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The properties of two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers can be dynami-
cally controlled via strain-induced displacive structural transformations between semiconducting (H) and metal-
lic or semimetallic (T′) crystal structures. The shapes, symmetries, and kinetics of crystalline domains generated
during these transformations and the mechanical response of transforming monolayers are of fundamental and
applied interest in, e.g., phase change memory devices and the study of topologically protected edge states in
quantum spin Hall insulating T′ crystals. We quantitatively characterize T′ domain morphologies during H → T′

transformations in both flat and bendable TMD monolayers using a combination of first principles and continuum
calculations. Wulff constructions for MoTe2 and MoS2 show that T′ domains within much larger T′ domains are
either rhombi of fixed proportions (if nonmisfitting) or rectangles whose aspect ratio AR increases with domain
size L0 (if misfitting). Isolated T′ domains within much larger H domains undergo a morphological crossover
from compact to elongated shapes at L0 ≈ 100–200 nm if the sheet is constrained to be flat or L0 � 2 μm if the
sheet is free to bend. This crossover is driven by a competition between anisotropic interfacial energy and elastic
misfit energy, and its position can be tuned via the monolayer-substrate interaction strength. It is shown that
the aspect ratio AR obeys a scaling law AR ∼ L

2/3
0 . Stress-strain response characterized as a function of strain

orientation reveals extreme anisotropy in the effective elastic modulus through H/T′ coexistence. Ferroelastic
multidomain T′-WTe2 monolayers are found to exhibit two to three regimes of reversible mechanical response,
and localized buckling in freely suspended T′ monolayers is shown to qualitatively alter T′ domain symmetries.
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I. INTRODUCTION

The electronic and optical properties of many two-
dimensional (2D) materials vary qualitatively with strain state
[1,2] and with crystal structure/phase [3]. With the ability
to controllably tune phase and strain state, there are many
interesting opportunities for employing 2D materials in novel
devices and applications. Properties of 2D transition metal
dichalcogenide (TMD) monolayers can be dynamically and
locally varied via strain-induced [4–10] or electrostatically-
induced [9,11,12] displacive structural transformations, per-
mitting rapid and possibly reversible switching between the
semiconducting (H) and metallic or semimetallic (T′) crystal
structures. The search for and exploitation of topologically
protected edge states in T′ TMDs, which are large-gap quan-
tum spin Hall insulators [13], is also facilitated by the ability
to control T′ domain morphology and to realize atomically
sharp T′ edges or particular coherent interfaces with other
crystalline domains (H or differently-oriented T′) [14].

First-principles calculations have revealed that the thermo-
dynamic equilibrium state can be switched between the H
and T′ phases with application of mechanical strain [4]. The
uniaxial strain required to induce transformation in MoTe2 is
particularly small, of order 1–2%. Atomic force microscope
tip-induced H → T′ transformations have since been reported

in MoTe2 multilayers [5]. Exploitation of this transformation
in devices relies on the ability to predict and control T′ domain
patterns. We have recently demonstrated through numerical
simulations that the H → T′ transformation is character-
ized by complex, strain orientation-dependent multidomain
H-T′ microstructures [10]. The resulting T′ monolayer also
exhibits a multidomain T′ variant microstructure composed
of characteristic, scale-independent geometric patterns that
result from strain accommodation. Strategies for systematic
control of crystal structure domain morphologies and gener-
ation of functionally patterned conductive T′ domains have
been proposed based on application of spatially modulated
strains through local probes and/or patterned substrates [10].
Monolayers with this functionality constitute dynamically
programmable electromechanical 2D materials, in which lo-
calized conducting regions can be dynamically patterned
in an otherwise semiconducting TMD monolayer. Related
heterostructures are also of interest for advanced electronic
device [15], ferroelastic and shape memory [8], hydrogen
evolution catalysis [16], phase change memory [7,9], and
Ohmic contact [17–19] applications.

Here, we employ a combination of first principles calcula-
tions and continuum field theory simulations to quantitatively
characterize T′ domain morphologies during H → T′ trans-
formations in both flat and bendable TMD monolayers. The
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remainder of the paper is organized as follows. In Sec. II,
the first principles methods and continuum model employed
in later sections are first outlined. In Sec. III, the results of
energy minimization calculations for T′ domains under vari-
ous conditions are presented. The energy minimizing domain
shapes are found to be controlled by a competition between
anisotropic interfacial energy and elastic misfit energy. This
competition leads to a crossover from compact faceted shapes
to elongated needlelike shapes above a critical domain size,
followed by a scaling regime in which aspect ratio increases
as AR ∼ L

2/3
0 .

Both monolayers strongly bound to a flat substrate and
freely suspended monolayers exhibit qualitative changes in T′
domain shape with increasing domain size, but the crossover
to highly elongated shapes in freely suspended monolayers
can be strongly suppressed by the effects of buckling. The
strength of the monolayer-substrate coupling can therefore be
employed as a means of controlling T′ domain geometry in
partially-transformed monolayers.

In Sec. IV, we characterize the stress-strain response dur-
ing strain-induced transformations as a function of strain
orientation, as well as features of the mechanical response of
ferroelastic multidomain T′-WTe2 sheets. The effective elastic
modulus of the monolayer is shown to vary dramatically and
systematically with the nature of the applied strain in regions
of H/T′ coexistence. Freely suspended ferroelastic T′-WTe2

monolayers are found to exhibit either two or three regimes
of elastic stress-strain response, depending on the nature of
the applied strain. Localized buckling in freely suspended
T′ monolayers is also shown to qualitatively alter T′ domain
symmetries. We conclude with a brief discussion of potential
applications.

II. METHODS

Monolayer TMDs of the MX2 type contain three atomic
layers, with transition metal atoms M occupying the central
layer and chalcogen atoms X occupying the two outer lay-
ers. Monolayer TMDs exhibit crystal structures with trigonal
prismatic (H), octahedral (T), or distorted octahedral (T′)
symmetry [Fig. 1(a)]. In the absence of a lattice distortive
transformation strain, perfect H and T structures can be inter-
changed by simple displacements of a single X layer along
[0,

√
3/3]a, [−1,−√

3/3]a/2, or [1,−√
3/3]a/2 (Fig. 1).

These modify the XMX stacking sequence from βAβ (H) to
βAγ (T) or γ Aβ (T), where A and β/γ indicate the structure
of the M layer and upper and lower X layers, respectively. The
appropriate symmetry-lowering distortions of the T lattice
generate the T′ lattice with dimerized metal atoms. Symmetry
permits twelve possible orientations/variants of the T′ unit cell
relative to the initial (fixed) H unit cell, as shown in Fig. 1(a).
These include three primary orientations (p ∈ {1, 2, 3}), each
with four subvariants resulting from dimerization and stacking
asymmetries.

First-principles calculations have shown that the T phase
in monolayer TMDs is dynamically unstable (possesses an
imaginary phonon mode) in the absence of external stabi-
lizing influences [4,20,21]. The T phase has been observed
in experiments on some TMD monolayers where exfolia-
tion and/or structural transformation is induced by chemical
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FIG. 1. Upper: TMD crystal structures. The flat sheet lies in the
(x, y ) plane. Metal and upper/lower chalcogen atoms are shown
in gray and orange/yellow, respectively. Lower: 12 T′ orientational
variants as viewed in the (x, y ) plane, and their designations p±

α ;
p ∈ {1, 2, 3}, superscripts (±), and subscripts α ∈ {A, B} distinguish
between orientation, direction of dimerization, and direction of x-y
mirror asymmetry, respectively. Colored boxes indicate the scheme
employed for simulation visualization.

processes involving a charge transfer mechanism (e.g., lithia-
tion or adsorbate effects) that externally stabilizes the other-
wise unstable T phase [3,15,17,21,22].

A. First principles calculations

To inform our study of H/T′ domain morphology and its
relation to mechanics, we first determined the energies of the
primary H/T′ and T′/T′ interfaces in MoTe2 and MoS2 using
density functional theory (DFT) calculations. These calcula-
tions were performed using the Vienna ab initio simulation
package (VASP) using a plane-wave basis set [23,24] and the
projector augmented wave method [25]. The generalized gra-
dient approximation [26] with the Perdew-Burke-Ernzerhof
functional [27] was employed to treat exchange-correlation
effects. The T′/T′ and H/T′ interface energies for MoTe2

and MoS2 were calculated for several misorientations and
inclination angles within supercells containing two parallel
interfaces. All systems were fully relaxed until the total force
on each atom was less than 0.01 eV/Å. A vacuum layer of
minimum thickness of 20 Å perpendicular to the monolayer
was employed to minimize interactions between the mono-
layer and its periodic images. The kinetic energy cutoff was
set to 420 eV. The �-centered k-point grid up to 12 × 1 × 1
was employed in Brillouin zone integration.
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Interfacial energies were determined by subtracting the H
and/or T′ bulk energy contributions from the total energy of
the periodic supercell and assigning the rest to the interfaces.
Because of the inversion symmetry of the T′ structure, any
two T′/T′ interfaces in our periodic supercell are identical;
the absence of this symmetry in the H phase implies that any
two H/T′ interfaces within our supercell are not identical. The
computed H/T′ interface energies therefore correspond to the
average of those of the two nonidentical H/T′ interfaces. See
Refs. [10] and [28] for more details.

Interfaces between elastically misfitting domains possess
special preferred inclinations if the axial transformation
strains along the two principal strain axes have opposite sign.
These special inclinations (i.e., habits) are those at which
the elastic energy of an infinitely long and narrow daughter
domain embedded within a homogeneous parent matrix van-
ishes. A proliferation of needlelike domains oriented along
the habit inclinations is thus expected when the morphology
is dominated by elastic energy. However, the H/T′ interfacial
energies at these inclinations (41.78◦ for MoTe2 and 10.34◦
for MoS2) are computationally inaccessible due to the large
supercell sizes required. We therefore instead use calculated
energies at nearby (40.89◦ and 10.89◦) inclinations for which
the required supercell sizes are tractable [see Fig. 4(b)].

B. Continuum model

To study microstructure evolution and the mechanical re-
sponse of bendable H/T′ monolayers, interface energies and
other quantities computed from first principles are directly
incorporated into a continuum phase-field microelasticity
(PFM) model as input parameters. This model was introduced
in Ref. [10]; here we summarize its essential features and
governing equations. [See Appendix A for details.]

PFM models incorporate the effects of transformation
strain, coherent crystal-crystal interfaces, long-range elastic
interactions between misfitting domains, and coupling to ap-
plied strain [29–31]. The TMD monolayer in our formula-
tion is treated as a thin, bendable elastic plate in which an
effectively 2D crystal symmetry change is induced by strain.
Unlike earlier PFM applications, our description includes
the effect of out-of-plane deformation w(	r ) and the bending
energy fbend, described within the large deflection theory of
plates framework (e.g., see Ref. [32]). In the limit w → 0,
our model reduces to earlier 2D hexagonal → orthorhombic
transformation models [33–36].

A free energy functional Ftot for the structurally inhomo-
geneous monolayer contains separate chemical and elastic
contributions

Ftot =
∫

A

(fchem + felas)dA, (1)

where

fchem = hfbulk (ηp ) + h

2

∑
p

|β(φ)∇ηp|2 (2)

is the stress-free energy density of the structurally inhomo-
geneous monolayer, h is the monolayer thickness, and felas

contains all self and elastic interaction energy densities asso-
ciated with the arbitrary configuration of structural domains

within the monolayer. These terms are both functions of the
order parameter fields ηp(	r ), which distinguish the different
T′ variants and the H structure. In the following, ηp(	r ) is
normalized by its maximum or equilibrium value η0, such
that it only assumes values between zero and one. β(φ) is
proportional to interfacial energy and may vary with interface
inclination angle φ. Its form is parameterized according to the
results of our DFT calculations presented in Sec. III C.

