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Electron magnetic circular dichroism (EMCD), the electron wave analog of x-ray magnetic circular dichroism
(XMCD), allows for the element specific measurement of the spin and orbital magnetic moments with up to
nanometer resolution. However, due to dynamical diffraction effects, the signal-to-noise ratios of EMCD spectra
are often very low. We describe a simple set of rules, how to set up a geometry for a classical EMCD experiment
on an arbitrary crystal structure to get a maximum dichroic signal. The procedure is based on an evaluation of
the structure factor and extinction distances. Proof-of-concept simulations and experiments on a FeGe crystal
present a successful test of these guidelines.
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I. INTRODUCTION

Electron magnetic circular dichroism (EMCD; [1]) is
an experimental technique promising high spatial resolution
quantitative magnetic measurements. Despite being in de-
velopment for more than a decade, it hasn’t yet reached
widespread employment. The most likely reason for it is
the complexity of dynamical diffraction effects. In conse-
quence, the amplitude of the EMCD spectrum is often very
low, obfuscated by noise. It becomes necessary to optimize
the experimental settings by performing inelastic-scattering
calculations in various experimental geometries, which is a
routine, though complex, task for a theorist.

Omitting the subtopic of atomic resolution EMCD experi-
ments, where one utilizes highly convergent electron beams
[2–4], the most common geometries for so-called classical
EMCD experiments involve orienting the crystal into a sys-
tematic row condition indexed by a chosen Bragg reflection
G. This is typically achieved by tilting the sample 5–20◦ away
from some high-symmetry orientation, zone axis (hkl). The
tilt is within a plane parallel to (hkl) and perpendicular to G.

The originally proposed experimental geometry [1,5] was
a two-beam orientation, in which the incoming parallel beam
is tilted further so that an excitation error of a selected Bragg
reflection (not necessarily equal to G) is zero. In this crystal
orientation, the EMCD signal is expected to be seen mostly
in the area between 0 and G, having opposite signs above and
under the systematic row, respectively. It is extracted using

EMCD ∝ σ++(E) − σ+−(E),
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where σ++(E) and σ+−(E) denote double-differential scatter-
ing cross sections integrated over a specific range of scattering
angles; see Fig. 1(c). In the further text, explicit marking of
energy dependence of σ will be omitted.

Another alternative is a three-beam geometry [6–8], where
the excitation errors of +G and −G are kept equal. In this
orientation, the EMCD signal is nonzero in all four quad-
rants of the diffraction plane, having alternating signs for
all neighboring quadrants. An often quoted advantage of the
three-beam orientation is its higher tolerance to asymmetries
thanks to the so-called double difference procedure [7]:

EMCD ∝ (σ++ − σ+−) − (σ−+ − σ−−);

see Fig. 1(b).
It is important to note that the exact EMCD distribution

in the diffraction plane still depends on several factors, most
importantly on the crystal structure and sample thickness.
Other factors are magnetic structure, acceleration voltage, and
convergence angle of the beam. It is quite possible that even if
one carefully and precisely orients the crystal into one of these
two experimental geometries, the observed EMCD signal will
be too low to be seen above the noise level. At this point, if
the experiments were not successful, it is common to address
the question of suitable experimental geometry by explicit
simulation of the energy-filtered diffraction patterns [9–11],
to find the optimal orientation, sample thickness, and detector
orientation that would lead to the strongest EMCD signal.

In this paper we propose a simple procedure that should
help to circumvent this step and equip an experimentalist
with a simple set of rules on how to determine the optimal
experimental geometry for classical EMCD experiments.
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FIG. 1. (a) Crystallographic unit cell of stoichiometric FeGe in
the B20 structure. The blue sheets indicate the {200} and {400}
lattice planes, while the blue and red arrowed spheres represent the
nonmagnetic Ge and the magnetic Fe atoms, respectively. Schematic
illustration of the Bragg scattering of 300-keV electrons, which
impinge on a B20 FeGe crystal under (b) (−200)(000)(200) three-
beam orientation and (c) (000)(400) two-beam condition. Both the
calculated diffraction patterns (upper grey scale maps) and EMCD
maps (lower, colored maps) are shown for each of these cases.
The scale bars refer to diffraction angles of 5 mrad. The distinct
differences in the EMCD maps are attributed to the largely different
partial structure factors. Dashed circles indicate the optimal posi-
tions of the entrance aperture of the EEL spectrometer in order to
obtain maximum dichroic (EMCD) signals (see text for details and
labeling).

