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Autonomous efficient experiment design for materials discovery with Bayesian model averaging
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The accelerated exploration of the materials space in order to identify configurations with optimal properties
is an ongoing challenge. Current paradigms are typically centered around the idea of performing this exploration
through high-throughput experimentation/computation. Such approaches, however, do not account for—the
always present—constraints in resources available. Recently this problem has been addressed by framing
materials discovery as an optimal experiment design. This work augments earlier efforts by putting forward
a framework that efficiently explores the materials design space not only accounting for resource constraints but
also incorporating the notion of model uncertainty. The resulting approach combines Bayesian model averaging
within Bayesian optimization in order to realize a system capable of autonomously and adaptively learning not
only the most promising regions in the materials space but also the models that most efficiently guide such
exploration. The framework is demonstrated by efficiently exploring the MAX ternary carbide/nitride space
through density functional theory (DFT) calculations.
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I. INTRODUCTION

A. Motivation

The accelerated exploration of the materials design space
(MDS) has been recognized for more than a decade as a
key enabler for potentially transformative technological de-
velopments [1,2]. The development of strategies to integrate
simulations and experimental data with expert knowledge is
a highly active area of research [3,4]. Over time, different
methods have been deployed within conventional, human-
centric, materials development frameworks for exploration of
the MDS, including high-throughput (HT) experimentation
and computation.

Traditional HT experimental [5–7] and computational [8]
approaches, while powerful, have important limitations as
they (i) employ hardcoded workflows and lack flexibility to
iteratively learn and adapt based on the knowledge acquired
to assure balanced exploration and exploitation of the MDS
and (ii) tend to be suboptimal in resource allocation as these
approaches generally rely on highly parallelized exploration
of the MDS, even in regions that are of low value relative to
the objective, or performance metric, that is sought after.

Resource limitation cannot be overlooked as it is often
the case that once a bottleneck in HT workflows has been
eliminated (e.g., synthesis of ever more expansive materials
libraries), another one suddenly becomes apparent (e.g., need
for high-resolution characterization of materials libraries).
Regardless of how many bottlenecks are eliminated, the fact
that ultimately a human must make decisions about what to
do with the acquired information implies that HT frameworks
face hard limits that will be extremely difficult to overcome.

*anjanatalapatra@tamu.edu

On the computational front, there exist significant fundamen-
tal and technological challenges to the (multiscale) simulation
of materials [9] that effectively preclude the HT exploration
of MDS beyond the use of (sophisticated) methods—such as
DFT-based HT simulations [8]—operating at one scale, with
relatively small numbers of degrees of freedom.

B. Experiment design

The goal of any experiment design strategy is to identify
an action that results in a desired property, which is usually
optimizing an objective function of the actions. Without loss of
generality, we assume minimization of the objective function
f (x):

x∗ = arg min
x∈χ

f (x), (1)

where χ denotes the action space. In materials discovery, each
action is equivalent to an input or design parameter setup or a
compound, and χ is the materials design space (MDS).

The objective function can have a closed form as a para-
metric function, i.e., f (x, θ ), where θ denotes the parameters.
If complete knowledge of the values of the parameters exist,
then no experiments are needed. In practice, even if a closed
form exists, the true values of the parameters are unknown
and they may belong to an uncertainty class �, governed
by a probability measure. Hence, experiments are desired to
gain more knowledge concerning the objective function. It
is possible that the parameters of the objective function are
directly parameters of an underlying system. For example, in
Ref. [11] the underlying system is a gene regulatory network
and θ is the set of parameters that govern the network. In
this context, the experiment space can be different from the
action space, e.g., an experiment determines the true value of
a parameter of the underlying system, but an action is a gene
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perturbation subsequently determined by a medical criterion
dependent on the value of the parameter. Typically in the
context of materials discovery, each experiment corresponds
to applying an action, i.e., setting the input parameters, and
observing its true objective value (or a noisy observation
of it). Whether or not the experiment and action spaces are
identical, the best experiment is determined by optimizing an
acquisition function.

In materials discovery, f is typically a blackbox function
without a known closed form, and the cost of querying such
a function (through expensive experiments/simulations) at
arbitrary query point x in χ is very high. In these cases a
surrogate model can be used to approximate the true objective
function. This model can either be parametric or nonpara-
metric. The so-called Bayesian optimization (BO) [12] in
the literature corresponds to these cases, where the prior
model is sequentially updated after each experiment. Bayesian
parametric and nonparametric models are widely used in other
fields such as bioinformatics [13–18]. When prior knowledge
about the form of the objective function exists and/or many
observations of the objective values at different parts of the
input space are available, one can use a parametric model
as a surrogate model. An example of it for finding the alloy
with the least energy dissipation at a specific temperature
can be found at [19], where due to the availability of the
objective values at many initial input points, the authors have
assumed a surrogate parametric function and fixed a subset of
its parameters for the experiment design loop.

If, as is often the case, no prior knowledge of the behavior
of the objective function is available, and limited initial data
points are observed, then one can adopt a nonparametric
surrogate model for the objective function. In either case,
there is an inherent feature selection step, where different
potential feature sets might exist. Moreover, there might be
a set of possible parametric families as candidates for the
surrogate model. Even when employing nonparametric sur-
rogate models, several choices for the kernel functional form
might be available. These translate into different possible
surrogate models for the objective function. The common
approach is to select a feature set and a single family of models
and fix this selection throughout the experiment design loop;
however, this is not a reliable approach due to the small initial
sample size that is ubiquitous in materials science. In this
paper we address this problem by framing experiment design
as Bayesian optimization under model uncertainty (BOMU),
and incorporating Bayesian model averaging (BMA) within
Bayesian optimization. Since in the materials discovery con-
text, the objective function is in most cases a target property
of the material; hereafter the surrogate model for the objective
function is referred to as the predictive model.

In the experiments in this paper no prior knowledge about
the functional form of the target properties as functions of
the potential features exists, and Gaussian process regression
(GPR) [20] is employed as the predictive model for each target
property. GPR is a flexible model that imposes only continuity
and smoothness prior beliefs and can asymptotically converge
to the true objective function. Moreover, in our experiments
different predictive models correspond to models based on
different potential feature sets. But the approach is by no
means limited to this case and can be applied when different

predictive models correspond to different parametric families
or kernel functional forms of nonparametric models.

A key element in an experiment design strategy is the
choice of the acquisition function. The next selected experi-
ment is the one that maximizes the acquisition function, which
tries to balance the trade-off between the exploitation of the
current belief and the exploration of the unqueried regions
of the input space. The acquisition function is itself depen-
dent on the modeling of the objective function. Expected
improvement (EI) [10] and knowledge gradient (KG) [21,22]
are among the most commonly used acquisition functions,
having been originally proposed for experiment design under
Gaussian belief over the objective values of input setups and
observation noise for an off-line ranking and selection prob-
lem. Mean objective cost of uncertainty (MOCU) [11,23,24]
is another choice for the acquisition function that is more flex-
ible and quantifies the uncertainty impacting the operational
objectives. For the connection of MOCU with KG and EGO,
the reader can refer to [24].

In the following sections, we cover the mathematics of
our proposed algorithm, but the description in words is as
follows:

(i) There is a collection of potential models (e.g., models
based on different features sets).

(ii) The models are averaged, based on the (posterior)
model probabilities based on initial data set to form a BMA.

(iii) Using the expected acquisition function under the
BMA, an experiment is chosen that maximizes the expected
acquisition.

(iv) The experiment is run, each model is updated and the
(posterior) model probabilities are updated.

(v) The expected acquisition under the updated BMA is
computed and an experiment is chosen.

(vi) This iteration is done until some stopping criteria
(e.g., while objective not satisfied and budget not exhausted),
and the best observation so far is selected as the final sugges-
tion.