The form of fbulk (ηp ) should in principle contain all terms
allowed by the H phase symmetry and the order of the trans-
formation, up to an order determined by the target accuracy
[33–36]. We employ a slightly simplified formulation here
that describes six T′ variants, two at each of the three orien-
tations, in terms of three ηp fields. Elastic strains associated
with the three T′ orientations are thus captured, and among the
four possible strain-equivalent or antiphase T′ variants at each
orientation, we distinguish between opposing T′ dimerization
directions, p+ and p−, but not pA and pB stacking variants
[Fig. 1(a)]. Values ηp = −1 and 1 thus represent p− and p+
domains, respectively, while regions where all ηp = 0 corre-
spond to H domains. This simplification allows the general
morphologies of the secondary antiphase domain structures to
be characterized without the full complexity of a 12 variant
description and has no significant effect on the elastic fields
that drive the transformation and its primary morphology.

Following [33–36], we focus on the regime in which elastic
strain energy (rather than bulk chemical energy) dominates
microstructural domain patterns; the main features of the
results are unaffected by the detailed form of fbulk. This
allows use of a simplified form of the bulk free energy that
neglects odd powers in ηp and reflects the basic symmetries
of rotational invariance and equivalence between + and −
variants as defined in Fig. 1 [fbulk (η1 = ±1, η2 = 0, η3 =
0) = fbulk (η1 = 0, η2 = ±1, η3 = 0) = fbulk (η1 = 0, η2 =
0, η3 = ±1)]. It is

fbulk = �f (T )

⎡
⎣a

2

∑
p

η2
p − b

4

∑
p

η4
p + c

6

(∑
p

η2
p

)3
⎤
⎦, (3)

where �f (T ) and the adjustable constants a, b, and c set the
magnitude of the chemical driving force for transformation.

The elastic energy density (energy/area) of the thin elastic
plate is divided into stretching and bending contributions,

felas = hfstretch + fbend. (4)

The stretch or in-plane component can be expressed in general
form as

fstretch = 1

2
λijklεij εkl +

∑
p

[
1

2
λijklε

0
ij (p)ε0

kl (p)η4
p

− λijklεij ε
0
kl (p)η2

p

]
, (5)

where λijkl is the elastic stiffness tensor, ε0
ij (p) =

R[θp]ε0
ij RT[θp] is the transformation strain tensor of variant
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p, and

εij (	r ) = ε̄ij + 1
2 (ui,j + uj,i + w,iw,j ) (6)

is the elastic strain tensor appropriate for large out-of-plane
deflections (i, j, k, l = x, y). The Einstein summation con-
vention is used throughout this paper, and partial derivatives
are represented by commas in the subscripts, e.g., ∂w/∂ri →
w,i , ∂ui/∂rj → ui,j , and ∂2w/∂ri∂rj → w,ij . R[θp] is the 2D
rotation matrix, ε0

xx = (aT ′ − aH )/aH , ε0
yy = (bT ′ − bH )/bH ,

ε0
xy = 0, θ1 = 0, θ2 = 2π/3, and θ3 = −2π/3. ui are in-plane

displacements, w denotes out-of-plane displacement, and ε̄ij

is the applied macroscopic strain.
The bending energy of an elastically isotropic thin plate is

fbend = κ

2
{(∇2w)2 + 2(1 − ν)[(w,xy )2 − w,xxw,yy]}, (7)

where the bending modulus is κ = μh3/6(1 − ν), and μ and
ν are the shear modulus and Poisson’s ratio, respectively. For
isotropic solids under plane stress, the elastic constant tensor
reduces to

λijkl = μ

(
δikδjl + δilδjk + 2ν

1 − ν
δij δkl

)
, (8)

where δij is the Kronecker delta, such that the elastic Green’s
function is

Gij (	k) = δij

μk2
− (1 + ν)kikj

2μk4
, (9)

where 	k is wave vector and k2 = k2
x + k2

y .
In group VI TMD monolayers, the parent H phase is

elastically isotropic (to a very good approximation) [37–
40], while the daughter T′ phase is anisotropic (typically
∼20–30% softer along a than along b [39–41]). Nonetheless,
in this analysis, we neglect the small elastic anisotropy and
the elastic heterogeneity in the sheet and choose a single set
of elastic constants for the entire sheet (this greatly simplifies
the calculations and the theoretical analysis presented below).
We describe the elastic constants of the entire sheet to match
that of the parent phase; this assumption is most accurate
when the area fraction of the T′ phase is small and/or when
microstructure evolution is dominated by interfacial rather
than elastic energies. One or both of these conditions is
satisfied in most of the results discussed below; we implicitly
assume that, when they are not, the elastic asymmetry effects
will not significantly alter the main features of results. Further
study is required to quantify the effects of T′ anisotropy.
A formulation applicable to elastically heterogeneous and
anisotropic systems will be examined in a forthcoming work.

The equations of mechanical equilibrium for in-plane dis-
placements ui (	r ), out-of-plane displacements w(	r ), and order
parameters ηp(	r ) are derived in Appendix A. The incorpora-
tion of out-of-plane displacement w and bending energy fbend

modifies the conditions of equilibrium such that a tractable
closed-form solution in terms of the order parameters ηp

alone cannot be obtained. Instead, we have a closed set of
coupled, nonlinear mesoscale governing equations for each of

the fields, ui (	r ), w(	r ), and ηp(	r ):

λijklkj kkûl (	k) = −i

v∑
p=1

σ 0
ij (p)kj η̂2

p(	k) + λijklN̂jkl (	k), (10)

v∑
p=1

σ 0
ij (p)

[(
η2

p

)
,j
w,i + η2

pw,ij

] + κ∇4w

− 1

2
λijkl[(2uk,lw,j + w,jw,kw,l ),i + 2ε̄klw,ij ] = 0, (11)

2λijklε
0
kl (p)ηp

[
ε0
ij (p)η2

p − εij (	r )
] + δfchem

δηp

= 0, (12)

where k is wave number, ûi (	k) is the Fourier transform of
ui (	r ), η̂2

p(	k) is the Fourier transform of η2
p(	r ), and

N̂jkl (	k) =
∫

A

w,kw,jle
−i	k·	rdA. (13)

Equation (10) can be solved analytically to determine the in-
plane displacement fields

ûi (	k) = −i
∑

p

Gij (	k)σ 0
jk (p)kkη̂2

p(	k) + Gij (	k)λjklmN̂klm(	k),

(14)

where Gij (	k) = �ij (	n)/k2, �−1
ij (	n) = λiklj nknl , and 	n =

	k/|k| [see Eq. (9) for the isotropic case]. However, Eqs. (11)
and (12) are nonlinear with nonconstant coefficients. w and ηp

are therefore numerically iterated to mechanical equilibrium
using physically-motivated evolution equations.

Out-of-plane displacements in thin elastic sheets are me-
diated by flexural phonons which relax/damp out over some
characteristic time. Similarly, coherent ηp interfaces can, in
principle, move displacively at speeds near those of in-plane
phonons (which are also damped over time). We therefore
employ simple, physically-motivated, but phenomenological,
evolution equations that approximate such kinetic processes
by iterating to mechanical equilibrium by identical small
increments of time t :

w,tt + (γ0w − γ1w∇2)w,t = −α2
w

δF̃tot

δw
+ νw (15)

ηp,tt + (γ0p − γ1p∇2)ηp,t = −α2
p

δF̃tot

δηp

+ νp, (16)

where F̃tot = Ftot/kBT . These damped wave equations in-
corporate both rapid propagating waves of displacement
(quasiphonons) and slow overdamped relaxations. γ0i is a
uniform damping parameter, γ1i is a damping parameter that
preferentially suppresses large wave-number oscillations, and
αi is the wave speed. νi is Gaussian noise that is delta corre-
lated in space and time, i.e., 〈νi〉 = 0 and 〈νi (	r, t )νi (	r ′, t ′)〉 =
−2kBT δ(	r − 	r ′)δ(t − t ′). These types of evolution equations
[Eqs. (15) and (16)] have been widely used in phase field
modeling (e.g., to describe rapid solidification processes
[42–44] and transport phenomena in solids driven by both
long range elastic interactions (phonons) and diffusion [45])
and can be derived from microscopic considerations (e.g.,
as the hydrodynamic evolution equation for mass density in
isothermal solids [46]). However, since the main focus of the
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present study is the determination of relaxed microstructures
rather than phonon dynamics, Eqs. (15) and (16) can also
be viewed as a numerical approach to relaxing the systems
to free energy minima (although there is no guarantee that
the resultant structures correspond to a global free energy
minimum).

Equation (15) describes the propagation and damping of
transverse out-of-plane waves, analogous to flexural acoustic
(ZA) phonons. However, use of the exact solutions for ux

and uy [Eq. (14)] bypasses the incorporation of longitudinal
and transverse in-plane acoustic phonons, LA and TA, respec-
tively. This approximation can be justified when LA and TA
modes relax much faster than ZA modes. Such a separation of
scales is a reasonable physical approximation for TMD mono-
layers at the length scales described by our continuum model
since the in-plane elastic moduli are large and the bending
moduli are small, leading to LA and TA wave speeds [47] that
are at least ∼6 times greater than the effective ZA wave speeds
for wavelengths λ � 16a 
 5 nm [48]. For simulations in
which physically-motivated ηp kinetics are not required (e.g.,
when only equilibrium states are of interest), we employ the
purely dissipative scheme outlined in Appendix B rather than
Eq. (16).

Details of the numerical methods used to solve Eqs. (10)–
(12), (15), and (16) are provided in Ref. [10]. �f =
312 meV/Å

3
, h = 0.65 nm, and κ = 10 eV are used in all

simulations, and those with bending employ γ0w = 50/s,
γ1w = 2 × 10−19 m2/s, and αw = 100 m/s. The latter value
is an estimate of typical wave speeds for ∼5–500 nm
ZA phonons in TMD monolayers [49]. In Sec. III, ηp

are evolved using Eq. (B1) with Mp = 1 /s, and H/T′

interfacial anisotropy is implemented via β(φ̂) = β̄{2 +
ε[cos (4φ̂ − π ) + cos (6φ̂)]}/2 with β̄ = 167 (meV/Å)1/2

and ε = 0.215. φ̂ denotes the direction normal to the inter-
face inclination φ. The relation γ H0T′

(φ̂) = h
√

Wβ(φ̂) sets
the value of β̄, where W = (b − d )(8ac + bd − b2)�f/54c2

and d = √
b2 − 4ac. In Sec. IV, ηp are evolved using

Eq. (16) with γ0p = 500/s, γ1p = 2 × 10−18 m2/s, and αp =
1000 m/s (an estimate of typical wave speeds for LA phonons
�10 nm in TMD monolayers [49]) and interfacial anisotropy
is neglected with ε = 0.

Material parameters for MoTe2 are ε0
xx = −0.0299 [10],

ε0
yy = 0.0374 [10], μ = 50 GPa [50], ν = 0.24 [50], a =

0.0031, b = 0.002, c = 0.00125, and η0 = 1.14. For WTe2,
we set ε0

xx = −0.0172 [4], ε0
yy = 0.0270 [4], μ = 57 GPa

[50], ν = 0.16 [50], a = −0.001, b = 0.002, c = 0.0021, and
η0 = 1.14.