Section II summarizes the role of the structure factor and
how to use it to guide selection of suitable systematic row
conditions. The role of the extinction distance will also be
discussed in the context of thickness dependence of EMCD. In
Sec. III we apply the optimization procedure to the example of
a FeGe crystal and perform explicit simulations of inelastic-
scattering cross section including double-channeling effects.
In Sec. IV we show experimental results for the FeGe crystal,
benefiting from the procedure described here. Section V dis-
cusses the findings and their extensions for more complicated
magnetic structures.

II. STRUCTURE FACTOR

In a two-beam orientation with a strongly excited Bragg
spot G, one can approximately write the electron-beam wave
function in the following form:

ψin(r) ≈ C0(z)eikin·r + CG(z)ei(kin+G)·r, (1)

where the coefficients C0(z), CG(z) can be expressed in a
Bloch-waves picture as

CG(z) =
∑

j

C
�(j )
0 C

(j )
G eiγ (j )z. (2)

In these expressions, C
(j )
G is a Bloch-wave coefficient cor-

responding to beam G and Bloch wave j ; the γ (j ) is an
elongation of the incoming wave vector (Anpassung) assum-
ing sample surface normals are parallel to the z direction.
Equation (1) neglects all the other beams for H different from
0 or G.

The inelastic-scattering cross section can be obtained by
the first Born approximation, meaning that we assume only
one inelastic-scattering event to occur during the passage of
the beam through the sample. Considering that the inelastic-
scattering mean free paths are on the order of 100 nm and
sample thicknesses are typically 20–30 nm, the first Born
approximation should offer a sufficient precision. As the final
state in the first Born approximation, we need a wave function
of the electron beam entering the detector. Here we adopt the
simplest approximation for such a situation, describing such
outgoing beam by a simple plane wave:

ψout (r) ≈ eikout ·r, (3)

where kout is fixed by the detector orientation. Then the first
Born approximation of inelastic scattering cross section can
be written as

∂2σ

∂�∂E
= kout

kin

∑
I,F

∣∣∣∣ me

2πh̄2 〈ψout| ⊗ 〈F |V̂ |I 〉 ⊗ |ψin〉
∣∣∣∣
2

× δ(E + EI − EF ), (4)

where me is the relativistic electron mass and I, F label
initial and final (excited) states of the crystal, having energies
EI ,EF , respectively. The E represents the energy loss, i.e.,
the energy that the beam electron transfers to the sample in
the excitation process, and V̂ is Coulomb interaction operator
representing interactions among all charges in the system
(beam and sample).

For core-level excitations, which are the focus of our paper,
the initial states I label all atoms, where the chosen excitation
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can occur. We will label their positions with vectors a. For
example, if we aim to measure EMCD on Fe L3 edge in a
FeGe crystal, then initial I labels ground states of all iron
atoms. Final states, F , then represent all the excited states of
the crystal, for which the EF − EI is within a desired range
of energy losses.

Inserting the explicit expressions for the ψin, ψout one
obtains for the two-beam orientation

∂2σ

∂�∂E
∝

∑
a

[|C0(az)|2Sa(Q, Q, E)

+|CG(az)|2Sa(Q−G, Q−G, E)

+2Re[e−iG·aC0(az)C�
G(az)Sa(Q, Q−G, E)]], (5)

where Q = kout − kin and

Sa(q, q′, E) =
∑
F

〈Ia|e
iq′·(r−a)

q ′2 |F 〉〈F |e
−iq·(r−a)

q2
|Ia〉

× δ(E + EI − EF ) (6)

is a mixed dynamic form factor [12] (MDFF) of atom a
expressed in its local coordinate system (centered around
atom a).

The EMCD signal is contained in the imaginary part of
the MDFF, which is zero if its first two arguments are equal,
therefore only the last term of Eq. (5) can contribute with
EMCD:

EMCD ∝ −2
∑

a

[Im[e−iG·aC0(az)C�
G(az)]

× Im[Sa(Q, Q − G, E)]]. (7)

Assuming for simplicity that all atoms a are symmetrically
equivalent and magnetically saturated in the external magnetic
field of the microscope objective lens, the imaginary part
of MDFF becomes a independent and can be taken outside
of the summation. (See Sec. V below for a discussion of
more general situations.) Therefore, if we want to optimize
the absolute strength of EMCD, we need to maximize the
magnitude of the following term:∑

a

Im[e−iG·aC0(az)C�
G(az)]. (8)