In Appendix B we have provided more details about the
generalized MOCU for experiment design and how the ap-
proach in this paper compares to that.

C. Efficient materials discovery

Resource constraints call for the efficient evaluation of
materials configurations in order to identify regions in the
MDS with the optimal response. Bayesian optimization (BO)
[12,25] provides a sequential model-based approach to solve
the problem: first, a prior belief is prescribed over the objec-
tive function and then the model (M) is sequentially refined
via Bayesian posterior updating. The domain χ is sampled
for a query point xn+1 such that an acquisition function
u(x|Dn,M )—constructed from a model of the observed data
Dn—is maximized—see Algorithm 1 and Fig. 1. The stopping
criteria can be reaching the desired properties or exhausting
the experimental budget.

Having mapped the exploration of the MDS to an expen-
sive blackbox function, several groups have already demon-
strated the power of Bayesian optimization in the context of
accelerated materials discovery. Early on, Fujimura et al. [26]
combined DFT and experimental data to construct a model to
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Algorithm 1. Bayesian optimization.
1: Initialize D0

2: for n = 0, 1, . . . do
3: Update statistical model M

4: Select new xn+1 by optimizing acquisition function u:

xn+1 = arg max
x∈χ

u(x|Dn, M )

5: Query blackbox function f to obtain yn+1

6: Augment data Dn+1 = {Dn, (xn+1, yn+1)}
7: if stopping criteria reached then
8: break
9: end if
10: end for

predict the ionic conductivity of Li-superionic conductors via
support vector regression (SVR) [27]. The predicted conduc-
tivity σLi from the SVR model was then used as the acqui-
sition function to further explore the Li-superionic conductor
space. Seko et al. [28] used feature sets derived from DFT
calculations and experimentally measured melting points Tm

to fit stochastic models based on SVR or Gaussian process
regression (GPR) [20] to discover unary and binary crystals
with the highest melting point. In that case, the acquisition
function used in the sequential exploration of the melting
point space χTm

was the probability of improving upon the
best value recorded before acquisition n + 1. These early
results introduced the notion of sequential exploration but did
not consider the larger implications of framing the materials
discovery as the optimization of an expensive blackbox func-
tion.

Balachandran et al. [29] prescribed the need to balance
the need to exploit our current knowledge of the MDS χ

with the need to explore it. The balance between exploitation
and exploration was realized by invoking a proper acquisi-

tion function. Balachandran et al. proposed using expected
improvement (EI) [10] in the predicted objective function
y by the model P (y|x,D) over the unexplored regions of
χ , given the observed data D. EI can in turn be calculated
for unexplored query points x by the model trained. They
demonstrated their design protocol by attempting to predict
the MAX phases (ternary layered carbides/nitrides [30]) with
maximal/minimal polycrystalline bulk/shear moduli as pre-
dicted via DFT calculations. Having demonstrated the power
of Bayesian optimization in materials discovery, the same
group [31] notably employed the same approach to discover,
via experiments, NiTi-based shape memory alloys (SMAs)
with record-low hysteresis through a minimal experimental
effort.

The principled nature of a BO-based materials discovery
protocol is amenable to develop full-loop platforms, particu-
larly when attempting to carry out simulation-driven materials
development. Indeed, Ju et al. [32] recently proposed a frame-
work whereby atomistic transport calculations were combined
with a BO framework to identify aperiodic nanostructures
with optimal transport properties by examining only an ex-
tremely small fraction of the possible configurations. On the
experimental front, Nikolaev et al. [33] recently demonstrated
a fully autonomous closed-loop iterative materials experimen-
tation platform. They demonstrated the system by optimizing
the synthesis conditions for carbon nanotubes. In their case,
the approach focused on a greedy exploitation of the synthesis
space by using the predicted rate of growth as the acquisition
function—i.e., no exploitation-exploration tradeoff [29,31]
was used.

D. Contributions of this paper

While existing computational and experimental deploy-
ments of optimal materials discovery constitute significant

FIG. 1. Schematic illustration of Bayesian optimization (BO): from a limited number of observations on a system (blue solid line) a
stochastic model (dashed blue line and shaded area) is built. The next observation is determined by accounting for the tradeoff between the
exploitation of the current knowledge and the exploration of the unknown regions of the design domain χ . In this case, expected improvement
(EI) is the metric used and thus the policy falls within the efficient global optimization (EGO) framework [10].
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advances, there are still significant challenges that remain to
be addressed. For example, most BO-based approaches rely
on a feature selection step [29,34,35] that necessarily requires
a considerable number of feature-property sets to be effective
[36]. In other cases, the strength of the approach depends
on building sufficient prior knowledge (from informative pre-
dictive models [28]) in order for greedy approaches to be
practical.

Unfortunately, more often than not, the amount of relevant
data available before embarking on a materials discovery
problem is small. In such situations the nature (and dimen-
sionality) of the design space—χ in the BO formalism—is not
known a priori. Moreover, it is not even clear which features
are best connected to the target performance metric. Finally,
the inability of existing approaches to “both build and exploit
their internal models, with minimal human hand-engineering”
[37] precludes the implementation of truly autonomous mate-
rials discovery systems, even in simulation-driven approaches.

In this work we propose a framework that simultaneously
(i) accounts for the need to adaptively build increasingly ef-
fective models for the accelerated discovery of materials while
(ii) accounting for the uncertainty in the models themselves.
The framework is then demonstrated by efficiently exploring
the MAX ternary carbide space through DFT calculations.
Incorporating BMA within Bayesian optimization produces a
system capable of autonomously and adaptively learning not
only the most promising regions in the materials space but also
the models that most efficiently guide such exploration. The
framework is also capable of defining optimal experimental
sequences in cases where multiple objectives must be met—
we note that recent works have begun to address the issue
of multiobjective Bayesian optimization [38] in the context
of materials discovery. Our approach, however, is different in
that the multiobjective optimization is carried out simultane-
ously with feature selection.

II. BAYESIAN OPTIMIZATION UNDER
MODEL UNCERTAINTY

Small sample sizes are ubiquitous in materials science.
Experiments—and simulations—are often resource intensive
and this imposes significant constraints on any attempt to
explore/exploit the MDS. Moreover, in the absence of suffi-
cient information, there are, a priori, multiple features that are
potentially predictive of the material performance metric of
interest. In all the well-known experiment design methods in
the literature, one must select the model (the set of predictive
features and/or the parametric form or the kernel functional
form of the model) before starting the experiment design loop.

Unfortunately, due to small sample size and large num-
ber of potential predictive models, the model selection step
may not result in the true best predictive model for efficient
Bayesian optimization [39,40]. It has been shown that small
sample sizes pose a great challenge in model selection due
to inherent risk of imprecision and overfitting [39,40], and no
feature selection method performs well in all scenarios when
sample sizes are small [41]. Thus, by selecting a single model
as the predictive model based on small observed sample data,
one ignores the model uncertainty [42].

A. Building robust predictive models through
Bayesian model averaging

One possible approach to circumvent this problem is to
weigh all the possible models by their corresponding prob-
ability of being the true model, and use all of these in the
experiment design step so that model uncertainty can be taken
care of for Bayesian optimization. In other words, the derived
predictive model is a marginalized aggregation of all the
potential predictive models, weighted by the prior probability
and likelihood of the observed data for that model, resulting
in the Bayesian model averaging (BMA) method [43,44].