III. INTERFACE ENERGIES AND T′ DOMAIN
MORPHOLOGIES

In this section, we report the MoTe2 interface energies
determined from DFT calculations. We also report T′ domain
morphologies, determined through a combination of Wulff
construction, continuum elastic analysis of transformation
strain tensors, semianalytic Eshelby inclusion energy calcu-
lations (with anisotropic interfacial energies) and continuum
model simulations. Similar results for MoS2 are provided
in Appendix C. We employ the notation AθB to denote an

 50  100  150  200

x

y

(a) (b)

p = 1

60°

120°

p = 2

p = 3

FIG. 2. T′0T′ interfaces and domain morphologies. (a)
Anisotropic interfacial energy γ1:1(φ̂) (meV/Å) as determined from
DFT calculations (points) and the best fit to Eq. (17) (line). (b)
Equilibrium (sub)domain shapes for each variant orientation p as
determined from the Wulff construction employing the best fit to
Eq. (17).

interface between phases A and B (and/or a domain of phase
A embedded within a much larger domain of phase B) with
A,B ∈ (H, T′) and where θ is the relative misorientation (in
degrees) between A and B.

A. T′0T′ interfaces and domains

Coexisting domains of T′ variants with the same orienta-
tion but different secondary structure (T′0T′) have zero misfit
strain. Two domains, p±

α and q±
β , with p = q but α �= β and/or

different superscript ± fall into this category. Their morphol-
ogy is therefore determined by the inclination dependence
of the T′0T′ interfacial energy γp:p(φ̂) alone. This depen-
dence, previously reported in Ref. [10], is shown in Fig. 2(a).
Note that φ̂ denotes the direction normal to the interface
inclination φ.

To perform a Wulff construction and determine the equi-
librium shape of a T′0T′ domain, we must choose a functional
form for γp:p(φ̂). Based on the dual twofold symmetry of the
T′ lattice and the large anisotropy revealed by DFT calcula-
tions, we will assume that a global cusped minimum occurs at
φ̂ = 30◦ and local minima at φ̂ = 0◦ and 90◦ from the a axis
of variant p. We then write the interfacial energy as

γp:p(φ̂) =
{

γ̄ I
p:p

(
1 + εI

p:p cos (CI − φ̂)
)
, 0 � φ̂ < 30◦

γ̄ I I
p:p

(
1 + εII

p:p cos (φ̂ − CII )
)
, 30◦ � φ̂ < 90◦ ,

(17)

where γ̄ I
p:p, γ̄ I I

p:p, εI
p:p, εII

p:p, CI , and CII are fitting parameters.
The best fit to this functional form and the resulting Wulff
construction are shown in Figs. 2(a) and 2(b). The equilibrium
shape is nearly a rhombus composed of two equilateral trian-
gles mirrored along one base. The orientation of the rhombus
for each variant orientation is shown for completeness. These
results are not particularly sensitive to the choice of functional
form used in Eq. (17). The geometry of the Wulff construction
requires, e.g., that γ1:2(0◦) � 2γ1:2(30◦)/

√
3 or γ1:2(90◦) �

2γ1:2(30◦) for the domain shape to be influenced by the form
of γ1:2 near φ̂ = 0◦ and 90◦, respectively. The computed
values are above these thresholds; γ1:2(0◦) 
 1.83γ1:2(30◦)
and γ1:2(90◦) 
 2.42γ1:2(30◦). The rhombic shape will only
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FIG. 3. T′60T′ interfaces and domain morphologies. (a) Anisotropy in interfacial energy γ1:2(φ̂) as determined from DFT calculations
(points) and the best fit to Eq. (18) (line). Energy units are meV/Å. (b) Equilibrium domain shapes for each variant orientation pair p:q as
determined from the Wulff construction employing the best fit to Eq. (18), but neglecting the effect of misfit strain (valid only for very small
domain sizes). The possible crystal orientations across each interface are shown for each pair; the inner:outer domains can be p:q or q:p.
(c) Equilibrium domain axial ratio AR increases with domain size L0, crossing over from interface dominated to elastic misfit dominated
AR behavior above L0 
 10 nm. Results were obtained via the Eshelby misfitting inclusion calculation with anisotropic interfacial energy
described in the main text.

be altered if interfacial energies at any of the unexamined
inclinations are sufficiently near γ1:2(30◦).

B. T′60T′ interfaces and domains

Coexisting domains of T′ variants with different orien-
tations (T′60T′, p �= q) have nonzero misfit strain. Their
morphology is therefore determined by a balance between
the inclination dependence of the misfit strain accommoda-
tion and the inclination dependence of the T′60T′ interfacial
energy γp:q (φ̂).

The inclination dependence of γp:q (φ̂), also previously
reported in Ref. [10], is shown in Fig. 3(a). We propose a func-
tional form for γp:q (φ̂) (−30◦ � φ̂ < 60◦) that is consistent
with dual twofold symmetry of the T′ lattice, having cusped
minima at the inclination that bisects the b axes of variants p

and q (as well as its normal):

γp:q (φ̂) = γ̄p:q (1 + εp:q cos (C − φ̂)), (18)

where γ̄p:q , εp:q , and C again denote fitting parameters.
The best fit to this functional form and the resulting Wulff
construction (which neglects the effect of misfit strain) are
shown in Figs. 3(a) and 3(b). The equilibrium shape of a
T′ domain embedded within another infinite T′ domain of
different orientation in the absence of misfit strain (valid only
for very small domain sizes) is nearly rectangular. The long
axis of the rectangle is aligned with the bisector of the b axes
of p and q, and its axial or length to width ratio is AR 
 2.27.
These results are insensitive to the detailed functional form
of γp:q (φ̂); the basic domain shape would only be altered
if any interface energies are significantly smaller than those
predicted by Eq. (18).

The above analysis is only applicable to very small embed-
ded domains. A complete analysis requires consideration of
misfit strain. A characterization of the T′ → T′ transformation
strain tensors ε0

ij (p:q ) between T′ orientational variants p

and q ∈ {1, 2, 3} is shown in Table I for {Mo,W}{S,Se,Te}2.
The tensors for all three pairs in a given system are equiva-
lent by symmetry. We denote the counterclockwise rotation
from the p = 1 a axis that diagonalizes a given ε0

ij (p:q ) as
ψp:q . The diagonalized ε0

ij (p:q ) is then defined from ε̃0
ij =

R−1
ij [ψp:q]ε0

ij (p:q )Rij [ψp:q] and has nonzero components ε̃0
xx

and ε̃0
yy (independent of p and q). The T′ → T′ transformation

strains are close to the pure shear limit (ε̃0
xx = −ε̃0

yy or R̃ � 1)
in each system.

Table II shows the corresponding T′60T′ interface incli-
nations φint

p:q with lowest interfacial energy and the equilib-

rium habit inclinations φ 	n
p:q and φ

	l
p:q computed from each

ε0
ij (p:q ). The elastic misfit energy and the interfacial en-

ergy are minimized at nearly the same interface orientations
φint

p:q 
 φ 	n
p:q . The second habit inclination φ

	l
p:q coincides with

a larger interfacial energy and is therefore unfavorable. For
pure shear misfit, the habit inclinations are ±45◦ from the
orthogonal axes specified by ψp:q . Pure shear misfit would
therefore result in habit inclinations φ 	n

p:q = ψp:q − 45◦ and

φ
	l
p:q = ψp:q + 45◦. The computed values in Table II differ

from this limit by less than 2◦.
We therefore expect that T′-MX2 systems will exhibit the

interface inclinations φint
p:q 
 φ 	n

p:q given in Table II relative
to the p = 1 a axis. These values agree with the preferred
inclinations obtained from first principles [8]. In our PFM
simulations, without interfacial anisotropy, both φ 	n

p:q and φ
	l
p:q

are observed with equal probability, as expected. However,
with interfacial anisotropy the higher energy interfaces at φ

	l
p:q

will be less prevalent than those at φ 	n
p:q for small domain sizes,

and the total lengths of φ 	n
p:q and φ

	l
p:q interfaces will become

increasingly similar as domain sizes increase.
To complete our calculation of the equilibrium T′60T′

domain shapes in MoTe2, we minimize the total energy
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TABLE I. Components of the T′ → T′ transformation strain tensors ε0
ij (p:q ) and related quantities for transformations between T′

orientational variant pairs in {Mo,W}{S,Se,Te}2. Upon rotation by ψp:q , each p:q pair generates the same set of measures deriving
from the diagonalized matrix ε̃0

ij = [ε̃0
xx, ε̃

0
yy] = ε̃0

s [(R̃ + 1), (R̃ − 1)], which has shear component ε̃0
s = (ε̃0

xx − ε̃0
yy )/2 and dilatation ratio

R̃ = (ε̃0
xx + ε̃0

yy )/(ε̃0
xx − ε̃0

yy ). The fractional area change is �̃A/A = ε̃0
xx + ε̃0

yy + ε̃0
xx ε̃

0
yy . T′ lattice constants are from Ref. [8].

ψ1:2 ψ1:3 ψ2:3 ε̃0
xx ε̃0

yy ε̃0
s R̃ �̃A/A

MoS2 105.23◦ −14.77◦ 225.23◦ 0.0355 −0.0335 0.0345 0.0290 0.0012
MoSe2 104.87◦ −15.13◦ 224.87◦ 0.0437 −0.0397 0.0417 0.0480 0.0017
MoTe2 104.69◦ −15.31◦ 224.69◦ 0.0609 −0.0529 0.0569 0.0703 0.0033
WS2 104.52◦ −15.48◦ 224.52◦ 0.0302 −0.0282 0.0292 0.0343 0.0009
WSe2 105.02◦ −14.98◦ 225.02◦ 0.0355 −0.0325 0.0340 0.0441 0.0012
WTe2 104.65◦ −15.35◦ 224.65◦ 0.0392 −0.0352 0.0372 0.0537 0.0014

including both the elastic misfit (based on the transformation
strains in Table I) and anisotropic interface energy contri-
butions. For the elastic contributions, we apply the Eshelby
approach to evaluate the elastic energy of a coherent misfitting
elliptical inclusion in an infinite matrix in 2D. The matrix and
inclusion are taken to have the same (isotropic) elastic moduli
and plane stress conditions are applied. For arbitrary ellipse
inclination ζ , area A0 = πR1R2, and misfit strain tensor ε0

ij ,
the elastic energy is given by Eelas = E0(ζ,AR, ε0

ij )R1R2,
where E0(ζ,AR, ε0

ij ) is defined in Eq. (D5). R1 and R2 are the
semimajor and semiminor radii, respectively, of the ellipse.
This equation, with ζ = φ 	n

p:q from Table II and ε0
ij = ε̃0

ij from
Table I, are assumed to provide a reasonable approximation of
the elastic energy of the nearly rectangular T′ domains. The ef-
fect of interfacial anisotropy is incorporated by assuming that
the interfacial energy of the embedded domain is always given
by that of a rectangle in the preferred orientation ζ = φ 	n

p:q
from Table II and Fig. 3(b). The total interfacial energy is then
approximated as Eint 
 2

√
π [γ1:2(−30◦)R1 + γ1:2(60◦)R2].

