle-dependent study, with magnetic field kept perpen-
dicular to the applied current and rotating in three perpen-
dicular crystalline planes (as in the case of bismuth [25]),
and employ a semiclassical picture, based on distinct mo-
bility tensors for electrons and holes, to explain the data.
We show that by assuming slightly imperfect compensation,
one can explain the finite Hall response. Taking into account
a smooth field-induced reduction in mobility allows perfect
fits to the nonquadratic magnetoresistance and the nonlinear
Hall resistivity at the same time. Thus, antimony becomes
the first semimetal whose extremely large magnetoresistance
is totally explained by an extended semiclassical treatment
for any arbitrary amplitude and orientation of magnetic
field.
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The two additional assumptions required to attain perfect
fits bring new insight to the apparent diversity of semimetallic
magnetoresistance. Imperfect compensation caused by 1 part
per million (ppm) of uncontrolled doping is barely noticeable
when there is one hole and one electron per 104 atoms, that
is when carrier density is in the range of 1019 cm−3. But
the same amount of uncontrolled doping has a much stronger
signature when the carrier density is two orders of magnitude
lower. This explains why the high-field magnetoresistance
is close to quadratic in Sb and WTe2 but almost linear in
Bi. The field-induced reduction in mobility can be caused
by a disorder invisible to long-wavelength electrons at zero
field and becomes relevant in the presence of magnetic field.
Electrons with a long wavelength are not efficiently scattered
by neutral or charged defects of atomic size. However, with in-
creasing magnetic field, a subset of spatially-extended defects
smaller than the Fermi wavelength become relevant as scat-
tering centers, because they can interact with electrons with
small momentum along the magnetic field [26]. This provides
a simple but nonuniversal foundation for the field-induced
decrease in mobility leading to the ubiquitous nonquadratic
magnetoresistance.

II. RESULTS

Figure 1(a) presents the reported magnetoresistance of
numerous semimetals at B = 9 T and T = 2 K extracted
from Refs. [7,8,11,12,18,19,21,22,27–33] (see Ref. [34] for
details). The amplitude of field-induced enhancement in resis-
tivity is plotted as a function of zero-field mobility, extracted
from resistivity and carrier density: μ0 = 1

ρ0(n+p)e . Here, e is
the charge of the electron, n and p are the electron and hole
densities, and ρ0 the zero-field resistivity at T = 2 K. One
can see that across more than three orders of magnitude, the
MR of semimetals (topological or not) roughly scales with
their zero-field mobility. The higher the mobility, the larger
the magnetoresistance. However, one can also see that sys-
tematically �ρ

ρ0
is lower than 81〈μ2

0〉, which is what is expected
for 9 T if the mobility was the same unique number relevant
to the two [zero-field conductivity, σ = e(nμe + pμh), and
finite-field magnetoresistance].

Even the most ideally simple semimetal requires more
complexity. Such a system would have a single electronlike
and a single holelike Fermi surface. The two pockets are
isotropic with scalar mobilities of μe and μh. The semiclassic
magnetoresistance of such a system would be �ρ

ρ0
= 〈μ2

m〉B2,
where μm = √

μeμh. Note that the zero-field average mobil-
ity is μ0 = nμe+pμh

(n+p) . The two average mobilities are identical
only when n = p and μe = μh. However, μ0 and μm remain
of the same order of magnitude.

As seen in Fig. 1(a), despite the discovery of numerous
new compounds, the three elemental semimetals (Bi, Sb, and
As) are still those showing the largest magnetoresistance at
9 T. Figure 1(b) compares the field dependence of magne-
toresistance in bismuth, WTe2, and antimony at T = 2 K and
B � 56 T. One can see that it is close to B2 in Sb and WTe2 but
presents a lower exponent (B1.5) and a tendency to saturation
in bismuth. As a consequence, antimony surpasses bismuth
above ≈25 T. Note that the amplitude of magnetoresistance in
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FIG. 1. (a) Magnetoresistance of various semimetals at B = 9 T
and T = 2 K as a function of the mobility μ0 = 1

ρ0 (n+p)e where e

is the charge of the electron, n and p are the electron and hole
density, and ρ0 the zero field resistivity at 2 K. μ0 is expressed
in Tesla−1 = 104 cm2 V−1 s−1. The points are extracted from the
references [7,8,11,12,18,19,21,22,27–33] (see Ref. [34] for details).
(b) Magnetoresistance of elemental semimetals antimony (j//trigonal
and B//bisectrix), bismuth (j//bisectrix and B//trigonal) and WTe2

(j//a axis and B//c axis) at T = 2 K. RRR (residual resistivity ratio)
is equal to ρ(T =300 K)

ρ(2 K) .

a given metal is not fixed and depends on the cleanness as we
will discuss below.

A more elaborate picture requires one to consider the
tensorial nature of mobility. We attempted to achieve this by
studying the angle dependence of ρii in Sb when the magnetic
field rotates in the plane perpendicular to the i axis. Here, (i =
1,2,3) refer to the binary, bisectrix, and trigonal crystal axes.
The three planes of rotations are P1 = (trigonal, bisectrix),
P2 = (trigonal, binary), and P3 = (binary, bisectrix), as in the
case of bismuth [25].

