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Determining the atomic configuration of an interface is one of the most important issues in materials science
research. Although theoretical simulations are effective tools, an exhaustive search is computationally prohibitive
due to the high degrees of freedom of the interface structure. In the interface structure search, multiple energy
surfaces created by a variety of orientation angles need to be explored, and the necessary computational costs for
different angles vary substantially owing to significant variations in the supercell sizes. In this paper, we introduce
two machine-learning concepts, called transfer learning and cost-sensitive search, to the interface-structure
search. As a case study, we demonstrate the effectiveness of our method, called cost-sensitive multitask Bayesian
optimization, using the fcc-Al [110] tilt grain boundary. Four microscopic parameters, the three-dimensional
rigid body translation, and the number of atomic columns, are optimized by transferring knowledge of energy
surfaces among different orientation angles. We show that transferring knowledge of different energy surfaces
can accelerate the structure search, and that considering the cost variations further improves the total efficiency.
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I. INTRODUCTION

A grain boundary (GB) is the interface between two
grains or crystals in a polycrystalline material, and has an
atomic configuration significantly different from that of a
single crystal. Since this results in peculiar mechanical and
electrical properties of materials, one of the most important
issues in materials research is determining the atomic config-
uration of an interface. Experimental observations, such as the
atomic-resolution transmission electron microscope (TEM)
observations [1], and theoretical simulations, such as first-
principles calculations based on the density functional theory
and static lattice calculations with empirical potentials, have
been extensively performed to investigate interface structures
[2,3].

The macroscopic GB geometry is defined using five de-
grees of freedom (DOF) that fully describe the crystallo-
graphic orientation of one grain relative to the other (3DOF)
and the orientation of the boundary relative to one of the
grains, i.e., the GB plane (2DOF). Besides these five macro-
scopic DOF, three other microscopic parameters exist for
relative rigid body translation (RBT) of one grain to the
other parallel and perpendicular to the GB plane. It has
been indicated that the most important parameter in deter-
mining the GB energy is the excess boundary volume [4],
which is related to the RBT perpendicular to the boundary.
Closely packed boundaries that have a local atomic density
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similar to that in the bulk will have low energies. Thus,
it is important to determine both the RBT and the number
of atomic columns at the boundary [5]. These microscopic
parameters are established based on energetic considerations
and cannot be selected arbitrarily, and atomistic simulations
are widely used to obtain stable GB structures. To understand
the whole nature of GBs, the stable interface structures for
each rotation angle and rotation axis need to be determined. A
straightforward manner is optimizing all possible candidates
of GB models, thereby determining the lowest-energy con-
figuration. However, determining the stable structures of GBs
needs large-space searching due to the huge geometric DOF.
Although some databases of GB structures are available [6–8],
they contain only a limited number of systems because of
considerable computational costs of simulations. Therefore,
developing efficient approaches to determining the interface
structure without searching for all possible candidates is
strongly demanded.

In recent years, materials-informatics techniques based on
machine learning have been introduced as an efficient way
for data-driven material discovery and analysis [9]. For the
structure search, which is our main focus in this study, a
machine learning technique called Bayesian optimization [10]
has proven to be useful mainly in the application to deter-
mine stable bulk structures [11,12]. Bayesian optimization
iteratively samples a candidate structure predicted by a proba-
bilistic model that is statistically constructed by using already
sampled structures. Bayesian-model-based methods are quite
general, and thus, they are apt for a variety of material-
discovery problems, such as identifying the low-energy region
in a potential-energy surface [13]. For the interface structure,
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some studies [14,15] proposed to apply Bayesian optimization
to the GB-structure search, and its efficiency was confirmed,
for example, by using the fcc-Cu �5 [001](210) CSL GB.
However, their search method is a standard Bayesian opti-
mization method, i.e., the same as the method in the case
of bulk structures. To our knowledge, a search methodology
specifically for GBs has not been introduced so far.