For a domain size L0 = 2
√

R1R2, the total energy Eelas +
Eint is numerically minimized with respect to AR = R1/R2.
AR (L0) is shown in Fig. 3(c). It correctly converges to the
zero-misfit limit as L0 → 0, i.e., AR 
 2.27 [see Fig. 3(b)].
With increasing L0, the bulk elastic energy becomes more
significant. Though elastic and interfacial contributions favor
nearly the same interface inclinations, the elastic energy is
minimized at increasingly large AR . The nearly rectangular
shape and preferred orientation are therefore maintained as
an isolated domain grows, but the axial ratio of the rectangle

increases dramatically from AR 
 4 to 100 as L0 increases
from 10 nm to 2 μm. The origin of the scaling relation AR ∼
L

2/3
0 seen in Fig. 3(c) at large L0 is described in the following

subsection.
Isolated domains of T′ variant q embedded within large

domains of variant p �= q are most likely to appear within
a T′ monolayer that has been prestrained to create an initial
state with only one or two variant orientations. A change in
applied strain state can lead to the formation of the one or
two orientations not initially present, and these newly formed
q domains will be embedded within the preformed p �= q

microstructure.
This scenario is less probable when the initial state con-

tains all three T′ orientations; three-variant domain morpholo-
gies are qualitatively different from those with only one or
two variants. Global strain-accommodating morphologies in
such cases contain nested threefold star patterns, radial 30◦
wedge/fan patterns, and fourfold domain wall junctions, as
shown in Ref. [10]. When the applied strain state is changed
in a T′ monolayer containing pre-existing microstructures
with these symmetries, the pre-existing T′/T′ interfaces can
simply propagate in the direction of the disfavored variants,
expanding the size of the favored variants without requiring
nucleation of embedded domains. Though the evolving do-
main shapes will be determined more by the initial three-
variant microstructure than by spontaneous formation of new
embedded domains, the habit inclinations listed in Table II
will nonetheless dominate the microstructure at all stages and
T′/T′ interface coherency should be maintained.

TABLE II. Inclinations of minimum T′60T′ interfacial energy, φint
p:q , and elastic energy minimizing T′60T′ interface inclinations (habits),

φ 	n
p:q and φ

	l
p:q , for all group VI TMD monolayers and all orientational variant pairs. Interfacial energies are determined from DFT calculations,

and habit inclinations are determined from continuum elasticity via the interface normal vectors 	n = [
√

ε̃0
xx/(ε̃0

xx − ε̃0
yy ),

√
−ε̃0

yy/(ε̃0
xx − ε̃0

yy )]

and 	l = [
√

ε̃0
xx (ε̃0

xx − ε̃0
yy ), −

√
−ε̃0

yy (ε̃0
xx − ε̃0

yy )]. T′ lattice constants are from Ref. [8].

φint
1:2 φ 	n

1:2 φ
	l
1:2 φint

1:3 φ 	n
1:3 φ

	l
1:3 φint

2:3 φ 	n
2:3 φ

	l
2:3

MoS2 60◦ 59.4◦ −28.9◦ −60◦ −60.6◦ 31.1◦ 0◦ −0.6◦ 91.1◦

MoSe2 60◦ 58.5◦ −28.8◦ −60◦ −61.5◦ 31.2◦ 0◦ −1.5◦ 91.2◦

MoTe2 60◦ 57.7◦ −28.3◦ −60◦ −62.3◦ 31.7◦ 0◦ −2.3◦ 91.7◦

WS2 60◦ 58.5◦ −29.5◦ −60◦ −61.5◦ 30.5◦ 0◦ −1.5◦ 90.5◦

WSe2 60◦ 58.8◦ −28.7◦ −60◦ −61.2◦ 31.3◦ 0◦ −1.2◦ 91.3◦

WTe2 60◦ 58.1◦ −28.8◦ −60◦ −61.9◦ 31.2◦ 0◦ −1.9◦ 91.2◦
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TABLE III. Inclinations of minimum H0T′ interfacial energy, φint
H0T′ (assumed), and elastic energy minimizing H0T′ interface inclinations

(habits), φ 	n
p and φ

	l
p , for all group {Mo,W}{S,Se,Te}2 monolayers and orientation variants. Interfacial energies are determined from DFT

calculations, and habit inclinations are determined from continuum elasticity as described in Table II. T′ lattice constants are from Ref. [8].

φint
H0T′ φ 	n

1 φ
	l
1 φint

H0T′ φ 	n
2 φ

	l
2 φint

H0T′ φ 	n
3 φ

	l
3

MoS2 0◦ 10.34◦ −10.34◦ −60◦ −49.66◦ −70.34◦ 60◦ 70.34◦ 49.66◦

MoSe2 28.46◦ −28.46◦ −31.54◦ −88.46◦ 88.46◦ 31.54◦

MoTe2 0◦ 41.78◦ −41.78◦ −60◦ −18.22◦ 78.22◦ 60◦ −78.22◦ 18.22◦

WS2 (∼0◦) (∼−60◦) (∼60◦)
WSe2 19.82◦ −19.82◦ −40.18◦ −79.82◦ 79.82◦ 40.28◦

WTe2 38.59◦ −38.59◦ −21.41◦ 81.41◦ −81.41◦ 21.41◦

C. H0T′ interfaces and domains

1. Flat 2D monolayers

In this subsection, we consider the case of flat TMD
monolayers, e.g., monolayers bonded to substrates. A large
number of distinct, coherent heterophase interfaces can occur
between H and T′ domains, as recently studied for MoS2

via first-principles methods [28]. Analysis of MoTe2 H0T′
interfaces and the morphologies of embedded T′ domains
following the above approach for T′60T′ would require DFT
relaxation calculations for a minimum of 60 different config-
urations (interface pairs), each at two or more values of Te
chemical potential μTe. To simplify this undertaking, we make
a series of approximations and estimate the expected range of
deviation from our predictions.

The computed habit inclinations of H0T′ interfaces are
shown in Table III, and interfacial energies in MoTe2 at φ =
0◦ and φ = 41.78◦ (near the H0T′ p = 1 habit inclination at
φ 	n

1 = 40.89◦) computed from first principles [10] are shown
in Fig. 4(a). Like T′60T′ domains, both interfacial and elas-
tic misfit energies contribute to H0T′ morphologies. Unlike
T′60T′ domains, the interfacial and elastic misfit energies of
H0T′ domains do not favor the same interface inclinations.
The energy of the φ = 0◦ interface pair is significantly lower
than that of the near-habit pair. The morphology of isolated
T′ domains during an H → T′ transformation will therefore
vary with domain size and will be determined by the compe-
tition between quasi-1D interfacial and quasi-2D bulk elastic
effects. Interfacial effects will dominate at small domain sizes,
favoring compact domains, and elastic misfit effects will
dominate at large domain sizes, favoring needlelike domains;
the crossover occurs at L∗

0.
We assume a functional form for γ H0T′

(φ̂) based on the
approximation that the threefold and dual twofold symmetries
of the H and T′ lattices, respectively, combine additively to
determine the symmetry of γ H0T′

(φ̂):

γ H0T′
(φ̂)= γ̄H0T′

2
{2 + εH0T′ [cos (4φ̂ − π ) + cos (6φ̂)]},

(19)

where γ̄H0T′ and εH0T′ are free constants. The best fit to this
functional form and the resulting Wulff construction (in the
absence of misfit strain) are shown in Figs. 4(a) and 4(c).
Using these approximations, the equilibrium shape of a T′
domain embedded within an infinite H monolayer in the
absence of misfit strain (i.e., very small domain sizes) is nearly
hexagonal. The orientation of the hexagon for each variant is

shown for completeness. Each is slightly elongated along the
a axis of the T′ lattice because γ H0T′

(0◦) > γ H0T′
(90◦) [see

Eq. (19)].
Our DFT calculations (and symmetry considerations)

demonstrate that the energies of interfaces on opposite sides
of a T′ domain created by a single shuffle operation are
generally unequal. This is because one interface is Te- or
Te/Mo-rich while the other is Te- or Te/Mo-poor. These
interfacial energies and their differences therefore depend on
μTe. The domain morphologies that result when opposing
interfaces have unequal energy are qualitatively similar to
those on the right side of Fig. 4(c). In general, though the
number of sides and the details of the domain symmetry
depend on the full form of γ H0T′

(φ̂) for a given μTe, single
T′ variant domains with L0 � L∗

0 remain relatively compact
with preferred inclinations at multiples of 30

◦
, 60

◦
, or 90◦. The

computed difference between γ H0T′
(90◦) and γ H0T′

(58.22◦)
further suggests that the domains are likely faceted.

Next, we consider the effect of misfit strain (as in the
previous section), but instead of minimizing the total energy
with respect to the shape of a single domain, we minimize
with respect to two domains; a compact shape such as those
shown in Fig. 4(c) and an elongated shape that is free to rotate.
The shape with lowest total energy at a given L0 corresponds
to the equilibrium shape, and a crossover from compact to
elongated morphologies occurs above domain size L∗

0.
The calculation described above requires solving Etot

com −
Etot

elo = �Etot = 0 for L0, where Etot
com and Etot

elo are the total
interfacial plus elastic misfit energies of the optimized com-
pact and elongated domains, respectively, at a given L0. The
general solution of this equation (see Appendix D) is

L∗
0 = 4(P̄eloγ̄elo − P̄comγ̄com )

E0
(
ζ = 0, AR = 1, ε0

ij

) − E0
(
ζ,AR, ε0

ij

) , (20)

where P̄elo and P̄com are the two domain perimeter lengths
scaled relative to L0, γ̄elo and γ̄com are the mean interfacial
energies, and E0(ζ = 0, AR = 1, ε0

ij ), E0(ζ,AR, ε0
ij ) are the

elastic energy prefactors defined in Eq. (D5) for the optimized
compact and elongated domains, respectively. The form of
this result shows that L∗

0 is controlled by the ratio of the
differences between the average interfacial energy densities
and the total elastic energy densities of the two domain shapes.

To prescribe a particular solution for isolated T′ domains
in H-TMD monolayers, we approximate the elastic energy
of the compact domain as that of a circle with diameter
L0; Eelas

com = E0(ζ = 0, AR = 1, ε0
ij )L2

0/4. The elastic energy
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(a)

(c)(b)

FIG. 4. H0T′ interfacial energy and interfacially-preferred T′

domain shapes. (a) H0T′(p = 1) interfacial energy γ H0T′
(φ̂). Energy

units are meV/Å. Data points correspond to DFT results from the
simulation configurations shown in (b), thin solid lines are expres-
sions with four- and sixfold symmetry (γn(φ̂) = γ̄ [1 + ε cos (nφ̂)]),
and the thick solid line is the best fit to Eq. (19). (b) Top views of
the relaxed H0T′ interfaces at φ = 0◦ and φ = 40.89◦ from DFT.
Blue and black lines denote interfaces and ‘bonds’ between nearest
neighbor Mo atoms, respectively, and red rectangles highlight H and
T′ unit cells. (c) Left: Equilibrium zero-misfit domain shapes for
each T′ variant orientation p [from the Wulff construction employing
the blue line in (a)]. Center, right: A similar γ H0T′

(φ̂) that assumes
asymmetry in the energies of opposing interfaces across the domain,
for intermediate and high asymmetries. Neglecting misfit strain
implies that these shapes are valid only for L0 � L∗

0.

of the elongated and rotated domain is approximated for an
ellipse with inclination ζ and area A0 = πL2

0/4 = πR1R2:
Eelas

elo = E0(ζ,AR, ε0
ij )R1R2.

For the interfacial contribution, Eint
com, the relevant energies

given by the best fit to Eq. (19) are summed over the six sides
of the perimeter Phex of the hexagon. For Eint

elo, we assume
an elliptical domain shape with arbitrary inclination ζ and
aspect ratio AR = R1/R2. The interfacial energy can then be
expressed as a modulated elliptic integral,

Eint
elo = 2R1

∫ π

0
dζ ′γ H0T′

(τ − ζ ′)
√

1 − e2 sin2 ζ ′, (21)
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(b)

FIG. 5. Morphologies of single T′ domains in flat H-MoTe2

sheets. (a) Inclusion energy difference �Etot and domain aspect
ratios AR vs domain size L0, determined via the modified Eshelby
approach described in the text for one value of Te chemical poten-
tial μTe. Crossover from compact interface-dominated domains to
elongated misfit-dominated (habit) domains occurs at the L∗

0 values
marked with closed circles. Values obtained analytically and from
simulations are in good agreement. Initial domain shapes in simu-
lations are indicated in the legend. The shaded yellow area approx-
imates the intermediate coexistencelike regime in which metastable
domains of mixed morphology also appear. (b) Maps of combined
interfacial and elastic energy for stable embedded T′ domains of
various size. The white dashed line in the rightmost panel outlines
the domain shape obtained without interfacial anisotropy.

where ζ ′ is the polar angle from the ellipse cen-

ter, e =
√

1 − R2
2/R

2
1 is the eccentricity, and τ (ζ ′, e) =

arctan [tan ζ ′/(1 − e2)] is the angle normal to the ellipse
perimeter at ζ ′. Additional details are in Appendix D.