The Fermi surface of Sb has been intensively studied by
quantum oscillations [17,23] and cyclotron resonance [35].
These studies have found that the density of electron and hole
pockets is equal to n = p = 5.5 × 1019 cm−3, within a preci-
sion of 1% [23]. In these studies, the Fermi surface was taken
to be three equivalent electron pockets and six equivalent hole
pockets. The electron pockets are quasiellipsoids centered at
the L points of the Brillouin zone and reminiscent of the case
of bismuth. The hole pockets consist of two groups of three
pockets slightly off the T points of the Brillouin zone and
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FIG. 2. Angular dependence of the magnetoresistance of antimony. (a),(b) Electron and hole Fermi surface of antimony according to the
Liu and Allen tight-binding model. The unit of reciprocal length is g = 1.461 Å−1. (c),(e),(g) Sketch of the Brillouin zone and the Fermi
surface of antimony projected in the three planes of rotation P1 (trigonal, bisectrix), P2 (trigonal, binary), and P3 (binary, bisectrix). (d),(f),(h)
ρii for i = 1, 2, and 3 in the three planes of rotation P1, P2, and P3 in blue at T = 2 K and B = 12 T (the electric current is applied along the
crystal axis perpendicular to the rotating plane) measured on the same sample. The red line is a fit using a theoretical model described in the
text.

therefore nonisomorphic to the case of bismuth. According
to the tight-binding model used by Liu and Allen [24], as
discussed in the Supplemental Material Sec. C [34], the six
hole pockets are interconnected around the T point, as shown
in Fig. 2(b), a feature not explicitly mentioned previously [24].

The angle dependence of the magnetoresistance at T =
2 K and B = 12 T measured on the same sample for the
three perpendicular planes of field rotation are presented in
Figs. 2(d), 2(f) and 2(h). In each case, the profile of ρii (θ )
reflects the symmetry of the projected profile of the Fermi
surface components in that plane [Figs. 2(c), 2(e) and 2(g)].
When the current is along the binary and the magnetic field
rotates in the P1 plane, there is only the inversion symme-
try so that: ρ11(θ )=ρ11(π + θ ). When the current is along
the bisectrix and a magnetic field rotates in the P2 plane,
as a consequence of additional mirror symmetry, ρ22(θ ) =
ρ22(−θ ). Finally, when the current is along the trigonal and
the field rotates in the P3 plane, sixfold oscillations result as a
consequence of the C3 symmetry combined with the inversion
symmetry. In contrast to bismuth [25,36] we did not observe
any field-induced loss of threefold symmetry (see Sec. E of
Ref. [34] for more details).

III. DISCUSSION

A. The Mackey and Sybert formalism

In order to extract the components of the mobility tensor
for electrons and holes, we used the formalism developed first

by Mackey and Sybert [37] and then by Aubrey [38]. In this
approach, the total conductivity is the sum of the contributions
by each valley expressed as:

σ̂e,h = ne
(
μ̂−1

e,h ∓ B̂
)−1

, (1)

where B̂ is defined as:

B̂ =
⎛
⎝

0 −B3 B2

B3 0 −B1

−B2 B1 0

⎞
⎠. (2)

Here, μ̂e,h is the mobility tensor of electrons and holes. B1,
B2, and B3 are the projections of the magnetic field vector
along the three principal axes. By employing this formalism,
we could extract the components of the mobility tensor along
the principal axes of the representative ellipsoids for electrons,
μi , and holes, νi (i = 1, 2, 3). Further details can be found in
Ref. [34] Sec. D.

Our best simultaneous fits of ρ11, ρ22, and ρ33 at T = 2 K
and B = 12 T are represented in red in Fig. 2. We report on
Fig. 4 and in Sec. D of Ref. [34] similar fits for different
temperature and magnetic fields to obtain the magnitude of
the components of the mobility tensors at any magnetic field
and temperature in Fig. 5.

One can see that the temperature dependence closely tracks
the temperature dependence of the zero-field mobility along
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FIG. 3. Transverse magnetoresistance of Sb at T = 2 K along
the axes of high symmetry: (a) ρ11(B) for B//trigonal (in blue)
and B//bisectrix (in red), (b) ρ22(B) for B//trigonal (in blue) and
B//binary (in red), (c) ρ33(B) for B//binary (in blue) and B//bisectrix
(in red), (d) ρ12 for B//trigonal (in purple). The green lines cor-
respond to the Mackey and Sybert’s model assuming no change in
mobility tensors with the magnetic field and a perfect compensation
( �n

n
= 0). The dashed black lines correspond to the same model

with a deviation from perfect compensation equal to �n

n
= 7 × 10−4

which allow us to capture the Hall response. The black lines cor-
respond to the same model with a field dependence mobility tensor
[reported in Fig. 4(b)] and a deviation from perfect compensation
�n

n
= 7 × 10−4.

the trigonal axis: μ0[ρ33] = 1
neρ33(B=0) . At low temperature,

the components of the mobility tensor saturate. Above 10 K,
they show a T−2, like the one seen in bismuth [25] and
attributed to intervalley carrier-carrier scattering [39]. The
mobility tensors and the mass tensors are linked by μ̂e,h =
eα̂e,h · τ̂e,h. Here, α̂ and τ̂ share the same principal axes and
α̂ is the inverse of the mass tensor. Its components are the
cyclotron masses [35]. The anisotropy of the scattering rate is
set by (and is attenuated compared to) the anisotropy of the
effective mass (see Sec. D of Ref. [34]). Let’s discuss now the
field dependance ρ11, ρ22, ρ33, and ρ12.