As a general problem setting in the GB-structure search,
we consider the exploration of a variety of rotation angles for
a fixed rotation axis. Suppose that we have T different angles
to search, and candidate structures are created by RBTs for
each of them. A naive approach to this problem is to apply
some search method, such as Bayesian optimization [14,15],
T times separately. However, this approach is not efficient
because it ignores the following two important characteristics
of the GB structure:

(1) Energy-surface similarity. The energy surfaces at dif-
ferent angles are often quite similar. This similarity is ex-
plained by the structural unit model [16–19], which has been
widely accepted to describe GB structures in many materials.
This model suggests that different GBs can contain common
structural units, and that they share similar local atomic en-
vironments. Although structurally similar GBs can produce
similar energy surfaces, the naive search does not utilize this
similarity and restarts the structure search from scratch for
each angle.

(2) Cost imbalance. GB supercells usually have various
sizes because of the variations in the � value, which is the
inverse of the density of lattice sites. This means that the
computational cost for large � GBs dramatically increases
because the number of atoms in a supercell increases. Thus,
the structure search for large � GBs is significantly more
time consuming than that for small � GBs. For example, the
computational time scale is O(M ) ∼ O(M3) for M number
of atoms in the supercells, depending on the computational
scheme.

Figure 1 shows an example of this situation. The figure
contains (a) an illustration of RBT and an atom removal
from the boundary, (b) calculated stable GB energies, and
(c) energy surfaces created by two-dimensional RBTs for the
rotation angles 141◦ (top), 134◦ (bottom left), and 145◦ (bot-
tom right). The entire landscape of the surfaces in Fig. 1(c)
are similar, while their computational costs are significantly
different since the biggest supercell (�89) contains almost ten
times larger number of atoms than the smallest supercell (�9).

In this paper, we propose a machine-learning-based sta-
ble structure search method that is particularly efficient for
the GB-structure search. Our proposed method, called cost-
sensitive multitask Bayesian optimization (CMB), takes the
above two characteristics of GB structures into account. For
energy-surface similarity, we introduce a machine-learning
concept called transfer learning [20]. The basic idea of trans-
fer learning is to transfer knowledge among different (but
related) tasks to improve the efficiency of machine-learning
methods. In this study, a GB-structure search for a fixed angle
is considered to be a “task.” When a set of tasks are similar
to each other, information accumulated for one specific task
can be useful for other tasks. In our structure-search problem,
a sampled GB model for an angle provides information for
other angles because of the energy-surface similarity. For the

cost imbalance issue, we introduce a cost-sensitive search.
Our method incorporates cost information into the sampling
decision, which means that we evaluate each candidate based
on both the possibility of an energy improvement and the
cost of sampling. By combining the cost-sensitive search with
transfer learning, CMB accumulates information by sampling
low cost surfaces in the initial stage of the search, and can
identify the stable structures in high cost surfaces with a small
number of sampling steps by using the transferred surface
information. Figure 2 shows a schematic illustration of the
entire procedure of CMB, which indicates that knowledge
transfer, particularly from the low cost surfaces to the high
cost surfaces, is beneficial for the structure search. As a case
study, we evaluate the cost effectiveness of our method based
on fcc-Al [110] tilt GBs: our proposed method determines
stable structures with 5 mJ/m2 average accuracy with only
about 0.2% of the computational cost of the exhaustive search.

II. METHODS

A. Problem setting

GB energy is defined against the total energy of the bulk
crystal as

EGB = Etot
GB − Ebulk

2S
, (1)

where Etot
GB is the total energy of the GB supercell, Ebulk is

the bulk energy with the same number of atoms as the GB
supercell, and S is the cross-section area of the GB model in
the supercell. In the denominator, the cross-section area S is
multiplied by 2 since the supercell contains two GB planes as
shown in Fig. 1(a) which is an example of a �9 GB model.
Note that the GB energy for each GB model is calculated
through atomic relaxation.