To obtain a complete solution, L∗
0 [Eq. (20)] must be

minimized with respect to ζ and AR as a function of L0.
Results for MoTe2, displayed in Fig. 5(a), show that the
minimized �Etot = 0 at L∗

0 
 124 nm. For L0 < L∗
0, AR

increases weakly above 1 nm as the balance of interfacial
and elastic energies favors a compact shape with only slight
elongation. Here Etot

elo > Etot
com, and the hexagon is preferred.

At or near L∗
0, a kink in AR appears. Here, when elongated

domains become preferred, the ζ that minimizes the energy
quickly rises to φhabit and AR increases more rapidly with
L0. This analysis indicates that a compact T′ domain of size
L0 � L∗

0 will initially grow with nearly fixed shape until
L0 
 L∗

0, elongating slightly (along the a axis of the T′ unit
cell) as L0 → L∗

0. For L0 � L∗
0, if barriers to shape change are

low, the domain will rapidly rotate its weakly elongated axis to
align with φhabit and then begin to elongate at a much greater
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rate. This elongation at fixed ζ will continue indefinitely with
a sublinear scaling, AR ∼ Ls

0, where s 
 2/3.
The power law exponent s = 2/3 seen at large L0 can

be derived as follows. The aspect ratio is determined by the
competition between interfacial and bulk elastic energies. For
AR � 1, Eint

elo is approximately that of a rectangular domain,

Eint
elo ≈ 2γ̄H0T′ (R1 + R2)

= γ̄H0T′L0(AR + 1)/
√

AR ≈ γ̄H0T′L0

√
AR (22)

to leading order in AR . At ζ = φhabit and AR � 1, Eq. (D5)
shows that Eelas

elo ∼ L2
0(1 + A−1

R ) (to leading order in AR).
Minimizing Eelas

elo + Eint
elo with respect to AR gives

AR ≈ (EAL0)2/3, (23)

which agrees well with the numerically-determined s values
shown in Figs. 3(c), 5(a), and 11(c). The prefactor

EA = πμ(1 + ν)h
[
3ε0

xxε
0
xx − 2ε0

xxε
0
yy − ε0

yyε
0
yy − 4ε0

xyε
0
xy

]
2γ̄H0T′

(24)

is the ratio of elastic to interfacial energies, which directly
reflects the underlying physics.

Our continuum simulations, parameterized for MoTe2 with
the anisotropic interfacial energy of Fig. 4(a) and Eq. (19),
corroborate these calculations (see Fig. 5). The large inter-
facial anisotropy and domain faceting is accommodated in
these simulations by convexifying the interface energy [51].
Simulations were conducted by seeding an H monolayer with
a single p = 1 T′ domain and allowing it to relax at fixed
T′ area (see Appendix B). Systems initialized with small
(L0 � 100 nm) T′ domains (either circular or rectangular with
AR = 2–15 and ζ = φhabit) relax to compact faceted shapes
determined by the anisotropic interfacial energy [Fig. 5(b)
left]. Systems initialized with large (L0 � 100 nm) circular
T′ domains tend to remain compact, but an increasing fraction
of the perimeter becomes habit aligned in a metastable coexis-
tencelike configuration of mixed character [Fig. 5(b) center].
Systems initialized with large (L0 � 100 nm) rectangular,
habit-aligned T′ domains relax to increasingly elongated,
habit-aligned shapes with increasing L0 [Fig. 5(b) right]. The
total energy of the elongated domains becomes lower than that
of the compact domains for 100 nm � L∗

0 � 200 nm, in good
agreement with the analytic results (L∗

0 
 124 nm).
The agreement between L∗

0 values obtained using the above
two approaches demonstrates the efficacy of the semianalytic
Eshelby-type analysis, although both approaches employ in-
put parameters that are somewhat uncertain and include sim-
plifying assumptions. It is therefore prudent to estimate the
overall uncertainty associated with these results. According to
Eq. (20), L∗

0 varies with the monolayer elastic constants as
L∗

0 ∼ [μ(1 + ν)h]−1 and with average H0T′ interfacial ener-
gies as L∗

0 ∼ γ̄elo − γ̄com (assuming that P̄elo 
 P̄com or AR ∼
1 at L∗

0). Conservatively employing uncertainties of μ 
 50 ±
20 GPa, ν 
 0.24 ± 0.06, h 
 0.5 ± 0.15 nm, and γ̄elo −
γ̄com 
 γ H0T′

(φ̂habit ) − γ H0T′
(90◦) 
 146 ± 100 meV/Å, we

obtain 27 nm � L∗
0 � 680 nm.

The case of a single, isolated T′ variant domain is most
relevant to transformations biased by strain or other external

controls such that formation of a single variant orientation is
preferred. This case is less relevant if two or three variant
orientations can easily form and combine into composite
domain structures (wedges, fans, threefold stars, etc.) that
accommodate the misfit strain more effectively than single
variant domains. Such composite T′ structures will also be
subject to a competition between interfacial and misfit strain
energies, but a full morphological analysis requires knowl-
edge of their elastic energy minimizing shapes. The elastic
energies of some likely composite structures such as wedges
can be determined analytically. A complementary approach is
to allow our PFM simulations to solve the problem stochasti-
cally. The most prevalent structures, composite or univariant,
that spontaneously nucleate and grow can be identified as
the configurations that best accommodate the elastic misfit
energy.

2. Bendable 2D monolayers

In TMD monolayers that are free to deform out-of-plane
(sheets not bonded to substrates), a large portion of the in-
plane misfit strain associated with an isolated T′ domain may
be relieved through localized buckling at very low bending
energy cost. Domains in bendable sheets will therefore re-
tain compact, interfacial energy-dominated shapes to larger
sizes than in constrained flat sheets. However, a quantitative
analysis of domain shapes in bendable monolayers presents
significant challenges. The primary difficulty stems from the
elastic coupling between the T′ domain and the surrounding
H matrix, which leads to nontrivial buckling morphologies
and strain states. Buckling induced by an elastically misfitting
T′ domain is spatially heterogeneous and may occur locally
in either (both) phase(s) wherever the strain is sufficiently
compressive.

A p = 1 T′ domain, for example, tends to buckle internally
along b, the direction of maximum compressive misfit, with
the buckle amplitude decreasing to zero some distance into the
adjacent H phase. Tensile strain is therefore induced within
the H phase near T′ domain ripples, and this strain increases
with ripple amplitude and wavelength. The surrounding H ma-
trix also tends to buckle near H/T′ interfaces with φ near zero
but with buckling along a, the direction of maximum com-
pression induced by the adjacent T′ domain. The nontrivial
buckle morphology and strain state of the energy minimizing
domain shape is dictated by the competition between misfit
strain relieved via buckling and strain concurrently induced in
the nearby H phase.

We therefore utilize continuum PFM simulations to ex-
amine the morphologies of isolated T′ domains in bendable
monolayers; results are shown in Fig. 6. Domains with L0 �
50 nm remain hexagonal with AR ≈ 1, slightly more compact
than in flat monolayers at equivalent sizes. Small amplitude
out-of-plane deformations do occur within and around the
domain but it is best characterized as slightly folded rather
than buckled or rippled. For 50 nm � L0 � 400 nm, the
hexagons become rippled (more than one buckling period)
and slightly elongated along b (AR < 1). For 400 nm � L0 �
2 μm, the domains remain rippled but become increasingly
elongated along a as L0 increases (AR > 1). Due to compu-
tational limitations we were unable to observe a crossover to
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FIG. 6. Morphologies of single T′ domains in bendable H-
MoTe2 sheets. (a) Inclusion aspect ratios AR and inclination an-
gle ζ vs domain size L0. Crossover from compact semiflat to
compact buckled occurs near L0 = 50 nm, from compact buckled
to a-elongated buckled near L0 = 400 nm, and from a-elongated
buckled to habit elongated buckled above L0 = 2 μm. Symbols
denote simulations initialized with different domain shapes; circles ≡
compact, vertical rectangles ≡ b elongated, and tilted rectangles ≡
habit-aligned elongated. Solid lines are analytic results for flat
monolayers. (b) Equilibrium p = 1 domain shapes determined from
continuum simulations without bending (upper) and with bending
(lower) in the regimes highlighted in (a). w(	r ) is amplified by a factor
of five to enhance visual contrast. Regimes I/II and III/IV are not
qualitatively different for flat monolayers. Schematics are shown for
the largest domain size, which is not computationally accessible.

habit-aligned needlelike shapes, but the results indicate that
L∗

0 for this crossover is at least an order of magnitude larger
than that in flat monolayers.

These results can be understood qualitatively as follows.
The small domains of regime I [see Fig. 6(a)] induce small
amplitude bending (magnitude � 1Å) and do not ripple inter-
nally with more than half of a buckling period because the
bending energy of true rippling would exceed the in-plane
misfit strain energy relieved. Misfit strain energy scales as
σ 0

ij ε
0
klL

2
0, while bending energy scales as κ (∇2w)2L2

0 or as
κA2L2

0/λ
4 if w = A sin (2πx/λ). For λ ≈ L0 and A constant

(valid for small λ), bending energy scales as 1/L2
0 and buck-

ling is suppressed below a threshold L0 value.

In regime II, the T′ domains are large enough to ripple
internally and relieve a significant portion of the in-plane
misfit strain at increasingly small bending energy cost. Unlike
flat monolayers at equivalent domain sizes, elastic energy
remains comparable to interfacial energy in this regime and
the domains remain compact and faceted well above the L∗

0 of
flat monolayers.

Total elastic energy eventually exceeds total interfacial
energy at the beginning of regime III. However, rather than
inducing a crossover to habit-aligned needlelike domains as in
flat monolayers, a crossover to relatively weakly a-elongated
domains is induced. This is because buckling relieves much
of the bulk misfit strain energy, and the total energetic cost
of bending is extremely small due to the minuscule bending
stiffness of 2D materials. The dominant portion of the elas-
tic energy in buckled compact domains comes instead from
residual in-plane strain in the vicinity of each H/T′ interface
that cannot be fully accommodated by buckling. The energies
of the two domain shapes can thus be decomposed as

Etot
com = Eint

com + Ebend
com + Eres

com (25)

Etot
elo = Eint

elo + Ebulk
elo , (26)

where superscripts ‘bend’ and ‘res’ denote bending and resid-
ual in-plane misfit energy. Since Eint

com < Eint
elo, compact shapes

remain the lower energy structures until their total bending
plus residual misfit strain energy becomes large enough to
cancel this interfacial advantage.

In regime III, where Ebend
com � Eres

com, domain shape is pri-
marily controlled by the competition between interfacial en-
ergy, which prefers a hexagonal shape, and residual misfit
energy, which also prefers a relatively compact shape (min-
imal perimeter length) albeit not a perfect hexagon. This is
evidenced by the fact that domains in regime III elongate
along a, as shown in Fig. 6. Interfaces with inclination φ ≈
0◦ carry less misfit strain (ε0

xx = −0.0299) than those with
φ ≈ 90◦ (ε0

yy = 0.0374), so the proportion of φ ≈ 0◦ interface
length increases to minimize the total residual misfit energy.
Otherwise identical simulations conducted with ε0

yy reduced
from 0.0374 to 0.01 further support this analysis. Such do-
mains instead elongate along b in regime III to minimize the
larger residual misfit energy along a.