Here we discuss the multioutput case from which the single
output can be readily deduced. Let yj represent the j th output
of interest, and x the corresponding vector of features or
materials design parameters, and the observed data be denoted
by D = {X, Y}, where Y = [Y 1, . . . , Y q] is a matrix having
the collection of the observed j th output as its j th column,
i.e., Y j = [yj

1 , . . . , y
j
n ]T , where n is the number of observed

data points, and X represent the matrix of the collection of the
corresponding observed features. Here, to simplify the nota-
tion, we have dropped the subscript denoting the experiment
iteration step for D, but note that D = Dn at any nth step. The
predictive probabilistic model for y for a new feature vector x
after observing D is

P (y|x,D) =
L∑

i=1

P (Mi |D)P (y|x,D,Mi ), (2)

where P (y|x,D,Mi ) represents each potential probabilistic
predictive model, and

P (Mi |D) = P (D|Mi )P (Mi )∑L
j=1 P (D|Mj )P (Mj )

, (3)

P (D|Mi ) =
∫

P (D|θi,Mi )P (θi |Mi )dθi (4)

are the (posterior) probability of each model being the true
predictive model, and the marginal probability of the observed
data under model Mi , respectively. L is the total number of
models under consideration, and Mi and θi represents the ith
model and the vector of ith model parameters, respectively.

If we further assume independence among outputs
and let Dj denote {X, Y j }, we have P (y|x,D,Mi ) =∏q

j=1 P (yj |x,Dj ,Mi ) and

P (D|Mi ) =
q∏

j=1

P (Dj |Mi )

=
q∏

j=1

∫
P

(
Dj |θj

i ,Mi

)
P

(
θ

j

i |Mi

)
dθ

j

i . (5)

When each potential probabilistic predictive model Mi

is a Gaussian process regression (GPR) model [45], and
θ

j

i are the parameters of the covariance function. In fact,
each GPR model Mi is defined by a mean (basis) func-
tion [mj

i (·)] and a covariance function [Kj

i (·, ·; θj

i )]. In
this setup, P (yj |x,D,Mi ) is a Gaussian distribution, i.e.,
P (yj |x,D,Mi ) = N (μj

i (x), σ 2,j

i (x)), where the predicted
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mean and variance of the j th objective function are [45]

μ
j

i (x) = m
j

i (x)

+K
j

i

(
x, X; θj

i

)
K

j

i

(
X, X; θj

i

)−1[
Y j − m

j

i (X)
]
,

σ
2,j

i (x) = K
j

i

(
x, x; θj

i

)
−K

j

i

(
x, X; θj

i

)
K

j

i

(
X, X; θj

i

)−1
K

j

i

(
X, x; θj

i

)
. (6)

In practice, when using type II maximum likelihood (ML-
II) estimation, the covariance function parameters of each
model are estimated by maximizing the marginal log likeli-
hood of the observed data under that model, i.e., an estimate
θ̂

j

i is calculated by maximizing

logP
(
Dj |θj

i ,Mi

)
= −1

2

[
Y j − m

j

i (X)
]T

K
j

i

(
X, X; θj

i

)−1[
Y j − m

j

i (X)
]

− 1

2

∣∣Kj

i

(
X, X; θj

i

)∣∣ − n

2
log2π, (7)

where | · | denotes matrix determinant. A quasi-Newton
method with multiple random starts can be employed to find
the maximum of (7). This estimate θ̂

j

i is then used in Eq. (6)
for prediction purposes under the model assumptions.

For a GPR, P (Dj |θj

i ,Mi ) is a multivariate
Gaussian probability density function, and P (Dj |Mi ) =∫

P (Dj |θj

i ,Mi )P (θj

i |Mi )dθ
j

i is the marginal probability
of the observed data corresponding to j th output under
model Mi in Eq. (4), and can be approximated by either
first-order expansion of the exponent, or second-order
expansion of the exponent known as Laplace approximation
method [45]. In the first-order approximation, since
θ̂

j

i is a stationary point of (7), P (Dj |Mi ) can be
approximated by P (Dj |θ̂ j

i ,Mi ). In the second-order
approximation, P (Dj |Mi ) ≈ P (Dj |θ̂ j

i ,Mi )
∫

exp{ − 1
2 (θj

i −
θ̂

j

i )T [−H (θ̂ j

i )](θj

i − θ̂
j

i )}dθ
j

i , where H (θ̂ j

i ) is the Hessian
matrix of logP (Dj |θj

i ,Mi ) calculated at θ̂
j

i . When all
the models are assumed to have the same probability a
priori, the posterior model probabilities in Eq. (3), i.e.,
P (Mi |D), i = 1, . . . , L, are only dependent on the marginal
probability of the observed data under each model in Eq. (4),
i.e., P (D|Mi ), i = 1, . . . , L.

B. Experiment design by Bayesian optimization

Bayesian experiment design (BED) has the potential to
guide efficient search for desired materials by directing se-
quential search of “optimal” query points to approach the
optimal solution [12]. Here we employ the expected improve-
ment (EI) [10] for single objective problems, and an extension
of EI to guide the search to approach the Pareto front for
multiobjective problems, namely the expected hypervolume
improvement (EHVI) [46]. Both EI and EHVI can balance
exploration and exploitation up to some extent in guiding the
search for optimal solutions.

A major innovation in our BED approach is that instead of
assuming knowledge of the best predictive model in advance
and updating this given predictive model based on the limited
number of initial observed data and iterating the experiment
design loop based on the updated model—an approach that is

taken in the literature—we consider the model uncertainty by
including a class of potential predictive models for the task un-
der study. By BMA, the experiment design step is performed
based on the weighted average of these potential models.
After performing the selected experiment, the new observed
data from the experiment is used to update the (posterior)
probability of all these potential predictive models. We can see
that by taking this approach, as more experiments are done,
the true predictive model is selected with a higher probability
alongside accelerating the discovery of the material with the
desired properties. We note that the proposed BMA also works
in cases in which the feature sets are known or fixed but in
which different model forms of the GPR—i.e., using different
kernels—could potentially have different degrees of fidelity
with regards to the available data.

For multiobjective problems, the EHVI under model aver-
aging is

EIH(x|D) =
∫

IH(y|x,D)P (y|x,D)dy

=
∫

IH(y|x,D)
L∑

i=1

P (Mi |D)P (y|x,D,Mi )dy

=
L∑

i=1

P (Mi |D)EIH(x|D,Mi ), (8)

where IH(y|x,D) denotes the hyper-volume improvement
achieved by observing the outputs at x, E represents
expectation, and EIH(x|D,Mi ) is the ordinary EHVI
under model Mi . If the outputs are assumed to
be independent EIH(x|D,Mi ) further simplifies to∫

IH(y|x,D)
∏q

j=1 P (yj |x,D,Mi )dy. The optimal ex-
periment to be performed next is x∗ = argmaxx∈X EIH(x|D),
which is the one that maximizes the weighted average EHVI
considering all the potential predictive models, based on the
iteratively updated (posterior) model probabilities given the
observed data. The hypervolume improvement IH(y|x,D)
is the increase in the hypervolume of the dominated
(objective) space achieved by adding the outputs at x to
the observed data, i.e., IH(y|x,D) = H(Y ∪ y) − H(Y).
Without loss of generality, if we assume the goal
is minimization of all the outputs, the hypervolume
dominated by a set of points A is defined as the volume
of the dominated subspace by the points in A, i.e.,
H(A) = Volume({s ∈ Rq |s ≺ r and ∃ a ∈ A : a ≺ s}),
where the domination rule is such that a ≺ b if and only if
aj � bj for all j = 1, . . . , q, and for at least one j , aj < bj . r
is called a reference or anchor point and is a point dominated
by all the possible output values (the whole output space).