Suppose that we have t = 1, . . . , T different rotation an-
gles θt , for each of which we have Nt candidate-GB models
created by rigid body translations (RBTs) with or without
atom removal. Figure 1(a) also illustrates RBTs by which Nt

GB models are created. The total number of the GB models is
denoted as N = ∑T

t=1 Nt . We would like to search the stable
GB structures with respect to all of the given rotation angles.
A set of GB energies for all N GB models is represented as a
vector E = (E(1)

GB, . . . , E
(N )
GB )�, where E

(i)
GB is the GB energy

of the ith GB model.
A stable structure search for some fixed angles can be

mathematically formulated as a problem to find low-energy
structures with a smaller number of “model sampling steps”
from candidates. The number of candidate structures is often
too large to exhaustively compute their energies, and we
usually do not know the exact energy surface as a function
in the search space. This problem setting is thus called the
black-box optimization problem in the literature. We call a
stable structure search for each angle a task.

Let τi ∈ {1, . . . , T } be the task index that the ith GB model
is included in, and Ct be the cost to compute the GB energy in
the t th task. We assume that the cost can be estimated based
on the number of atoms M in the supercell. For example, the
embedded atom method (EAM) [21] with the cutoff radius
needs O(M ) computations. Then, we can set Ct as M . Instead
of counting the number of model samplings, we are interested
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FIG. 1. (a) Atomic configuration of the GB supercell of the fcc-Al [110] �9 symmetric tilt GB. The red and blue balls denote Al atoms in
the (110) and (220) atomic layers. Based on this GB model, four microscopic parameters are optimized. One of two grains is rigidly shifted
with �X, �Y , and �Z, and an atomic pair within the cutoff distance dcut is replaced with a single atom located at the center of the original
pair. (b) Calculated stable GB energies as a function of the rotation angle for fcc-Al [110] tilt GB. (c) Energy surfaces created by RBTs for
the angles 141◦ (top), 134◦ (bottom left), and 145◦ (bottom right). For illustrative purpose, we here only show two-dimensional RBTs on X

and Y . The structural units are also shown along with the surfaces in which the units are denoted as A and B. The red and blue balls denote Al
atoms in (110) and (220) atomic layers. The markers on the surfaces indicate their minimums. The numbers of atoms in the supercells, which
determine computational cost, are written in red.

in the sum of the cost Ct of the search process, for a practical
evaluation of the search efficiency. Assuming that a set S ⊆
{1, . . . , N} is an index set of sampled GB models, the total
cost of sampling is written as

C =
∑

i∈S
Cτi

. (2)

B. Knowledge-transfer-based cost-effective
search for GB structures

Our method is based on Bayesian optimization which is
a machine-learning-based method for solving general black-
box optimization. The basic idea is to estimate a stable
structure iteratively, based on a probabilistic model that is

statistically constructed by using already sampled structures.
Gaussian process regression (GP) [22] is a probabilistic model
usually employed in Bayesian optimization. GP represents un-
certainty of unobserved energies by using a Gaussian random
variable. Let xi ∈ Rp be a p dimensional descriptor vector
for the ith GB model, and ES be an energy vector for a set of
sampled GB models. The prediction of the ith GB model is
given by

fi | ES ∼ N (μ(xi ), σ (xi )), (3)

where fi | ES is a random variable fi after observing ES , and
N (μ(xi ), σ (xi )) is a Gaussian distribution having μ(xi ) and
σ (xi ) as the mean and the standard deviation, respectively.
Bayesian optimization iteratively predicts the stable structure
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FIG. 2. Schematic illustration of our proposed method. Our method transfers knowledge of observed GB models in different tasks
(illustrated as red arrows). Machine learning constructs a probabilistic approximation of the energy surfaces based on information shared
across the tasks, which results in better approximation accuracy compared to that realized by solving all tasks separately. We also consider the
cost discrepancy for given tasks by evaluating cost effectiveness of each candidate GB model, which accelerates the search by reducing the
number of model samplings for the high cost energy surfaces.

based on μ(xi ) and σ (xi ). See Supplemental Material Sec. 1
[23] for details regarding the Bayesian optimization.

Although energy surfaces for different angles are often
quite similar, simple Bayesian optimization cannot utilize
such similarity. In machine learning, it has been known
that, for solving a set of similar tasks, transferring knowl-
edge across the tasks can be effective. This idea is called
transfer learning [20]. In particular, we introduce a concept
called multitask learning, in which knowledge is transferred
among multiple tasks, to accelerate convergence of multiple
structure-search tasks of GB.