To examine the competition between compact and elon-
gated shapes more closely, we first ask whether a crossover
to habit-aligned needlelike shapes must occur. This question
can be answered by determining the L0 dependencies of each
term in Eqs. (25) and (26), that with the weakest divergence
as L0 → ∞ is preferred at large domain sizes. For compact
domains Eint

com ∼ L0, and we expect Eres
com to be proportional to

the total interfacial length P times the buckle wavelength λ (a
type of Saint-Venant’s principle). We postulate that λ ∼ Lδ

0,
where the exponent 0 � δ � 1 is determined by the nonlin-
ear interplay between bending strains and in-plane strains.
This gives Eres

com ∼ L1+δ
0 . As discussed above, bending energy

scales as κA2L2
0/λ

4 for sinusoid-type morphologies, w =
A sin (2πx/λ). Note that even though the bending energy is
a bulk 2D quantity, it does not in general scale as L2

0 due to its
dependence on A and λ, which also generally vary with L0.
The above postulate that λ ∼ Lδ

0 gives Ebend
0,com ∼ L

2(1−δ)
0 .
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For elongated domains P ∼ L0(AR + 1)/
√

AR , and we
have further shown above that AR ∼ Ls

0 for large AR , with
s ≈ 2/3. This gives Eint

elo ∼ L
1+s/2
0 = L

4/3
0 for elongating do-

mains with large AR . The form of Ebulk
elo follows from Eq. (D5)

as L2−s
0 = L

4/3
0 for large AR . Gathering terms, Eqs. (25) and

(26) become

Etot
com = Eint

0,comL0 + Ebend
0,comL

2(1−δ)
0 + Eres

0,comL1+δ
0 (27)

Etot
elo = (

Eint
0,elo + Ebulk

0,elo

)
L

4/3
0 , (28)

where E
j

0,i are prefactors for interfacial, residual, bending, and
bulk energy.

In the regime of large L0 the dominant term for compact
domains is Ebend

0,comL
2(1−δ)
0 for δ < 1/3 and Eres

0,comL1+δ
0 for δ >

1/3. For δ = 1/3, the energies of both compact and elongated
domains scale as L

4/3
0 and the existence of a crossover is

not guaranteed; this will depend on the values of the energy
prefactors. For δ �= 1/3, the energy of compact domains scales
faster than L

4/3
0 , implying that, asymptotically, elongated do-

mains must become the equilibrium shape. For δ < 1/3 bend-
ing energy eventually dominates, while for δ > 1/3 residual
misfit strain energy eventually dominates. The former corre-
sponds to buckle wavelength varying weakly with domain size
and residual misfit energy therefore behaving as a quasi-1D
effect. The latter corresponds to buckle wavelength varying
more dramatically with domain size and residual misfit energy
therefore behaving as a quasi-2D effect. For either case, we
can conclude that sufficiently large domains will prefer habit-
aligned needlelike shapes in bendable monolayers.

The domain size L∗
0 at which this crossover occurs will

depend sensitively on the energy prefactors and the scaling
exponents δ and s. A reliable estimation of its value is
therefore not provided here; a fully quantitative analysis or
larger-scale numerical simulations are needed.

If the monolayer is on a substrate, the domain size L∗
0

at which any shape crossover occurs will vary with the
monolayer-substrate interaction strength. Systems with very
weak interactions will exhibit the type of behavior shown
in Fig. 6(a), while the size at which crossover to habit-
aligned needlelike domains occurs will decrease as interaction
strength increases, ultimately approaching the behavior shown
in Fig. 5(a) for flat monolayers. This interaction can therefore
be employed to tunably control L∗

0 and T′ domain geometry
in partially-transformed monolayers.

IV. MECHANICAL RESPONSE

A preliminary account of the stress-strain response of
MoTe2 monolayers undergoing a H → T′ transformation was
reported in Ref. [10]. The effective elastic moduli of such
monolayers (through the range of strains corresponding to
H/T′ coexistence) were shown to vary widely with applied
strain. An effective modulus of zero (i.e., a superelastic re-
sponse) was found to occur at ε̄ij = ε0

ij (p) for any single
variant p. Here we expand on these results and present new
findings for bendable T′ WTe2 monolayers, which have been
predicted to be ferroelastic and possibly shape memory mate-
rials [8].
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FIG. 7. Mechanical response of transformable, freely suspended
MoTe2 monolayers. (a) Stress-strain curves obtained for various
applied strains (lower) and the corresponding variations in area frac-
tion of T′ variants (upper). (b) Representative domain configurations
for φP = 0◦, 60◦, and 125◦. (c) Variation of the effective H/T′

coexistence elastic modulus with φP = arctan (ε̄yy/ε̄xx ) at φL = 0.
The solid line (Gaussian) is a visual guide.

A. Response of MoTe2 monolayers through strain-induced
H → T′ transformations

Stress-strain curves for MoTe2 monolayers under various
applied strains are shown in Fig. 7(a). The H crystal exhibits
a linear elastic response prior to the onset of T′ domain
nucleation. A second linear regime, with smaller effective
elastic modulus occurs when T′ domains begin to nucleate
and relieve some portion of the applied strain. The amount

114002-12



DOMAIN MORPHOLOGY AND MECHANICS OF THE H/T′ … PHYSICAL REVIEW MATERIALS 2, 114002 (2018)

of strain relieved and therefore the effective modulus are
controlled by the energy minimizing domain morphology
realized for a given set of boundary conditions and applied
strain. When the H → T′ transformation is complete, a third
linear regime exhibiting the elastic modulus of the T′ phase
begins.

The interesting aspect of this response is the wide and sys-
tematic variation of the effective elastic modulus during H/T′
coexistence as a function of the nature of the applied strain;
this is potentially useful in electromechanical applications.
To characterize and analyze this effective anisotropy, we first
generalize the ways in which strain can be applied and then
present results for a number of specific cases.

The space of realizable applied strains can be reduced
to two variables that represent the angle of the laboratory
frame relative to the H-phase a axis (φL) and the angle
of the strain path taken within a specified laboratory frame
[φP = arctan (ε̄yy/ε̄xx ), where ε̄ij is defined within the labo-
ratory frame φL]. Effective H/T′ coexistence moduli EH/T ′

versus φP obtained from simulations at φL = 0 are shown
in Fig. 7(b). The modulus varies periodically between 0 �
EH/T ′ � 2EH /3 and is near zero through most of quadrants
II, III, and IV where the applied strain is compressive in one
or both directions.

B. Response of fixed area T′-WTe2 monolayers

WTe2 monolayers exhibit a thermodynamically stable T′
phase at zero strain and have been predicted to possess ferroe-
lastic and possibly shape memory properties [8]. This makes
WTe2 an interesting system for studies of mechanical re-
sponse, as a wide range of its stress-strain behavior will be me-
diated by rapid rearrangements of its three-variant-orientation
T′ microstructure. The microstructure selects the variants and
morphologies that best relieve a given applied strain, and the
local variant structure can be repeatedly switched without
introducing defects. The energy barrier for this switching is
very low, ∼0.2 eV/MX2 [8]. In the absence of significant
plasticity associated with mobile defects such as dislocations,
the stress-strain response can therefore remain reversible to
high applied stresses or strains. The ability to relieve strain
through out-of-plane bending also leads to interesting effects.

Using MoTe2 and MoS2 as guides, the small T′/T′ in-
terfacial energies indicates that elastic rather than interfacial
energy minimization will be the primary determinant of mi-
crostructure and response during straining for T′ domain sizes
larger than ∼10 nm (see Figs. 3 and 11). Simulations in the
elasticity-dominated rather than interfacial energy-dominated
parameter regimes are therefore appropriate. Even for small
domain sizes, inclusion of interfacial anisotropy effects do
not qualitatively alter our results because T′/T′ interfacial
energies generally favor the same inclinations as the elastic
misfit energy, as shown in Sec. III B. We therefore conducted
WTe2 straining in isotropic interface simulations.

Multivariant T′ microstructures were first generated by
initializing each freely suspended monolayer with a homo-
geneous, stress-free H phase and allowing T′ domains to
spontaneously nucleate and grow [Fig. 8(a)]. H → T′ trans-
formation leads to buckling wherever the local induced axial
stresses are sufficiently negative. The average stresses in the

(b)

(c)

1% 3.5%

(a)

(d)

6%

FIG. 8. Domain morphologies of multivariant, freely suspended
T′-WTe2 monolayers under strain. Evolution of T′ variant domains
and wrinkles with time (left to right) in (a) an unstrained fixed area
monolayer initialized as a single H crystal, and the final state from
(a) subjected to strain applied at constant rate along (b) φP = 90◦,
(c) 0◦, and (d) 45◦. w(	r ) is amplified by 5X for visualization.

system were relaxed to steady values near zero, then the
monolayer was strained uniformly along φP = 0◦, 45◦, or 90◦
at a low (quasistatic) rate.

Our primary findings are summarized in Figs. 8 and 9.
Inspection of Fig. 8(a) reveals that the primary T′ domain
symmetries observed in flat monolayers (nested threefold
stars, fourfold domain wall junctions, and multicomposite
wedges/fans) [10] are far less prominent in bendable mono-
layers. This results from local wrinkle-mediated relief of
transformation strain which tends to break the threefold
symmetry of local strain states (e.g., when wrinkle pattern
symmetries do not match domain symmetries) and generate
qualitatively different, less symmetric T′ domain patterns.

A transient kinetic regime exists in which this symmetry
reduction is not observed, but the asymptotic state appears to
be that with lower T′ domain symmetry. Starting from a flat H
monolayer, there are separate driving forces for T′ domain for-
mation and subsequent wrinkle formation, as well as separate
factors controlling the kinetics of each. If the initial driving
force for wrinkling is sufficiently large (e.g., κ is relatively
large), then wrinkle morphologies with larger characteristic
lengths than those of T′ domain morphologies will initially
develop. During this stage the T′ domain symmetries of flat
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FIG. 9. Mechanical response of multivariant, freely suspended
T′-WTe2 monolayers. Stress-strain curves at φP = 0◦, 45◦, and 90◦

(lower) and corresponding variations in area fraction of T′ variants
(upper three plots). An expanded view of the highlighted low strain
region is shown in the lower inset.

monolayers will be observed because the relative wrinkle
size is too large to locally alter strain states at junctions.
Wrinkles form a coarse wave pattern that essentially overlays
the sheet and does not couple strongly to the finely-patterned
T′ microstructure.

However, the kinetics of wrinkle coarsening is generally
slower than that of domain coarsening, such that even in the
scenario above, T′ domains will eventually coarsen to and
potentially beyond the typical wrinkle length scale. When
this occurs, wrinkle and T′ domain kinetics become more
strongly coupled and the wrinkle morphology breaks the
threefold T′ domain symmetries, generating a morphology
like that of Fig. 8(a). Wrinkles can therefore play a large
role in determining the microstructure of T′ monolayers; they
eventually become embedded within and across T′ domains
and are then an integral part of the morphology rather than a
large wavelength overlay. Microstructural rearrangement must
involve wrinkle pattern rearrangement in this regime.

In our simulations the wave speeds αp and αw are set
to be equal. The kinetics of T′ domains and wrinkles are
therefore preset to occur on similar time scales. Simulations
reveal that the transient kinetic regime with high T′ domain
symmetry is observed when κ is sufficiently large, but the
asymptotic lower symmetry morphologies emerge with time.