For the special case of employing EI-based BED [10],
the EI after observing data D can be computed under model
averaging by

EI (x|D) =
∫

I (y|x,D)
L∑

i=1

P (Mi |D)P (y|x,D,Mi )dy

=
L∑

i=1

P (Mi |D)
∫

I (y|x,D)P (y|x,D,Mi )dy

=
L∑

i=1

P (Mi |D)EI (x|D,Mi ), (9)
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where I (y|x,D) denotes the improvement achieved by ob-
serving the output of experiment x, and EI (x|D,Mi ) is the
EI under model Mi . In this approach, the optimal experiment
to be performed next is x∗ = argmaxx∈χ EI (x|D). We can
see that the optimal experiment is the one that maximizes
the weighted average EI considering all the potential pre-
dictive models based on the iteratively updated (posterior)
model probabilities given the observed data. In the equations
above, the improvement achieved by observing the output of
experiment x is I (y|x,D) = (y∗ − y)+ when minimization
is the goal, and I (y|x,D) = (y − y∗)+ when maximization
is the goal, where (a)+ = a if a > 0 and is zero other-
wise, and y∗ denotes the best (lowest/highest for minimiza-
tion/maximization problems) output observed so far, i.e., the
best output in D.

For the GPR model assumptions taken by the experiments
in this paper, we have chosen the constant mean function
[i.e., mi (x) = ci for single output and m

j

i (x) = c
j

i for multiple
output cases] and the (Gaussian) radial basis function (RBF)
kernel, a popular choice, for the covariance function:

K
j

i

(
x, x′; θj

i

) = θ
j

i,1exp

[
−1

2

‖x − x′‖2

θ
j

i,2

]
. (10)

The focus of the experiments in this paper is on showing
the power of experiment design considering model uncer-
tainty by BMA in guiding the search towards the optimal
compound (with corresponding features design parameters)
when the best predictive model is not known in advance, a
usual case in practical applications, while also identifying the
best predictive model as more data from experiments become
available. The algorithm for our proposed Bayesian optimiza-
tion under model uncertainty (BOMU) framework is shown
in Algorithm 2 and the overall framework for autonomous
materials discovery is shown in Fig. 2. In Algorithm 2, for the
single-objective case, u(x|Dn,Mi ) and u(x|Dn) correspond to
EI (x|Dn,Mi ) and EI (x|Dn), and for the multiobjective case
correspond to EIH(x|Dn) and EIH(x|Dn,Mi ), respectively.

In this paper we consider predictive models based on
different potential feature sets. The details are provided in the
following section.

Algorithm 2. Bayesian optimization under model uncertainty.

1: Initialize D0

2: for n = 0, 1, . . . do
3: Update statistical model(s), Mi

4: Compute acquisition function u with model averaging:

u(x|Dn) = ∑L

i=1 P (Mi |Dn)u(x|Dn, Mi )

5: Select new xn+1 by optimizing acquisition function u:

xn+1 = arg max
x∈χ

u(x|Dn)

6: Query blackbox function f to obtain yn+1

7: Augment data Dn+1 = {Dn, (xn+1, yn+1)}
8: if stopping criteria reached then
9: break
10: end if
11: end for

III. DEPLOYMENT OF BOMU: OPTIMAL DISCOVERY
OF THE MAX PHASE SPACE

Mn+1AXn phases—M corresponds to a transition metal, A
corresponds to group IV and VA elements, and X corresponds
to carbon or nitrogen—have a property range within those of
ceramics and metals due to the coexistence of both metallic
and metallic/covalent bonds within their layered structures
[30,47–51], Fig. 3. The bonds between M-A layers tend to be
much weaker than those between M-X layers, making them
easily deformable while retaining much of the chemical (and
thermodynamic) stability of transition MX carbides. While
only a very small fraction of the pure ternary MAX phase
composition palette has been synthesized to date [52], there is
a considerable opportunity to uncover promising chemistries
with optimal property sets once different stacking sequences
and deviations from stoichiometries in the M, A, and X sites
are considered [53,54].

A. Design problem: Optimal mechanical properties
in the MAX phase space

Because of their rich chemistry and the wide range of
values of their properties [55], MAX phases constitute an ad-
equate material system to test simulation-driven—specifically
DFT calculations—materials discovery frameworks. Aryal
et al. [55], for example, carried out an exhaustive investigation
of the structural, electronic, and stability properties of 792
MAX phases with the Mn+1AXn and n = 1–4. Balachandran
et al. [29] used the MAX phases with M2AX stoichiometry
to deploy and test different Bayesian optimization schemes.
In this work we use the same system to test the proposed
framework.

The MDS for this work is composed of conventional MAX
phases with M2AX and M3AX2 stoichiometries. Here M ∈
{Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ti}; A ∈ {Al, Si, P, S, Ga, Ge,
As, Cd, In, Sn, Tl, Pd}; and X ∈ {C, N}. This results in 216
M2AX and 216 M3AX2 phases. Since we are testing a materi-
als discovery framework, we found it convenient to determine
the ground truth of the system beforehand and the mechani-
cal properties of these systems were thus determined before
deploying the BOMU framework—our framework has been
incorporated into a high-throughput workflow automation tool
using the scikit-learn [56] toolbox. The implementation is
publicly available at https://gitlab.com/tammal/matpredict. Of
the possible MAX phases with the chemistries described
above, 29 were found to be elastically unstable and were
discarded. The design space thus consists of 403 MAX phases.

The problem was formulated with the goal of identifying
the material/materials with (i) the maximum bulk modulus K;
(ii) the minimum shear modulus G; and (iii) the maximum
bulk modulus and minimum shear modulus. The cases of (i)
the maximum bulk modulus K; (ii) the minimum shear modu-
lus G are designed as single-objective optimization problems.
The third problem which seeks to identify the materials with
the maximum bulk modulus and minimum shear modulus (iii)
is designed as a multiobjective problem.

B. Prior knowledge

In this framework it is assumed that some prior knowledge
is available before starting the materials discovery task. This
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FIG. 2. Schematic of the proposed framework for an autonomous, efficient materials discovery system as a realization of Bayesian
Optimization under Model Uncertainty (BOMU). Initial data and a set of candidate models are used to construct a stochastic representation
of an experiment/simulation. Each model is evaluated in a Bayesian sense and its probability is determined. Using the model probabilities, an
effective acquisition function is computed, which is then used to select the next point in the materials design space that needs to be queried.
The process is continued iteratively until target is reached or budget is exhausted. Adapted from the adaptive design strategy framework in
[29].

prior knowledge could be as simple as a set of features that are
likely to have effects on the materials properties of interest.
Here we describe the features that were selected to constitute
the MDS:

Each candidate MAX phase ci of the MDS is determined
uniquely by a set of features Fj , which have been distilled

from the existing literature and the authors’ domain knowl-
edge. In the MDS, the M and A chemical elements comprising
the MAX phases sweep along the rows and columns of the
periodic table and it is reasonable to expect that features
which intrinsically reflect periodic trends would characterize
the properties of the MAX phases.

FIG. 3. MAX phases: Ternary (and higher order) layered carbides and nitrides with properties intermediate to those of metals and ceramics
[30].
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In this work, a total of 15 features were considered: em-
pirical constants C,m which relate the elements comprising
the material to its bulk modulus [57]; valence electron con-
centration Cv; electron to atom ratio e

a
; lattice parameters

a and c; atomic number Z; interatomic distance Idist; the
groups according to the periodic table of the M, A, and
X elements ColM, ColA, ColX, respectively; the order O of
MAX phase (whether of order 1 corresponding to M2AX or
order 2 corresponding to M3AX2); the atomic packing factor
(APF); average atomic radius (rad); and the volume/atom
(vol). In relevant cases (C,m,Cv, e

a
, Z, Idist, APF, Cv), these

features are composition-weighted averages calculated from
the elemental values and are assumed to propagate as per the
Hume-Rothery rules.

The C,m parameters are related to the bonding character.
These are composition-weighted values of the empirical con-
stants reported by Makino et al. [57], who proposed that the
bulk modulus K of elemental substances can be determined
by the relation K = Cr−m

ps ; where rps is the effective pseu-
dopotential radius. The valence electron concentration Cv is
another feature related to the bonding character and is a known
marker of the stability of a phase [58,59]. The e

a
ratio, which

is the average number of itinerant electrons per atom, plays a
significant role in the bonding of a solid and is closely related
to the valence electron concentration Cv [60].