In a two-beam approximation for an exact two-beam orien-
tation (i.e., with zero excitation error sG), there are only two
Bloch waves, which can be obtained by secular equation [13],(−2Kzγ U−G

UG −2Kzγ

)(
C0

CG

)
= 0, (9)

where Kz is here the z component of the incoming beam wave
vector kin and UG = 2me

h̄2 VG, where VG is a Fourier component
of the electrostatic potential inside the sample. In general, for
a noncentrosymmetric system U−G = U�

G and the solution is

C
(1,2)
0 = 1√

2
and C

(1,2)
G = ±eiφG

√
2

, (10)

where UG = eiφG |UG|, (11)

γ (1,2) = ±|UG|
2Kz

and γ (1) − γ (2) ≡ 2π

ξG
, (12)

where ξG is an extinction distance [14]. For a centrosymmetric
crystal φG = 0 and U−G = UG.

Using relations Eqs. (10) and (12), one obtains from Eq. (2)

C0(z) = cos
πz

ξG
and CG(z) = ieiφG sin

πz

ξG
(13)

and for an optimization criterion from Eq. (8)∑
a

Im

[
e−iG·a(−i)e−iφG sin

πaz

ξG
cos

πaz

ξG

]

= −
∑

a

Im[ie−i(G·a+φG )]
1

2
sin

2πaz

ξG

= −1

2

∑
a

sin
2πaz

ξG
cos(G · a + φG). (14)

By writing a = R + u, where R is a lattice vector and u
is a basis vector, and by neglecting uz/ξG in the argument of
sinus, we obtain

−1

2

∑
R

sin
2πRz

ξG

∑
u

cos(G · u + φG), (15)

where we used that eiG·R = 1 for all reciprocal-lattice vectors
G and lattice vectors R.

We introduce the thickness function by

1

Nxy

∑
R

sin
2πRz

ξG
=

cos πc
ξG

− cos
(

2πt
ξG

− πc
ξG

)
2 sin πc

ξG

≈ ξG

πc
sin2 πt

ξG
, (16)

where Nxy is the number of illuminated unit cells in the xy

plane, c is the lattice parameter, t is the thickness of the
crystal, and Nz is the number of cells in the z direction, so
that t = Nzc. The approximation is valid when πc � ξG.

Thus, to maximize the EMCD signal, we need to optimize
the thickness function [Eq. (16)] and an expression reminding
of a structure factor:

∑
u

cos(G · u + φG) ≡ Re

[
e−iφG

∑
u

e−iG·u
]
, (17)

where φG is a phase of Fourier component of scattering
potential UG, which includes contributions of all atoms within
the unit cell, while the sum over basis vectors u runs only
over atoms of the species, for which we want to measure the
core-level excitation, e.g., only iron atoms in the FeGe crystal.
In the following text, we refer to such an expression as a
partial structure factor.

A practical optimization procedure would run over all
G vectors with low Miller indices (otherwise it becomes
cumbersome to set the two-beam orientation) searching for
candidates that maximize Eq. (17). If the sample thickness is
known, then one could simultaneously check for the value of
the thickness function. Alternatively, an optimum thickness
can be suggested for a given ξG, specifically t = ξG/2.

Importantly, the optimization procedure outlined above can
be easily implemented in a computer program, which would
perform all these optimizations within fractions of a second
for an arbitrary crystal structure provided by a user. Such
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software is expected to make EMCD experiments easier for
a wider range of experimentalists interested in employing
this method of magnetic measurement. An optional final step
could be an explicit inelastic scattering simulation of the
energy-filtered diffraction pattern to aid selection of the op-
timal detector orientation and size. Actual implementation of
these procedures is in progress and will be reported elsewhere
[15].

Note that a more careful optimization would require us to
optimize the signal-to-noise ratio (SNR), which also depends
on the nonmagnetic components of the scattering cross section
and power-law background signal.

A careful reader could point out that there are many
more maxima of the thickness function, Eq. (16), specifically
at thicknesses t = (2n + 1)ξG/2, where n is a non-negative
integer. However, they are not favorable for the following
reason: the nonmagnetic component of the inelastic scattering
monotonously increases with the sample thickness, while the
magnetic one oscillates with thickness. If we assume a simple
linear increase of the nonmagnetic component with thickness,
then the relative strength of the EMCD signal at the maxima of
the thickness function decreases proportionally to 1/(2n + 1).
It can be shown that the signal-to-noise ratio also drops,
approximately proportionally to 1/

√
2n + 1. We should also

note that here we have completely neglected absorption ef-
fects, which would further complicate the situation for thicker
crystals.