B. Deviation from compensation

In the Mackey-Sybert formalism, the Hall response is
expected to be linear in the high-field regime (μB � 1) if
the compensation is perfect. As illustrated in Fig. 3(d), experi-
mentally, this is not the case. The nonlinear Hall resistivity can
be captured by assuming a slight imbalance between hole and
electron density, �n

n
= p−n

n
. We find that the best agreement

with data yields �n
n

= 7 × 10−4. This roughly corresponds to
one defect per million unit cell, consistent with the 5 N quality
Sb powder used to grow the sample and with early low mag-
netic field galvanometric measurements [15]. As illustrated in
Figs. 3(a)–3(c), by including only the miscompensation (black
dotted lines) ρ11, ρ22, ρ33 remain quadratic up to 14 T. On its
own, the deviation from compensation is not responsible for
the subquadratic behavior MR observed at low magnetic field
and only affect it above 30 T as discussed in Ref. [27] section
D.3.
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FIG. 4. Angular dependence of the magnetoresistance of Sb at
T = 2 K for B = 0.5 T to 12 T in the three plans of rotations (a) P1,
(b) P2, and (c) P3. The dot lines are fits using the semiclassical model
described in the text.

C. Field dependance mobility

A satisfactory description of the overall field dependence
of ρ11, ρ22, ρ33, and ρ12 is provided once we combine the
imperfect compensation with a slight field dependence of the
components of the mobility. When the field is swept from
0.5 T to 12 T, μ1, ν1, ν2 are almost constant, but μ2 and ν3

decrease by a factor of 1.5 and μ3 by a factor of 3. The fact
that magnetic field does not affect in a similar manner among
different components of the mobility tensor is a clue to the
origin of the scattering process which becomes more effective
in the presence of magnetic field. The drastic decrease in
μ3 indicates that disorder in the orientation perpendicular to
the cleaving planes becomes more significant with increasing
field. Another piece of evidence is provided by contrasting
samples with different levels of disorder. As presented in
Ref. [34], the subquadratic aspect of magnetoresistance be-
comes more pronounced in dirtier samples where both the
RRR (residual resistivity ratio) and the Dingle mobility, μD

are lower. A ratio of μ0

μD
as large as 300 implies a significant

role for small angle scattering. We thus conclude that the
subquadratic MR of Sb is due to disorder characterized by a

114201-4



MAGNETORESISTANCE OF SEMIMETALS: THE CASE OF … PHYSICAL REVIEW MATERIALS 2, 114201 (2018)

1 10 100
T (K)

0.01

0.1

1

10

100

 (
T -

1
)

1

2

3

0 5 10
B(T)

1

10

100

1000

 (
T -

1
)

1

2

3

(a) B=4T

(b) T=2K

FIG. 5. Temperature and field dependence of mobility tensors of
Sb: The hole and electron tensor component are, respectively, labeled
(ν1, ν2, ν3), (μ1, μ2, μ3). (a) νi and μi for i = 1, 2, 3 at B = 4 T as a
function of temperature. The black line is the mobility deduced from
the temperature dependence of ρ33 in the Drude picture. (b) Field
dependence of μi and νi for i = 1, 2, 3 at T = 2 K. The raw data
and the comparison with the fit can be found in Ref. [34].

long range correlation scale. In the presence of both disorder
and a magnetic field electrons with small momenta along the
magnetic field can be trapped in the disorder potential. As the

magnetic field increases their electron motion is more and
more confined into the minimum of the disorder potential
leading to a decrease of the mean free path and thus of the
mobility [26].

IV. CONCLUSION

In conclusion, we found a very large magnetoresistance in
elemental antimony towering over most reported cases. We
showed that the magnitude of the magnetoresistance at any
temperature and magnitude or orientation of the magnetic
field can be explained using a semiclassical framework with
two additional ingredients, a weak deviation from perfect
compensation and a field-dependent mobility tensor. The
same framework can be used to address all other semimetals.
We conclude that because of slight imperfect compensation
subquadratic magnetoresistance is unavoidable. In antimony
or in WTe2, the carrier concentration is large enough to
cover the role played by imperfect compensation, yet small
enough to allow carriers to have a large mobility. This is
the main reason behind its towering magnetoresistance. The
phenomenological achievement reported here is only one step
towards a microscopic theory. The challenge is to describe the
anisotropic effect of magnetic field on carriers with a known
dispersion in the presence of a precise scattering potential.
This would pin down the intrinsic limits of mobility in a given
material.
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