In addition to the structure descriptor x, we introduce a
descriptor which represents a task. Let zt ∈ Rq be a descriptor

of the t th task, called a task-specific descriptor, through which
the similarity among tasks is measured. For example, a rota-
tion angle can be a task-specific descriptor because surfaces
for similar angles are often similar. Hereafter, we refer to a
descriptor x as a structure-specific descriptor. Given these two
types of descriptors, we estimate the energy surface in the
joint space of x and z:

fi | ES ∼ N (μ(MT)(xi , zτi
), σ (MT)(xi , zτi

)). (4)

Here, the mean μ(MT) and standard deviation σ (MT) are func-
tions of both of the structure-specific descriptor x and the
task-specific descriptor z. This model is called the multitask
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FIG. 3. A schematic illustration of MGP. The left three-dimensional plot (a) shows the MGP mean function surface μ(MT) in the joint space
of the GB model descriptor x and the task-specific descriptor z (the black points are the sampled GB models). The center plots (b) show the
surfaces for the three different tasks neighboring each other in the task axis. The blue lines are mean functions, the blue shaded are standard
deviations, and dashed red lines are underlying true functions. Since information on the sampled GB models is shared, all the mean functions
of MGB provide better approximations for the true functions compared with the separated estimation of each task illustrated in (c).

Gaussian process regression (MGP) [24], and Fig. 3 shows a
schematic illustration. In the figure, information regarding the
GP model is transferred among tasks through a “task axis,”
and it improves the accuracy of the surface approximation.
For a task-specific descriptor, we employed the rotation angle
and radial distribution function in the later case study (see the
section “GB Model and Descriptor” for details). Supplemental
Material Sec. 2 [23] provides further mathematical details on
the MGP.

We propose combining the MGP with Bayesian optimiza-
tion, meaning that we determine the next structure to be
sampled based on the probabilistic estimation of MGP. Since
knowledge transfer improves accuracy of GP (particularly for
tasks in which there exists only a small number of sampled
GB models), the efficiency of the search is also improved
as illustrated in Fig. 3. After estimating the energy surface,
Bayesian optimization calculates the acquisition function us-
ing which we determine the structure to be sampled next.
A standard formulation of acquisition function is expected
improvement (EI) defined as the expectation of the energy
decrease estimated by GP, which is also applicable in our
multitask GP case. However, EI does not consider the cost
discrepancy for the surfaces, which may necessitate a large
number of sampling steps for high cost surfaces. In other
words, the total cost Eq. (2) is not taken into account by usual
Bayesian optimization.

We further introduce a cost-sensitive acquisition function
to solve this issue, and then the method is called cost-sensitive
multi-task Bayesian optimization (CMB). To select the next

candidate, each GB model is evaluated based not only on the
possible decrease of the energy, but also on the computational
cost of that GB model. Our cost-sensitive acquisition function
for the ith GB model is defined by

EI(CMB)
i = EIi

Cτi

, (5)

where EIi is the usual expected improvement for the ith
GB model which purely evaluates the possible improvement.
This cost-sensitive acquisition function selects the best GB
model to be sampled by considering EI per computational
cost, while the usual EI selects a structure by considering the
improvement in the energy decrease per sampling iteration.

Figure 4 shows an illustrative demonstration of CMB. In
the figure, the two surfaces need low sampling costs and the
other two surfaces need high sampling costs. CMB first selects
the low cost surfaces and accumulates surface information,
with which the minimum energies for the high cost surfaces
can be efficiently identified. This illustrates that CMB is
effective for minimizing the GB energy with a small amount
of the total cost Eq. (2).