III. SIMULATIONS

As an example system for application of this procedure we
chose an FeGe crystal in the B20 phase; see Fig. 1(a). The
helimagnet FeGe, which exhibits a complex Skyrmionic spin
texture [16], can be easily magnetically saturated by the field
in the microscope objective lens at low temperatures [17].
In fact, this system served as an initial motivation for this
work. Repeated EMCD experiments with this material, which
preceded the theoretical results presented here, have failed
to detect any EMCD signal in a three-beam orientation with
G = (200), following the otherwise standard “recipe” of the
double-difference procedure [7].

In a three-beam orientation there are three pairs of beams,
which can contribute to the EMCD: (1) [0, G], (2) [0,−G],
and (3) [G,−G]; see Fig. 1(b). A general analytical treatment
for noncentrosymmetric materials, such as FeGe, is cumber-
some and will not be attempted here. In Appendix B we
deal with a centrosymmetric three-beam orientation, or with a
situation with real-valued UG, which is applicable here since
U(200) is real. Qualitatively, these three pairs lead to three
groups of terms in the inelastic scattering cross-section, each
with its own partial structure factor. Two of them lead to
a partial structure factor with G = ±(200) and the last one
to G = ±(400). The ±G = (200) beams have equal phases
(see Appendix B), while the partial structure factor is real
(Table I), therefore according to Eq. (8) mutual interference
of this pair of beams doesn’t contribute to the EMCD signal.
What remains are the two pairs of the terms with G = ±(200).
Both structure factors are real and therefore equal. At first
sight there seems to be no reason for not detecting a typical

TABLE I. List of G vectors treated in this paper, together with
those with h, k, l < 5 having real part of their partial structure factor
[PSF; Eq. (17)] larger than 2.5.

G φG ξG PSF

{2, 0, 0} π 222 nm 0.501
{4, 0, 0} π 144 nm 3.87
{2, 1, 0} π/2 ± π/2 87 nm 2.98
{4, 4, 0} 0 263 nm 3.75
{2, 2, 2} ±1.98 1180 nm 3.58
{4, 4, 4} ±2.80 389 nm 3.40
{3, 2, 0} ±π/2 1550 nm −3.28
{4, 2, 1} −1.45 ± π/2 222 nm 2.85
{4, 3, 2} −0.58 ± π/2 2710 nm 2.70
{2, 0, 1} ±π/2 1090 nm 2.62

three-beam orientation type of EMCD distribution. So where
is the problem with this system?

The issue is with the value of the partial structure factor.
For G = ±(200) the

∑
u cos(G · u + φG) = 0.501. In its am-

plitude, this is approximately 1
8 th of the maximal value of

4—as there are four Fe atoms in the unit cell of FeGe. This
suppresses the cross terms of the 0 beam with ±G beams
almost by an order of magnitude. Because this interference is
the primary source of expected EMCD, the attainable EMCD
signal strength is going to be on the order of 1% or below,
therefore most likely buried under the noise level. This is
confirmed by an explicit simulation [10] shown in Fig. 2(a),
where across all thicknesses the relative strength of EMCD is
very low, except for thin vertical stripes covering a very small
fraction of a diffraction plane; see Fig. 1(b).

Simulations were performed using the MATS.V2 algorithm
[10] with a summation cutoff of 10−5. The incoming beam, a
plane wave, was tilted approximately 10◦ from the [001] zone
axis. Weickenmeier-Kohl scattering potentials [18] were used
and the absorptive potential was modelled as U ′

G = 0.1iUG.
In Fig. 2 we show the thickness dependence of the σ±±(E)
integrated over the energy-loss range covering the L3 edge
of iron. The same detector orientation and collection angles
were assumed as in the experiment shown below; see insets in
Fig. 3.