The lattice parameters c, a for all the domain elements
were calculated by DFT by allowing the structures to com-
pletely relax. The c lattice parameter is highly correlated to
the order of the MAX phase (whether M2AX or M3AX2). The
lattice parameters implicitly account for the effect of volume
and atomic radius on the elastic properties. Additionally, the
c/a ratio characterizes the MAX phases, they being hexagonal
close packed (hcp) materials. The relationship between the
elastic properties and the c/a ratio for hcp materials has also
been extensively studied [61,62]. Here we note that since
the determination of the equilibrium structural parameters
is approximately an order of magnitude less costly than the
full calculation of the elastic constant tensor and thus it is a
reasonable proposition to use these DFT-derived quantities to
assist in the prediction/discovery of properties that are more
costly to acquire.

The atomic number Z, which denotes the number of
electrons, is the foremost factor that determines the chemical
bonding behavior of a material and defines its chemical prop-
erties. The weighted interatomic distance Idist was calculated
from the elemental values, which were sourced from the CRC
Handbook of Chemistry and Physics [63]. The atomic packing
factor (APF) plays an important role in the determination
of elastic properties. For example, face centered cubic (fcc)
structures tend to be ductile, while hcp structures are brittle.
Finally, the structural parameters: average atomic radius (rad)
and the volume/atom (vol) were determined from the DFT-
determined lattice parameters.

C. Determining candidate models

As discussed, the determination of features comprising the
MDS was based off of prior literature and domain knowledge.
A priori, it is not known which of these features significantly
influence the target properties in the materials discovery task.

TABLE I. Feature sets considered in this design.

F1 [C, m, Cv, c]
F2 [m, Z, Idist,

e

a
]

F3 [ e

a
, a, c, Cv]

F4 [C, m, Cv, ColA]
F5 [ColM, ColA, ColX, O]
F6 [a, c, APF, Idist]

In the search for new materials with desired properties, such
situations are often encountered, where there is a lack of
fundamental knowledge relating the intrinsic nature of the
material and the desired property. The BOMU approach in-
voked in this work accounts for uncertainty in the models Mi

available to fit the blackbox predictive model to observed data.
In our design problem, different models Mi correspond to
different subsets FS out of the entire feature set F , FS ⊆ F .

While one could question the need to define candidate
feature subsets FS when the entire feature set F is available,
it is important to note that exploring the entire feature set is
problematic due to important limitations [64]. First, nonpara-
metric regression is challenging in high-dimensional space,
with lower bounds of nearest-neighbor distance between sam-
ples depending exponentially on the dimension of the problem
[65]. This exponential complexity affects the convergence
rate of BO approaches [66]. Second, the computational effort
in maximizing the acquisition function also increases in an
exponential manner with the number of features.

The general problem of Bayesian optimization in the
presence of many potential models (feature sets) is still an
outstanding challenge [67] and different approaches have been
proposed, including the partitioning of the domain in disjoint
subdomains [64] or the use of random embedding [67]. No
approach so far provides the means for the BO framework it-
self to “learn” the optimal model and select the subspace most
effectively to reach the target property(ies). Our proposed
approach, as will be shown below, addresses these issues and
thus constitutes a novel approach to effectively reduce the
complexity of the BO problem under model uncertainty.

D. Selecting feature sets

Feature selection is an essential component of model
construction and learning and is a research area in itself.
Application of rigorous feature selection methods can lead to
better models with a good understanding of the underlying
characteristics of the data. Using the right features reduces the
complexity of the model and reduces overfitting. Choosing the
right subset of features also improves the accuracy of a model.
For the purposes of this work, we elected to see how far one
can get by choosing to rely on simpler methods. To reduce the
feature space dimensionality of the model, we grouped the
features into six sets containing four features each, as shown
in Table I. Of the 15 features considered, only 13 were used,
with (rad) and (vol) being discarded.

These sets were created ad hoc, using a combination of
physical insights and an effort to make sets containing features
which reflect the effect of electronic structure and chemical
bonding character. For example, since C and m are derived
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from Makino’s empirical model [57], they were grouped
together in sets F1 and F4. In set F2, m was used standalone,
since the empirical relationship K = Cr−m

ps indicates that m

is more significant than C, which only introduces the effect of
a constant. In set F5, only the compositional element markers
(ColM, ColA, ColX) along with the order O of MAX phase
were used, to simulate a feature set which has only the most
basic compositional and structural description.

E. Materials discovery/design protocol

GPR models based on six feature subsets in Table I were
adopted in our BMA experiment design. For each of the
targets (maximizing K, minimizing G, as well as maximizing
K/minimizing G) we carried out the sequential experiment
design by maximizing the EI or EHVI based on predictive
models using single feature sets or BMA using all the fea-
ture sets accounting for their probability through first-order
(BMA1) and second-order (BMA2) Laplace approximation.

The optimization scheme was run for initial data sets (i.e.,
known data points) of size N = 2, 5, 10, 15, 20. The “training
set” thus ranges from ≈1/200 to 1/20 of the MDS. 1500
instances of each initial set N were used to ensure a stable
average response. The budget for the optimal design was set
at ≈20% of the MDS, i.e., 80 materials or calculations. In
each iteration, two calculations were done. The selection for
the compound(s) to query is based on the optimal policy used:
EI or EHVI. Thus the candidates with the maximum and sec-
ond maximum EI/EHVI are selected for update. This means
that for example, for the maximization of the bulk modulus
problem for N = 2, we initially know the bulk modulus of 2
materials (N = 2) and can calculate the bulk modulus of 78
more materials to stay within the budgeted 80 calculations.
Since we are calculating the bulk modulus of two materials at
a time, this means a total of 78/2 = 39 iterations for this case.
All the input features were normalized, before being fed to the
optimization module.

F. DFT calculation parameters

The total energy calculations were performed within the
DFT [68] framework, as implemented in the Vienna ab initio
simulation package (VASP) [69,70]. The generalized gradi-
ent approximation (GGA) [71] is used in the form of the
parametrization proposed by Perdew, Burke, and Ernzerhof
(PBE) [72]. Brillouin zone integrations were performed using
a Monkhorst-Pack mesh [73] with at least 5000 k points per
reciprocal atom. Full relaxations were realized by using the
Methfessel-Paxton smearing method [74] of order one and
a final self-consistent static calculation with the tetrahedron
smearing method with Blöchl corrections [75]. A cutoff en-
ergy of 533 eV was set for all of the calculations and the spin
polarizations were taken into account.

To estimate the lattice parameters, the structures were
allowed to fully relax to their ground states. The relaxations
were carried out in six stages: first stage by allowing change
in volume (corresponding to the VASP ISIF = 7 tag), second
stage by additionally allowing the relaxation of cell shape
(corresponding to the VASP ISIF = 6 tag), third stage by
also allowing relaxation of ions (corresponding to the VASP

ISIF = 3 tag), fourth stage by allowing only the ions to
relax (corresponding to the VASP ISIF =2 tag), fifth stage by
allowing full relaxation (VASP ISIF = 3 tag), and a final self-
consistent static calculation run. All relaxations were carried
out until changes in total energy between relaxation steps were
within 1 × 10−6 eV.

The elastic constants were calculated using the stress-strain
approach [76,77] where a set of strains (ε1; ε2; ε3; ε4; ε5; ε6)
were imposed on a crystal, determined using DFT methods as
described in [78]. From the n set of strains and the resulting
stresses, elastic constants were calculated based on Hooke’s
law. For these calculations, the ionic positions were relaxed
while leaving the lattice shape and volume invariant. These
calculations were followed by a static calculation using order-
one Methfessel-Paxton smearing method and an auxiliary FFT
grid to ensure maximum accuracy in the calculation of in-
teratomic forces. Convergence criteria ensured that calculated
elements of elastic constant tensor changed within a few GPa
when varying the magnitude of the lattice strain from 1% to
3%. From these elastic constants, various elastic properties
have been calculated using the Voigt and Reuss approxi-
mations and Voigt-Reuss-Hill averaging [79]. The properties
under consideration are: the bulk modulus (K) and the shear
modulus (G).