III. RESULTS (CASE STUDY ON fcc-Al)

A. GB model and descriptor

We first constructed fcc-Al [110] symmetric tilt (ST) GBs
using the coincidence site lattice (CSL) model. The CSL is
usually characterized by the � value, which is defined as the
reciprocal of the density of the coincident sites. Figure 1(a)
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FIG. 4. An illustrative example of the proposed method for the synthetic four tasks t = 1, . . . , 4 with cost C1 = 10, C2 = 100, C3 = 20,
and C4 = 80. In iteration 0, the initial points are randomly set. Our method first investigates the low cost surfaces t = 1 and 3 as indicated by
the acquisition function (green). In iteration 5, with the increase in the low cost surface points, uncertainty of the Gaussian process model is
reduced even for the high cost surfaces t = 2 and 4 in which no additional points are sampled yet. Then, the acquisition function values for
the high cost surfaces become relatively large because the possible energy improvement in the low cost surfaces is not significant compared to
that in iteration 0. In iteration 10, the small energy points in the high cost surfaces are identified with a small number of model samplings.

shows an example of a supercell of a �9 STGB model. Two
symmetric GBs are introduced to satisfy three-dimensional
periodicity. To avoid artificial interactions between GBs, we
set the distances between GBs to more than 10 Å. For the
energy calculations and atomic relaxations, we used the EAM
potential for Al in Ref. [21], and the computational time scales
as O(M ) for the number of atoms M with the linked-list
cell algorithm. Figure 1(a) also shows the construction of a
supercell by RBT from the STGB model. GB models contain
largely different numbers of atoms in the supercells from 36
to 388 which results in a strong cost imbalance in the search
space. The number of atoms M for all 38 angles are shown in
Supplemental Material Sec. 3 [23]. For each angle, the three-
dimensional RBTs, denoted as �X, �Y , and �Z which are

illustrated in Fig. 1(a), were generated. The grid space is 0.1 Å
for the direction �X, 0.2 Å for the direction �Y , and 0.1 Å
for the direction �Z. In atomic columns, if the two atoms in
an atomic pair are closer to each other than the cutoff distance,
one atom from the pair is removed. More precisely, an atomic
pair within the cutoff distance is replaced with a single atom
located at the center of the original pair. In this study, the
cutoff distance is varied between 1.43 and 2.72 Å, i.e., 0.5
and 0.95 times the equilibrium atomic distance, respectively.
For example, two models for �9, where an atomic pair is
replaced or not replaced, can be considered as illustrated in
Fig. 1(a). In total, we created 157 680 candidate GB models
for which the exhaustive search is computationally quite
expensive.
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As the structure-specific descriptor for each GB model x,
we employed the three-dimensional axes of RBTs: �X, �Y ,
and �Z. For the task-specific descriptor z, we used the
rotation angle θ and radial distribution function (RDF) of the
(�X,�Y,�Z) = (0, 0, 0) GB model. As an angle descriptor,
we applied the following transformation to the rotation angles:
θ̃t = θt if θt � 90, otherwise θ̃t = 180 − θt . In the case of
the fcc-Al [100] GBs, θt and θ̃t are equivalent. Although
the complete equivalence does not hold for fcc-Al [110]
GBs, we used this transformed angle as an approximated
similarity measure. For the RDF descriptor, we created a 100-
dimensional vector ρ ∈ R100 by taking 100 equally spaced
grids from 0 to 6 Å. The task-specific descriptor is thus
written as zt = (θ̃t , ρ

�
t )�. In other words, two tasks which

have similar angles and RDFs simultaneously are regarded
as similar in MGP. In fact, the task-specific descriptor can be
any other structure descriptor if it represents GB structures in
different angles precisely. A possible choice is smooth overlap
of atomic positions (SOAP) [25], which is defined through
the local atomic density in a system. SOAP shows superior
performance for GB energy prediction tasks in our previous
work [26] and another work [27]. These studies indicate that
SOAP is highly discriminative for different GB structures.
The cost parameter Ct was set by the number of atoms in
each supercell. Details of the parameter setting of Bayesian
optimization are shown in Supplemental Material Sec. 4 [23].

B. Performance evaluation

To validate the effectiveness of our proposed method, we
compared the following four methods:

(1) Random sampling (random). At each iteration, the next
candidate was randomly selected with uniform sampling.

(2) Single task Bayesian optimization (SB). SB is the usual
Bayesian optimization for a single task. At each iteration, a
GB model which had the maximum EI was selected across all
the angles.