The strength of coupling to a substrate can again be employed
here to induce changes between the less symmetric T′ domain
patterns associated with wrinkles and the more symmetric
patterns observed when wrinkling is suppressed.

Upon straining a terminal state such as that shown in
Fig. 8(a), either two or three linear stress-strain response
regimes are observed, depending on the value of φP . For
φP = 90◦ [Fig. 8(b)], the effective modulus increases from
∼5 GPa to ∼62 GPa to ∼95 GPa for 0 � ε̄yy � 1% (regime
I), 1% � ε̄yy � 6.2% (regime II) and ε̄yy � 6.2% (regime
III), respectively. In regime I, the wrinkles induced by the
initial H → T′ transformation provide “slack” that allows
stretching of the monolayer with little elastic energy cost.
In regime II, the wrinkles have been “stretched away” and
the three-variant microstructure evolves to eliminate variants
p = 2 and p = 3, which do not relieve ε̄yy as effectively
as variant p = 1. This microstructural evolution or variant
switching relieves some fraction of the applied elastic energy.
In regime III, variants p = 2 and p = 3 have been eliminated
and the monolayer deforms as a homogeneous elastic sheet
with the moduli of the univariant T′ phase, without significant
further microstructural evolution.

The response at φP = 0◦ [Fig. 8(c)] is qualitatively similar
to that of φP = 90◦, except that only the p = 1 variant is
eliminated during regime II, which terminates at ε̄xx ≈ 2.4%.
The final microstructure contains a lamellar pattern of variants
p = 2 and p = 3. In the case of φP = 45◦ [Fig. 8(d)], regime
II does not occur because the applied strain favors all three
variants equally; none are eliminated. Once the wrinkles are
removed, the threefold microstructural symmetry is restored.

V. CONCLUSIONS

Strain and phase engineered multiphase H/T′ TMD mono-
layers provide a platform for dynamic localized switching
between semiconducting H and metallic or semimetallic T′
phases. Exploitation of this transformation in experiments
and devices relies on the ability to predict and control T′
and H domain patterns. We have quantitatively characterized
domain morphologies and the mechanical response of such
monolayers using a combination of first principles and con-
tinuum calculations. T′0T′ domains are generally found to
be rhombi of fixed proportions, while T′60T′ domains are
nearly rectangular with monotonically increasing aspect ratio
AR as a function of domain size L0. H0T′ domains undergo
a morphological change from compact to elongated shapes at
L0 ≈ 100–200 nm in flat sheets (bonded to substrates) and
L0 � 2 μm in bendable (freestanding) sheets.

T′60T′ and H0T′ domain elongation results from elastic
misfit energy dominance over interfacial energy with increas-
ing domain size L0. A general scaling relation AR ∼ L

2/3
0

is derived from energy balance considerations and verified
in the large L0 limit (above L∗

0). L∗
0 is much larger in

freely suspended monolayers because much of the in-plane
elastic transformation strain energy is relieved through buck-
ling, at the expense of very small bending energy increases.
The crossover size L∗

0 and therefore T′ domain morphol-
ogy in partially-transformed monolayers can be tuned via
the monolayer-substrate interaction strength. Such control
directly facilitates the use of 2D TMDs in experiments and
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devices that require the realization of domain patterns with
specific geometric and/or morphological features and length
scales.

Applied strain can drive the H → T′ transformation, lead-
ing to multiregime stress-strain response that is sensitive to the
orientation of the applied load. The strain required to induce
and complete the transformation also varies significantly with
this orientation [10]. These properties could be utilized in
electromechanical functions such as multifunctional switches
that involve directed uniaxial strains.

Localized buckling in freely suspended, fixed area WTe2

monolayers following H → T′ transformation is shown to re-
sult in qualitatively different T′ domain symmetries than those
of flat T′ monolayers. Ferroelastic T′-WTe2 sheets exhibit
either two to three regimes of reversible mechanical response
with increasing strain, depending on strain orientation. This
anisotropy and systematic variation in elastic moduli with
strain provides novel electromechanical functions.

The ability to controllably tune phase morphologies and
strain states provides interesting opportunities for fundamen-
tal studies and applications involving 2D materials. The study
of topologically protected edge states in large-gap quantum
spin Hall insulating T′ TMDs [13] and their exploitation in de-
vices relies on the realization of particular interface misorien-
tations and inclinations between neighboring H or T′ domains
[14]. The morphologies outlined here and their dependence on
domain size and wrinkle state provide guidelines for systemat-
ically generating various types of H/T′ and T′/T′ domains and
interfaces. Extension of these concepts to electrostatically-
induced transformations [9,11,12] could prove particularly
effective in a variety of applications, including phase change
memory [7,9], advanced electronic devices [15], hydrogen
evolution catalysis [16], and Ohmic contacts [17–19].
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APPENDIX A: DERIVATION OF MESOSCALE
GOVERNING EQUATIONS FOR A STRUCTURALLY
HETEROGENEOUS, BENDABLE 2D MONOLAYER

Here the elastic energy functional of a structurally het-
erogeneous, elastically homogeneous, bendable 2D sheet is
derived following the approach of Khachaturyan et al. [31].
The new element in our derivation is the incorporation of
out-of-plane bending within a 2D sheet geometry.

Three starting assumptions are made: (1) all phases have
the same elastic moduli, (2) the average length of inclusions
and their spacing are both small relative to the total body
size, (3) external boundaries of the body are stress free. The
calculation is then divided into six steps:

(1) Cut the (arbitrary) shapes of a group of inclusions
out of an initially homogeneous parent phase. Assume the
inclusions are large enough to ignore any surface energies
introduced.

(2) Transform the cutout inclusions to the new phase under
stress-free conditions, such that no strain energy is yet in-
troduced. The stress-free transformation strain tensors ε0

ij (p)
describe the strains introduced.

(3) Apply surface traction to each inclusion to restore its
original shape, introducing the homogeneous strain and stress
tensors, εij = −ε0

ij (p) and σij = −λijklε
0
ij (p), respectively.

The associated elastic energy within one inclusion is

�Eself (p) = 1
2apλijklε

0
ij (p)ε0

kl (p), (A1)

where ap is the inclusion’s area. The total energy change of
all inclusions is

�E3 = 1

2

∑
p

Apλijklε
0
ij (p)ε0

kl (p), (A2)

where Ap is the total area of pth type inclusions.
(4) Put the inclusions back into the parent crystal, intro-

ducing no energy change at this stage as they are not yet
allowed to relax.

(5) “Weld” the inclusions into the parent phase, assuming
that coherent interfaces can be established.

(6) Let the inclusions relax, introducing elastic relaxation
energy. Write this energy as a power series in the local
deformation tensor εij (	r ), truncated after the second term, and
include the out-of-plane bending energy:

�ER =
∫

A

{
− σ 0

ij (	r )εij + 1

2
λijklεij εkl + κ

2
[∇2w(	r )]2

+ κ (1 − ν)[(w(	r ),xy )2 − w(	r ),xxw(	r ),yy]

}
dA.

(A3)

Here A is the area of the sheet, σ 0
ij (	r ) the first order expansion

coefficient, which will be defined later, κ is the bending
rigidity, ν is the Poisson ratio, and w(	r ) is the out-of-plane
displacement field, defined relative to the flat sheet at z = 0.

The total elastic strain energy must then be determined
from the general expressions above. We have

Eelas =�E3 + �ER = 1

2

∑
p

Apλijklε
0
ij (p)ε0

kl (p)

+
∫

A

{
− σ 0

ij (	r )εij + 1

2
λijklεij εkl + κ

2
[∇2w(	r )]2

+ κ (1 − ν)[(w(	r ),xy )2 − w(	r ),xxw(	r ),yy]

}
dA.

(A4)

The linear term in the integral does not vanish because the
system is structurally heterogeneous and is therefore strained
in the stress-free state [εij (	r ) �= 0 when σij (	r ) = 0]. The
strain tensor of the stress-free state is therefore

ε0
ij (	r ) =

v∑
p=1

�p(	r )ε0
ij (p), (A5)

where �p(	r ) is the shape function of p-type inclusions, equal
to 1 inside a p-type inclusion and 0 otherwise, and v is the
number of inclusion types or orientations.
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The elastic stress can be obtained from

σij (	r ) = δEelas

δεij (	r )
= −σ 0

ij (	r ) + λijklεkl . (A6)

In the stress-free state σij (	r ) = 0 and εij (	r ) = ε0
ij (	r ), implying that

σ 0
ij (	r ) = λijklε

0
kl (	r ) = λijkl

v∑
p=1

�p(	r )ε0
kl (p) =

v∑
p=1

σ 0
ij (p)�p(	r ), (A7)

where σ 0
ij (p) = λijklε

0
kl (p). This defines the first order expansion coefficient from step 6, giving

�ER =
∫

A

{
−

v∑
p=1

σ 0
ij (p)�p(	r )εij + 1

2
λijklεij εkl + κ

2
[∇2w(	r )]2 + κ (1 − ν)[(w(	r ),xy )2−w(	r ),xxw(	r ),yy]

}
dA. (A8)

To obtain a functional of phase field order parameters ηp(	r ), the binary shape functions �p(	r ) can be written as a power
series in ηp(	r ). We assume that the energy is invariant under ηp → −ηp, such that the linear term in the expansion must vanish
by symmetry. Then to second order,

ε0
ij (	r ) =

v∑
p=1

�p(	r )ε0
ij (p) =

v∑
p=1

η2
p(	r )ε0

ij (p). (A9)

If ηp is assumed to be normalized to [−1, 1], then the total elastic energy is

Eelas = �E3 + �ER = 1

2

∫
A

∑
p

∑
q

[
λijklε

0
ij (p)ε0

kl (q )η2
p(	r )η2

q (	r )
]
dA +

∫
A

⎧⎨
⎩−

3∑
p=1

λijklε
0
kl (p)η2

p(	r )εij (	r )

+ 1

2
λijklεij (	r )εkl (	r ) + κ

2
[∇2w(	r )]2 + κ (1 − ν)[(w(	r ),xy )2 − w(	r ),xxw(	r ),yy]

⎫⎬
⎭dA. (A10)

The strain tensor is now introduced and is taken to be linear in the local in-plane displacements ui (	r ) and second order in the
local out-of-plane displacements w(	r ),

εij (	r ) = ε̄ij + δεij (	r ) = ε̄ij + 1
2 (ui,j + uj,i + w,iw,j ). (A11)

This form is appropriate for moderately large out-of-plane deformations. ε̄ij is the uniform macroscopic strain due to the
inclusions (or an applied macroscopic strain), and δεij (	r ) contains heterogeneous strains which have no net macroscopic effect.
With this definition, the elastic strain energy becomes

Eelas = �E3 + �ER �E3 = 1

2

∫
A

∑
p

∑
q

[
λijklε

0
ij (p)ε0

kl (q )η2
p(	r )η2

q (	r )
]
dA �ER = Ehom

R + Ehet
R

Ehom
R = −

∫
A

∑
p

[
λijkl ε̄ij ε

0
kl (p)η2

p(	r )
]
dA + A

2
λijkl ε̄ij ε̄kl

Ehet
R =

∫
A

⎧⎨
⎩−

v∑
p=1

λijklε
0
kl (p)η2

p(	r )
1

2
(ui,j + uj,i + w,iw,j ) + κ

2
[∇2w(	r )]2 + κ (1 − ν)[(w(	r ),xy )2 − w(	r ),xxw(	r ),yy]

+ 1

2
λijkl

[
1

2
(ui,j + uj,i + w,iw,j )

1

2
(uk,l + ul,k +w,kw,l ) + 1

2
(ε̄ijw,kw,l + ε̄klw,iw,j )

]⎫⎬
⎭dA. (A12)

In this form the elastic strain energy depends on four sets of
internal parameters:

(1) the macroscopic homogeneous strains ε̄ij ,
(2) the local in-plane displacements ux (	r ) and uy (	r ),
(3) the local out-of-plane displacement w(	r ), and
(4) the local order parameter variants ηp(	r ).