IV. RESULTS

As mentioned earlier, we employ the EI and EHVI ac-
quisition functions in the experiment design loop for single
and multiobjective problems, respectively. Hereafter, a single
model is a Gaussian process regression (GPR) model based
on a single feature set. Also, F1, F2, F3, F4, F5, and F6

denote the six different feature sets considered in our analysis,
the GPR models based on those feature sets, and experiment
design assuming the underlying model based on those feature
sets, interchangeably. In the following “convergence” for each
model (feature set) refers to the calculation number in the
experiment design iterations based on that model (feature
set) when the true optimal design parameters are identified
in (nearly) all simulations with 1500 initial data sets with
different size N for each setup.

A. Single objective optimization

1. Maximization of bulk modulus (K)

As mentioned earlier, calculations were carried out for
different number of initial data instances N = 2, 5, 10, 15, 20.
The performance trends for all three problems across different
values of N are consistent. The technique is found to not
significantly depend on quantity of initial data. Figure 4 shows
the average number of calculations required to find maximum
bulk modulus for N = 2, 5, 10, 15, 20 with F2. Even when
we start with very few initial data instances at N = 2, the
Bayesian experiment design (BED) procedure converges at
least as fast as N = 20. Using N = 5 however, leads to faster
convergence than starting with N = 10, 15, 20. This shows
that it is often more effective to start with a small initial
data set. This is advantageous, since in real-world problems,
scarcity of data is a common limitation. Consequently, for the
sake of brevity, we present results using the representative

113803-9



ANJANA TALAPATRA et al. PHYSICAL REVIEW MATERIALS 2, 113803 (2018)

FIG. 4. Average number of calculations required to find maxi-
mum bulk modulus for different numbers of initial data instances
N = 2, 5, 10, 15, 20 using feature set F2.

case of N = 10 only. Results for N = 2, 5, 15, 20 may be
found in the Supplemental Material [80]. For the first test
problem to find the MAX phase with the maximum bulk
modulus, the maximum values found in the experiment design

iterations based on each model (feature set) averaged over all
initial data set instances for N = 10 are shown in Fig. 5(a).
The dotted line in the figure indicates the maximum bulk
modulus = 300 GPa that can be found in the MDS. F2 is found
to be the best performing feature set on average, converging
fastest to the maximum bulk modulus. In other words, using
the predicted values as well as uncertainty estimation from
the GPR model with F2 in the experiment design loop guides
us toward the optimal solution of the problem faster than the
other models. F6 and F5 on the other hand, are uniformly
the worst performing feature sets on average, converging the
slowest.

Figure 5(b) shows the swarm plots indicating the number of
calculations required to discover the maximum bulk modulus
in the MDS using experiment design based on single models
for the 1500 initial data instances with N = 10. The width
of the swarm plot at every vertical axis value indicates the
proportion of instances where the optimal design parameters
were found at that number of calculations. Bottom heavy,
wide bars, with the width decreasing with the number of steps
is desirable, since that would indicate that a larger number
of instances needed a fewer number of steps to converge.

FIG. 5. Representative results for single objective optimization—maximization of bulk modulus for N = 10: (a) Average maximum bulk
modulus discovered using all described feature sets, (b) swarm plots indicating the distribution of the number of calculations required for
convergence using all described feature sets, (c) average maximum bulk modulus discovered using the best feature set F2, worst feature set F6,
BMA1 and BMA2, and (d) swarm plots indicating the distribution of the number of calculations required for convergence using best feature
set F2, worst feature set F6, BMA1 and BMA2.
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FIG. 6. Average model probabilities for maximizing bulk modulus using (a) BMA1 and (b) BMA2.

The dotted line indicates the budget allotted, which was 80
calculations. Instances that did not converge within the budget
were allotted a value of 100. Thus the width of the plots
at vertical value of 100, corresponds to the proportion of
instances which did not discover the maximum bulk modulus
in the MDS within the budget. From this figure, it is seen that
for F1, F2, and F4 in almost 100% of instances the maximum
bulk modulus was identified within the budget, while F5 is the
poorest feature set and the maximum was identified in very
few instances.

Figure 5(c) shows the comparison of the average perfor-
mance of both the first-order and second-order BMA over all
initial data set instances with the best performing model (F2)
and worst performing model (F6). It can be seen that both the
first-order and second-order BMA performance in identifying
the maximum bulk modulus is consistently close to the best
model (F2). First-order BMA performs as well as if not better
than F2. Figure 5(d) shows the corresponding swarm plots
indicating the number of calculations required to discover the
maximum bulk modulus in the MDS for the 1500 instances of
initial data set for N = 10 using first- and second-order BMA,
respectively. It can be seen that for a very high percentage of
cases the maximum bulk modulus can be found within the
designated budget.

In Figs. 6(a) and 6(b) the average model coefficients (poste-
rior model probabilities) of the GPR models based on different
feature sets over all instances of initial data set are shown with
the increasing number of calculations for BMA1 and BMA2,
respectively. It can be seen that these model coefficients from
BMA may guide automatic selection of the best feature set
F2. For BMA1 and BMA2, the average probability of F2

is (almost) always higher than the other models. Earlier, in
Figs. 5(a) and 5(b), F4 also appears to be a good model and
converges at par with F2 around the 75 calculations. Reflect-
ing this, as the number of available experiments/calculations
increases (55 for BMA1 and 75 for BMA2), the model proba-
bility of F4 briefly overtakes that of F2 as indicated in Fig. 6.
As more data become available, BMA again considers F2 as
the best model based on the updated model coefficients during
the experiment design procedure. Note that such a feature
set selection based on BMA is directly determined by the
performance of achieving desired operational objectives for

experiment design. The actual candidate materials selected
during each progressive BED iteration with BMA1 were an-
alyzed over the 1500 instances, among which the cumulative
percentage of choosing candidates with the maximum (K1

max),
second maximum (K2

max), and third maximum (K3
max) bulk

modulus is indicated in Fig. 7. It is seen that as the BED
loop proceeds and the surrogate model improves, the materials
with the maximum bulk modulus (top 3 for illustration) are se-
lected more consistently. Specifically, beyond approximately
40 calculations, there is a steep increase in the selection of
Ki

max as a candidate, corresponding to the steep increase in
the probability of model F4 and F2 as illustrated in Fig. 6(a).

2. Maximization of bulk modulus: Noninformative features

To showcase the utility of our BMA approach, we simulate
a high-dimensional case by adding 16 noninformative random
features, which we compose into subsets F7, F8, F9, and F10

of four features each. We carry out two types of calculation
using the larger set of 29 (13+16) features. First, we use
the BMA1 approach to find material with maximum K using
F1, . . . , F10; and we use the regular EGO-GP framework to

FIG. 7. Percentage of BED selected materials with the maximum
(K1

max), second maximum (K2
max), and third maximum (K3

max) bulk
modulus with the increasing number of calculations for BMA1.
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FIG. 8. Representative results for single objective optimization—minimization of shear modulus for N = 20 for the case of 29 features:
(a) Average model probabilities for maximizing bulk modulus using BMA1 and Fall (b) swarm plots indicating the distribution of the number
of calculations required for convergence using BMA1 and Fall.

find the material with maximum K using all 29 features.
The results for the same are plotted in Fig. 8. First, we see
in Fig. 8(a) that in this case (an actual high dimensional
case with a number of noninformative random features) the
BMA approach outperforms using all features together. Ad-
ditionally, tracking the model probabilities as in Fig. 8(b),
shows us that the BMA approach effectively picks up the
F2 set as the best feature set, rejects the random feature sets
F7, . . . , F10 (average model probabilities are negligible) and
performs better than using F2 standalone [in Fig. 5(d)].