(3) Multitask Bayesian optimization (MB). MB is Bayesian
optimization with multitask GP in which knowledge of the
energy surfaces is transferred to different angles each other.
The acquisition function is the usual EI.

(4) Cost-sensitive multi-task Bayesian optimization (CMB).
CMB is MB with the cost-sensitive acquisition function de-
fined by Eq. (5).

All methods start with one randomly selected structure for
each angle.

Figure 5 shows the results. We refer to the difference
between the lowest energy identified by each search and the
true minimum as an energy gap. The vertical axis of the figure
is the average of the gaps for the 38 different angles, and the
horizontal axis is the total cost (2). All values are averages of
five trials with different initial structures.

We first see that CMB has smaller energy than the other
three methods. Focusing on the difference between the single-
task method and the multitask-based methods, we see that the
convergence of SB is much slower than that of multitask based
methods (MB and CMB). We also see that the cost-sensitive
search improved the convergence (note that although the
cost-sensitive search is applicable to SB, it is not essentially

FIG. 5. The GB energy gaps from the minimums to the identified
structure by each method. The vertical axis is the mean for all angles.
The shaded region represents the standard deviation for five runs.

beneficial because SB does not transfer information accumu-
lated for low cost surfaces to high cost surfaces).

To validate the effectiveness of our approach in a more
computationally expensive setting, we consider the case that
O(M3) computations are necessary for the atomic relaxation.
By setting the cost parameter Ct as the cube of the number
of atoms (i.e., M3), we virtually emulated this situation with
the same dataset. Figure 6 shows the energy gap. Here, the
horizontal axis is the sum of the cube of the number of atoms
M3 for the calculated GB models. The same as Fig. 5, MB
and CMB show better performance than the naive SB. In
particular, CMB decreased the energy gap more rapidly than
the other methods. Because of the larger sampling cost, the
cost-sensitive strategy showed a greater effect on the search
efficiency.

FIG. 6. The GB energy gaps for the O(M3) cost setting.
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FIG. 7. Stable GB energy as a function of the rotation angle. The
solid line represents the true stable energy obtained by computing all
GB models exhaustively. The dotted line corresponds to the average
energy at the initial step of Bayesian optimization. The dashed line
represents the average energy obtain by CMB with the cost value of
100 000, which is about 0.3% (≈100 000/33 458 160) of the cost of
the exhaustive search.

IV. DISCUSSION

The acceleration of the structure search is essential for
material discovery in which a huge number of candidate struc-
tures are needed to be investigated. In our case study using the
fcc-Al [110] tilt GBs, the sum of the computational cost Ct for
all candidate structures is

∑N
i=1 Cτi

= 33 458 160 when Ct is
set as per the M [i.e., O(M ) setting]. The total computational
cost that CMB needed to reach the average energy gaps 10 and
5 mJ/m2 were 0.001 ≈ 43 891.8/33 458 160.0 and 0.002 ≈
76 937.6/33 458 160.0, respectively. In other words, with only
about 0.2% of the computation steps of the exhaustive search,
CMB achieved 5 mJ/m2 accuracy. Figure 7 compares the
energy between the true stable structure and the structure
identified by CMB, which shows that our method accurately
identified the dependency of energy on the angle, with a low
computational cost.

To summarize, we have developed a cost-effective simulta-
neous search method for GB structures based on two machine-
learning concepts: transfer learning and cost-sensitive search.
Since the amount of data is a key factor for data-driven
search algorithms, knowledge transfer, by which data are
shared across different tasks, is an important technique to
accelerate the structure search. Although the concept of mul-
titask learning is widely accepted in the machine-learning
community, our method is the first study which utilizes it for
fast exploration of stable structures. Our other contribution is
to introduce the concept of the cost-sensitive evaluation into
the structure search. For efficient exploration, the diversity of
computational cost should be considered, though this issue
has not been addressed in the context of the structure search.
Although we used the EAM potential as an example, the cost-
imbalance issue would be more severe for computationally
more expensive calculations such as density functional theory
(DFT) calculations.

Our Bayesian optimization code is available [28], and the
gain-boundary structure data is available on request.
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