The corresponding conditions of mechanical equilibrium
are

∂Eelas

∂ε̄ij

= 0
∂Eelas

∂ui (	r )
= 0

∂Eelas

∂w(	r )
= 0

∂Eelas

∂ηp(	r )
= 0.

(A13)

114002-16



DOMAIN MORPHOLOGY AND MECHANICS OF THE H/T′ … PHYSICAL REVIEW MATERIALS 2, 114002 (2018)

In the w(	r ) = 0 case, Khachaturyan et al. use the corre-
sponding equations to derive explicit analytic solutions for
ε̄ij and ui (	r ) in terms of ε0

ij (p) and ηp(	r ). The conditions
of mechanical equilibrium can then be explicitly formulated
in terms of a single closed equation for each ηp(	r ). This
approach cannot be directly adapted to the highly nonlinear
w(	r ) �= 0 case. We therefore derive the equilibrium equation
of each parameter while holding all other parameters fixed
and solve the resulting set of equations with a combined
analytical/numerical approach outlined in Ref. [10]. In all
that follows, the second bending energy term in Eq. (7), that
multiplied by (1 − ν), will be set to zero, its value when the
boundaries of the plate are clamped.

1. Equilibrium w.r.t. macroscopic homogeneous strains

When the macroscopic homogeneous strains ε̄ij are not
fixed by strain-controlled boundary conditions, mechanical
equilibrium is realized at

∂Eelas

∂ε̄ij

= −
∫

A

v∑
p=1

[
λijklε

0
kl (p)η2

p(	r )
]
dA + Aλijkl ε̄kl

+
∫

A

1

2
λijklw,kw,ldA = 0 (A14)

or

ε̄ij = 1

A

∫
A

⎡
⎣ v∑

p=1

ε0
kl (p)η2

p(	r ) − 1

2
w,kw,l

⎤
⎦dA. (A15)

The solution for the homogeneous relaxation energy in this
case is given by substituting this result into Eq. (A12). When
the macroscopic homogeneous strains ε̄ij are fixed by strain-
controlled boundary conditions, it is not necessary to mini-
mize Eelas with respect to ε̄ij .

2. Equilibrium w.r.t. in-plane displacements

To compute mechanical equilibrium with respect to ui (	r ),

∂Eelas

∂ui (	r )
= ∂�ER

∂ui (	r )
= 0, (A16)

the heterogeneous relaxation energy must be expressed in
terms of ui (	r ). This can be done by computing the first
variation or differential of �ER, employing the symmetries
σ 0

ij (p) = σ 0
ji (p) and λijkl = λjikl = λijlk = λklij , and apply-

ing the divergence theorem several times. The result is

δ(�ER) =
∫

A

⎧⎨
⎩

v∑
p=1

σ 0
ij (p)

[(
η2

p(	r )
)
,j

(δui + w,iδw)

+ η2
p(	r )w,ij δw

] + κ (∇4w(	r ))δw− 1

2
λijkl

[
(2uk,lj

+w,kw,lj + w,lw,kj )δui +
(

2
∂

∂ri

(uk,lw,j )

+ ∂

∂ri

(w,jw,kw,l ) + 2ε̄klw,ji

)
δw

]⎫⎬
⎭dA. (A17)

The equation of mechanical equilibrium for ui (	r ) is therefore

δ�ER

δui (	r )
= −1

2
λijkl (2uk,lj + w,kw,lj + w,lw,kj )

+
v∑

p=1

σ 0
ij (p)

(
η2

p(	r )
)
,j

= 0 (A18)

or

1

2
λijkl (2uk,lj + w,kw,lj + w,lw,kj ) =

v∑
p=1

σ 0
ij (p)

(
η2

p(	r )
)
,j
.

(A19)

Equation (A19) is linear in ui (	r ) and can therefore be solved
analytically to obtain the equilibrium displacements, follow-
ing largely the standard approach. We first multiply both sides
by e−i	k	r and integrate over A,∫

A

1

2
λijkl (2uk,lj + w,kw,lj + w,lw,kj )e−i	k	rdA

=
∫

A

v∑
p=1

σ 0
ij (p)

(
η2

p(	r )
)
,j
e−i	k	rdA. (A20)

This result is equivalent to Eq. (10), and its solution is given
by Eq. (14).

3. Equilibrium w.r.t. out-of-plane displacements

The equation of mechanical equilibrium for w(	r ), Eq. (11),
can be directly obtained from Eq. (A17).

4. Equilibrium w.r.t. order parameter variants

The equation of mechanical equilibrium for the order pa-
rameters, Eq. (12), can be obtained directly from Eq. (A12).

APPENDIX B: SIMULATION METHOD WITH
INTERFACIAL ANISOTROPY AND CONSERVED

AREA KINETICS

For simulations at length scales near or below the morpho-
logical crossover scale L∗

0, interfacial anisotropy and ηp con-
servation (for fixed area T′ domains) were implemented. The
convexification approach noted in the main text was employed
to handle the technical challenges associated with the large
H0T′ interfacial anisotropy and subsequent domain faceting.
The technical challenge arises due to the fact that under
sufficiently large anisotropy, the equations of motion become
ill-posed, backward parabolic equations over certain ranges of
unstable inclinations. The convexification method regularizes
the equations over the unstable φ̂ values and produces the
correct equilibrium domain shapes. Further details of the
method can be found in Ref. [51]; here we straightforwardly
adapted the original scheme to the case of combined threefold
and dual twofold symmetry.

In the simulations associated with Figs. 5 and 6 of the
main text, single p = 1 T′ domains of various size were
initialized either as circles or as rectangles with ζ = φhabit and
AR = 2–15. These correspond to infinite arrays of identical
domains due to the use of periodic boundary conditions, but
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(a) (b)

FIG. 10. T′0T′ interfaces and domain morphologies in MoS2. (a)
Anisotropy in interfacial energy γ1:1(φ̂) as determined from DFT
calculations (points) and the best fit to Eq. (17) (line). Energy units
are meV/Å. (b) Equilibrium (sub)domain shapes for each variant
orientation p as determined from the Wulff construction employing
the best fit to Eq. (17).

results were compared at multiple system sizes to confirm
convergence toward the isolated inclusion limit. Relaxation
to the energy minimizing shape at fixed domain area was
achieved by evolving the order parameters as

∂ηp

∂t
= −Mp

(
δF̃tot

δηp

− λp

)
+ νp, (B1)

where Mp is a constant mobility parameter, λp =
A−1

∫
A

(δF̃tot/δηp )d	r is the Lagrange multiplier that enforces
global conservation of ηp, and νp is the previously defined
Gaussian noise term, in this case of very small magnitude.
This evolution equation permits rapid, nondiffusive
relaxations toward equilibrium while maintaining global
conservation of each ηp.

APPENDIX C: T′ DOMAIN SHAPES IN MoS2

MoS2 interfacial energies determined from DFT calcula-
tions are presented here in Figs. 10 and 11, along with the
computed T′0T′ and T′60T′ domain morphologies. The in-
terfacial energy values were previously reported in Ref. [28].
Results are very similar to those of MoTe2 shown in Figs. 2
and 3.

APPENDIX D: MODIFIED ESHELBY CALCULATION
OF T′ DOMAIN SHAPES

Details of the calculation of isolated T′ domain shapes
when embedded within the matrix of H phase are outlined
here. The aim is to determine the T′ domain size L∗

0 at which a
crossover from compact to elongated shapes occurs. We write
the total energy difference between compact and elongated
domain shapes in terms of the elastic (Eelas

i ) and interfacial
(Eint

i ) contributions to each,

�Etot = Etot
com − Etot

elo

= Eelas
com + Eint

com − Eelas
elo − Eint

elo

= E0,comL2
0/4 + P̄comγ̄comL0

− E0,eloL
2
0/4 − P̄eloγ̄eloL0. (D1)

Etot
com and Etot

elo are the total interfacial plus elastic misfit
energies of the optimized compact and elongated domains,
respectively, at a given L0. The last equality invokes the fact
that the elastic energies can be expressed as the product of
the inclusion area and a prefactor E0, to be specified in the
following. It also invokes the fact that the total interfacial
energy of a domain can be expressed as the product of its
perimeter length Pi and a mean interfacial energy γ̄i (P̄com

and P̄elo are the domain perimeter lengths scaled relative
to L0).

(b)(a) (c)

FIG. 11. T′60T′ interfaces and domain morphologies in MoS2. (a) Anisotropy in interfacial energy γ1:2(φ̂) as determined from DFT
calculations (points) and the best fit to Eq. (18) (line). Energy units are meV/Å. (b) Equilibrium domain shapes for each variant orientation
pair p:q as determined from the Wulff construction employing the best fit to Eq. (18) but neglecting the effect of misfit strain (valid only for
very small domain sizes). The possible crystal orientations across each interface are shown for each pair; the inner:outer domains can be p:q or
q:p. (c) Equilibrium domain axial ratio AR increases with domain size L0, crossing over from interface dominated to elastic misfit dominated
AR behavior above L0 
 10 nm. Results were obtained via the Eshelby misfitting inclusion calculation with anisotropic interfacial energy
described in the main text.
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FIG. 12. Elastic energy from Eq. (D5) as a function of ellipse
inclination ζ for various aspect ratios. Vanishing of the elastic energy
at the habit inclination near ζ = 40◦ is apparent at large aspect ratios.

The general solution of �Etot = 0 based on Eq. (D1) is
given in Eq. (20). The form of this result shows that L∗

0
is controlled by the ratio of the differences between the
average interfacial energy densities and the total elastic energy
densities of the two domain shapes. The interfacial terms in
the numerator are determined from DFT computations and
the geometric approximations described in the main text.
The elastic terms in the denominator are determined using

Eshelby’s classic analysis of elastically misfitting coherent
inclusions. The elastic energy is first specified as

Eel(R1, R2) = − 1
2σ I

ij ε
0
ijA0h (D2)

= − 1
2λijkl

(
εc
kl − ε0

kl

)
ε0
ijA0h, (D3)

where A0 is the inclusion area, and σ I
ij = λijkl (εc

kl − ε0
kl ) and

εc
ij = Sijklε

0
kl are the relaxational stress and strain, respec-

tively, associated with the inclusion. The task is to solve for
the Eshelby tensor Sijkl . Following the standard approach, the
result for plane stress is

Sijkl = 3ν − 1

8
δij δkl + 3 − ν

8
(δikδjl + δilδjk ). (D4)

The associated energy for arbitrary inclination ζ and area
A0 = πR1R2 = πL2

0/4 is Eelas
elo = E0(ζ,AR, ε0

ij )R1R2, where

E0
(
ζ,AR, ε0

ij

)
= πμ(1+ν)h

2

[(
2−R2

2+2R1R2

(R1+R2)2
− R2

R1 + R2

)
ε0
xx (ζ )ε0

xx (ζ )

+
(

2 − R2
1 + 2R1R2

(R1 + R2)2
− R1

R1 + R2

)
ε0
yy (ζ )ε0

yy (ζ )

+ 2R1R2

(R1 + R2)2

(
ε0
xx (ζ )ε0

yy (ζ ) + 2ε0
xy (ζ )ε0

xy (ζ )
)]

(D5)

and ε0
ij (ζ ) = RT[ζ ]ε0

ij R[ζ ]. Equation (D5) captures the effect
of habit inclination, as shown in Fig. 12.
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