3. Minimization of shear modulus (G)

Similar to maximization of bulk modulus, the optimization
for the minimization problem was carried out for feature sets
F1, . . . , F6, and then by using BMA1 and BMA2. The overall
trend in the results was also similar: F2 is found to be the
best performing model on average, converging fastest to the
minimum shear modulus. On the other hand, F6 is uniformly
the worst performing feature set on average, converging the

slowest. The minimum shear modulus found in the experi-
ment design iterations based on the best model (F2), worst
model (F6), BMA1 and BMA2, averaged over all initial data
instances are shown in Fig. 9(a) for N = 10. The dotted line
in the figure indicates the minimum shear modulus = 10.38
GPa that can be found in the MDS. The performance of both
first-order and second-order BMA in identifying the minimum
shear modulus lies close to that of the best single model
(F2). Figure 9(b) shows the swarm plots corresponding to the
results in Fig. 9(a). It is seen that in almost 100% of the cases
the optimal solution (minimum shear modulus) can be found
within the designated budget when feature set F2 is used,
while very few instances of convergence are noted for F6.
Using BMA1 and BMA2 yields very satisfactory results, as
a large majority of the cases converge within budget. Here we
see the advantage of using the BMA approach. Without having
actually gone through the experiment design loop, one could
not know a priori, that using F6 will result in not arriving at
the desired material within a reasonable budget with a very
high probability. This shows that if one were to just select a

FIG. 9. Representative results for single objective optimization—minimization of shear modulus for N = 10: (a) Average minimum shear
modulus discovered using the best feature set F2, worst feature set F6, BMA1 and BMA2, and (d) swarm plots indicating the distribution of
the number of calculations required for convergence using best feature set F2, worst feature set F6, BMA1 and BMA2.
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FIG. 10. The Pareto optimal points in the materials property
space are marked in red corresponding to the criterion of maximizing
bulk modulus and minimizing shear modulus simultaneously. The
Pareto set for the MDS consist of ten points as indicated in red.

feature set even using domain knowledge, one may or may
not select a good model. However, if one were to use the
BMA approach, either BMA1 or BMA2, the probability of
successfully arriving at the material with desired properties,
is very high, since the BMA approach autoselects the best
feature set. Results for N = 2, 5, 15, 20 as well as the plots for
BMA coefficients may be found in the Supplemental Material
[80].

B. Multiobjective optimization: Maximize bulk modulus and
minimize shear modulus

We now consider multiobjective experiment design to op-
timize two objectives at the same time: maximizing bulk
modulus and minimizing shear modulus. One should note that
in our analysis we have already calculated the responses of
bulk and shear modulus as materials properties for all the fea-
sible points in the MDS to have the ground truth to compare
different models for experiment design. Generally in practice,
no knowledge of the responses exists unless one performs all
the possible experiments exhaustively. Consequently, none of
this information is used in our experiment design procedures.
Figure 10 illustrates all the data points in the objective space
of materials properties (in green). It can be seen that in this
case there does not exist a single optimal solution, and in fact
there are ten Pareto optimal points comprising the Pareto front
[81] which is highlighted in red in the figure. Specifically,
the Pareto front here is the one-dimensional design curve
over which any improvement in one material property (i.e.,
bulk modulus K) is only achieved through a corresponding
sacrifice of another property (here, shear modulus G).

Figure 11 depicts the average performance of the best (F2)
and worst (F1) models as well as the first- and second-order
BMA in finding the true Pareto optimal points versus the
number of calculations. Similar to single-objective problems,
multiobjective experiment design based on F2 consistently
has the best performance, i.e., it identifies more true Pareto
optimal points faster (with smaller budget). Both BMA ap-
proaches’ performances are consistently in the range of the

FIG. 11. Average number of true Pareto optimal points found
over all initial data set instances for single models, BMA1, and
BMA2 for N = 10.

first best (F2) single model’s performances. Complete results
for all cases of N , swarm plots and coefficient plots for the
multiobjective scenario may be found in the Supplemental
Material [80].

V. DISCUSSION

A. Comparison of first-order and second-order BMA

From the results in the previous sections, we can see that
for single-objective experiment design, the performance of
the first-order BMA is slightly better than the second-order
BMA. On the other hand, the model probabilities in the
second-order BMA are more robust, and at any calculation
number (sequential experiment iteration), the average poste-
rior probability over all the initial data set instances of the best
model in terms of experiment design performance is higher
than the other models. The reason is that second-order Laplace
approximation, unlike the first-order one, does not rely solely
on the fitted values of the parameters of the GPR model to
calculate the model probability. In fact, it approximates the
model probability by integrating a local expansion of the
marginal likelihood over a neighborhood of the fitted param-
eters values, which may dampen the fluctuations of the fitted
values between different sequential experiment iterations. For
the multiobjective case, the second-order BMA is slightly
better than first-order BMA in terms of both experiment
design performance and robustness of identifying the best
model in terms of experiment design performance.

B. Remarks on feature sets

The feature sets in our analysis are chosen a priori based
on domain knowledge. We do not claim that the considered
feature sets are among the best possible feature sets for our
experiment design problems. We are rather using these to
showcase the applicability of the BOMU framework in real-
world experiment design problems, where the best model or
feature set is often not known, and only a set of possible
models might exist based on domain knowledge. The power of
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FIG. 12. Average maximum discovered (a) bulk modulus and (b) shear modulus for F2 and lower-dimensional feature sets
(F2a, F2b, F2c, F2d ) derived from F2.

BOMU is that it incorporates the uncertainty over the possible
model space, instead of relying on a single model that is
selected based on limited initial available data. For instance,
we compared experiment design results based on the subsets
of F2 with one feature removed from F2 (by taking three
features at a time): feature set F2a: [m,Z, Idist], feature set
F2b: [m,Z, ea], feature set F2c: [m, Idist, ea], and feature set
F2d : [Z, Idist, ea].

Figures 12(a) and 12(b) show the corresponding results
for maximizing bulk modulus and minimizing shear modulus
problems, respectively. From both figures, there are some
subsets that can perform better in terms of average optimal
objective values discovered over all instances of initial data
sets for a fixed initial data set size. Another observation from
Figs. 12(a) and 12(b) is that adding noninformative features
to a model (feature set) can degrade the experiment design
performance, as there are the single models based on some
subsets of cardinality three derived from F2 that can find the
optimal compound in the MDS faster than the experiment de-
sign based on F2. One reason is that by adding noninformative
features, more dimensions are introduced in the feature space
while the information on these dimensions may be irrelevant
to their outputs—it does not help better predict the outputs.
This has more effect especially when using kernels with a
single length-scale parameter, which is the most common
practice in the materials literature. This is explicitly indicated
in Sec. IV A 2, as the the BOMU approach excels when there
are noninformative features, in that it autorejects feature sets
F6, . . . , F10, while converging to the target experiment as
fast as the best standalone model F2. Further discussion is
included in Appendix A.

VI. CONCLUSIONS

The Bayesian optimization approach was successfully
combined with Bayesian model averaging (BMA) for au-
tonomous and adaptive learning to design a Bayesian exper-
iment design framework under model uncertainty (BOMU)
for materials discovery in single- and multiobjective mate-
rial property space using a test set of MAX phases. It was
demonstrated that, while prior knowledge about the funda-

mental features linking the material to the desired material
property is certainly essential to build the materials design
space (MDS), the BMA approach may be used to autoselect
the best features/feature sets in the MDS, thereby eliminating
the requirement of knowing the best feature set a priori. As
evident from the extensive results included in the Supplemen-
tal Material [80], the BOMU framework is not significantly
dependent on the size of the initial data, which enables its use
in materials discovery problems where initial data is scant. At
the very least, this framework provides a very efficient means
of building the initial data set as well, since it may be used
to guide experiments or calculations by focusing on gathering
data in those sections of the MDS which will result in the most
efficient path to achieving the optimal material.
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APPENDIX A: IMPLEMENTATION REMARK

The estimation of the (hyper) parameters, including the
length-scale parameter, of the GPR model are found by
maximizing the marginal likelihood of the data, i.e., ML-II
estimation instead of the fully Bayesian treatment. Marginal
likelihood might have multiple optima that correspond to
different interpretations of the data. When GPR models are
trained based on ML-II estimation, depending on the MDS
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and selected kernel functions, there is a possibility of overfit-
ting the training data, especially when only a small number
of measured data points are available (small-sample training
data as initial data points). One thing to note is that experiment
design based on GPR models that overfit the training data and
assign very low correlation to nearby points in their prediction
can yield very poor experiment design performance. One
reason being that in this case measuring any point in the MDS
will not give much information regarding other points of the
MDS, because of the overfitting of the underlying learned
surrogate GPR model. Since in our experiments the feature
sets were chosen a priori, without any knowledge of their
suitability for the underlying true model that generates data,
in our implementation we have restricted the possible range
for the length-scale parameter of the GPR kernel to prevent
the models from overfitting the limited number of available
data.

APPENDIX B: CONNECTIONS AND DIFFERENCES
WITH GENERALIZED MOCU

We would like to close with some remarks concerning
the manner in which the experiment design developed in this
paper relates to the general theory. In the following we first
provide a brief summary of the generalized MOCU introduced
in Ref. [24]. Assuming a probability space M (uncertainty
class) with probability measure P , an action space X , and
an objective function f : M × X → (−∞,∞), our goal is
to find an action x ∈ X that minimizes the unknown true
objective function f (x; Mt ) over X , where Mt ∈ M. A robust
action is an element xR ∈ X that minimizes the average of the
objective function across all possibilities in the uncertainty
class relative to a probability distribution governing the cor-
responding space. This probability at each time step is the
posterior distribution given the observed data points available
up to that time step (Dn). Mathematically,

xR
n = arg min

x∈X
EM [f (x; M )|Dn]. (B1)

The mean objective cost of uncertainty (MOCU) is the
average gain in the attained objective between the robust
action and the actual optimal actions across the possibilities:

MOCUX
n (M) = EM

[
f

(
xR

n ; M
) − f (x∗

M ; M )|Dn

]
, (B2)

where x∗
M denotes the optimal action for a given M . Note that

if we actually knew the true (correct) model, then we would
simply use the optimal action for that model and MOCU
would be 0. Denoting the set of possible experiments by �, the
best experiment ξ ∗

n at each time step (in one step look ahead
scenario) is the one that maximally reduces the expected
MOCU following the experiment, i.e.,

ξ ∗
n = arg min

ξ∈�

Eξ

[
EM

[
f

(
xR

n+1; M
)∣∣ξ,Dn

]]
−EM

[
f

(
xR

n ; M
)∣∣Dn

]
. (B3)

In most cases in the context of materials discovery, each
experiment is applying an action and observing its cost (or a
noisy version of it). Thus, the experiment space is equivalent
to the action space.

It is beneficial to recognize that MOCU can be viewed
as the minimum expected value of a Bayesian loss function,
where the Bayesian loss function maps an action to its differ-
ential objective value (for using the given action instead of an
optimal action), and its minimum expectation is attained by an
optimal robust action that minimizes the average differential
objective value. In decision theory, this differential objective
value has been referred to as the regret.

In Sec. I B we mentioned three possibilities regarding the
objective function. In the first case, we have a parametric
model where the parameters come from an underlying physi-
cal system. An example in medicine is where they characterize
a gene regulatory network, the objective function is the likeli-
hood of the cell being in a cancerous state, and the action is to
administer a drug [11]. Another example is in imaging where
the parameters characterize the image structure, the objective
function is an error measure between two images, and the
action is to compress the image in order to reduce the number
of bits while at the same time maintaining visual fidelity [82].
In this case the action space and experiment space are usually
distinct sets.

Another possibility is that the features are known and the
parameters come from a surrogate model used in place of the
actual physical model, but believed to be appropriately related
to the physical model. In the materials example [19] noted in
Sec. I B, the surrogate model is based on the time-dependent
Ginzburg-Landau (TDGL) theory and simulates the free en-
ergy given dopant parameters, the objective function is the
energy dissipation, and the action is to find an optimal dopant
and concentration. To see how the approach in Ref. [19] fits
the above general theory the reader can refer to [24].

A third possibility is that we do not know the physical
model and we lack sufficient knowledge to posit a surrogate
model with known features/form relating to our objective.
This case arises in many scenarios where the objective func-
tion is a blackbox function. Nevertheless, we can adopt a
model, albeit, one with known predictive properties. This
model can be a kernel-based model like a GP. Moreover, this
model can consist of a set of possible parametric families, or
a kernel-based model with different possible feature sets, or
even kernel-based models with different choices for the kernel
function. In this paper we have addressed this case when
we do not a priori have any knowledge about which feature
set or model family would be the best, and reliable model
selection cannot be performed before starting the experiment
design loop. Considering the average prediction from models
based on different feature sets or model families weighted by
their posterior probability of being the correct model, namely
BMA, is one possible approach. In this paper we perform
BMA based on possible feature sets that come from domain
knowledge.

It is worth mentioning that, in theory, the generalized
MOCU can be applied to all these scenarios with a single
objective; however, there might be computational issues, es-
pecially in the third type of model. For example, when the
experiments consist of running expensive simulation models,
the computations of MOCU-based experiment design might
be extremely heavy, so much so that the experiment design
would be more computationally expensive and/or time con-
suming than the original simulation model.
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A last question needs to be addressed. As noted previ-
ously, it is known that under certain conditions, MOCU-
based experiment design is equivalent to EGO [24]. Could we
have used MOCU here, and/or can the procedure proposed
in this paper be related to MOCU? In our case, at each
time step, after training the GPs based on the current and
previous observations (finding the GP hyperparameters that
maximize the marginal likelihood of the observed data), each
GP provides a Gaussian distribution over the objective values
of the actions. Averaging several GPs based on their posterior
model probabilities is like mixing weighted Gaussian distri-
butions over the objective value of each action. Based on the
sum of weighted Gaussian distributions, the EI or EHVI is
calculated for all possible remaining actions for single- or
multiobjective scenarios, respectively, and the maximizer is
chosen as the next experiment. For the multiobjective case,
we cannot employ MOCU. The reason is that the current
formulations of MOCU do not contain definitions suitable to
multiobjective problems, e.g., no notion of robust action exists
in the presence of Pareto optimal solutions. For the single-

objective case, assuming the mixture of Gaussian distributions
for the objective value of each action given at each time
step, and confining the selection of the optimal action in the
MOCU framework at each time step to the set of actions
whose objective values have been previously observed, the
maximizer of EI is equivalent to the solution of (B3). But
in practice we have another layer of uncertainty introduced
by the model fitting step. If we want to take this uncertainty
into account when calculating the expected utility (acquisition
value) at each time step, the procedure taken in this paper by
employing EI is not equivalent to applying MOCU. To make
it so we would have to assume a prior distribution over the hy-
perparameters of the GPs and when calculating the expected
utility (acquisition value) of each potential next experiment at
each time step, we would have to consider the corresponding
possible updated distributions of the hyperparameters and
consequent model probabilities posterior to carrying out the
experiment and the possible objective value observation in
the next time step. But this would be too computationally
costly.
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