Now that we have demonstrated the importance of the
partial structure factor, we will apply the optimization pro-
cedure outlined in the previous section. Limiting ourselves to
the G vectors with h, k, l indices with absolute value smaller
than 5, Table I lists the G vectors leading to the largest real
parts of the partial structure factor. This list suggests that an
exact two-beam orientation with G = (400) [see Fig. 1(c)]
should be a much better experimental geometry, offering a
more than 7× larger partial structure factor multiplying the
imaginary part of MDFF. Note that a three-beam orientation
with G = (400) would be the same as a three-beam case with
G = (200). With (200) being closer to (000), these diffraction
spots would be always present in a three-beam orientation
with G = (400). That is why it is necessary to turn to a
two-beam case. To probe this qualitative suggestion, we have
performed a simulation and the results are shown in Fig. 2(b).
A striking difference is immediately obvious—in the range of

113801-4



SIMPLE METHOD FOR OPTIMIZATION OF CLASSICAL … PHYSICAL REVIEW MATERIALS 2, 113801 (2018)

FIG. 2. Simulations of nonmagnetic (solid lines) and EMCD
(dashed lines) components of the scattering cross section for Fe L3

edge in FeGe crystal. Acceleration voltage was set to 300 kV and
orientations was (a) three-beam orientation with G = {2, 0, 0}, (b)
two-beam orientation with G = {4, 0, 0}, and (c) two-beam orienta-
tion with G = {2, 1, 0}.

sample thicknesses between 20 and 60 nm there is a sizable
EMCD signal spread over a large part of the diffraction plane;
see Fig. 1(c). For larger thicknesses it decreases in agreement
with the thickness function, Eq. (16), which has a period equal
to the extinction distance of 144 nm. Thus a simulation, which
considers hundreds of beams and full double channeling,
confirms the simple qualitative prediction based on two-beam

FIG. 3. EEL spectra measured in two- and three-beam conditions
with their respective EMCD signal (difference) in green. The aper-
ture positions corresponding to the spectra are displayed as inset.
Measurements in the two-beam case show a dichroic signal (b) and
(c), whereas the asymmetry at the absorption edges disappears when
spectra are measured in the three-beam case (a). Furthermore the
thickness of the respective investigated sample areas is denoted in
the panels.

approximation and on values of partial structure factor and an
extinction distance.

Inspecting Table I, another interesting suggestion is a two-
beam orientation with G = (210). Although it has a somewhat
decreased partial structure factor of 2.98, it has lower Miller
indices and that should be helpful in setting the experimental
crystal orientation. It also has rather low extinction distance,
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so it should be suitable for thinner FeGe samples. And explicit
simulation is shown in Fig. 2(c), which confirms a sizable
EMCD with a maximum near a thickness of 20 nm. In this
orientation EMCD is weaker than for G = (400), but still
significantly higher than in a three-beam orientation with G =
(200).

Interesting questions arise when considering the conse-
quences of a large imaginary part of the partial structure
factor for this system. The derivation given above for an
exact two-beam orientation suggests that this doesn’t bring
any advantages. However, if we deviate slightly from the
exact two-beam orientation (i.e., there will be nonzero exci-
tation error sG), new terms appear and modify the picture.
In Appendix A we generalize the derivation from Sec. II
for a general two-beam approximation allowing for a tilt
from exact two-beam orientation. Results shown there suggest
that an imaginary partial structure factor should provide a
stable nonzero EMCD at large thicknesses, being largest when
dimensionless parameter w, characterizing the tilt away from
exact two-beam orientation (see Appendix A), is equal to
±1. The EMCD term acquires a prefactor of w

1+w2 = ± 1
2

that reduces its magnitude, nevertheless, once t � ξG, the
relative strength of EMCD should be only weakly dependent
on sample thickness.

IV. EXPERIMENTS

To verify the above developed theory, EMCD experiments
were performed in three different scattering geometries on a
FeGe sample. Cf. Table I: the G vectors {4, 0, 0} and {2, 1, 0}
are chosen, due to their real part partial structure factors
and their accessibility in the setup of a two-beam case in
the experiment. Additionally a three-beam orientation with
G = (200), as already mentioned in Sec. III, was probed.

FeGe single crystals with the cubic B20 structure were
grown via chemical vapor transport (CVT) in quartz tubes
using an iodine transport agent. The crystal growth zone of the
CVT reaction was kept at a temperature of 500 ◦C while the
source zone was kept at a temperature of 560 ◦C [19,20]. After
careful determination of the orientation using x-ray diffraction
and electron backscatter diffraction, the crystal is embedded
into a resin. Subsequently the embedded crystal is mechani-
cally thinned in the direction of the [001] crystallographic axis
to approximately 30 μm. Afterwards the sample is subjected
to grazing incidence Ar+ ion milling until holes form.

The EMCD experiments are performed in a double cor-
rected FEI Titan3 80–300 microscope operated at an acceler-
ation voltage of 300 kV. All measurements were conducted
at a sample temperature of 90 K using a Gatan double tilt
liquid-nitrogen cooling holder. With the objective lens of the
microscope fully excited, the sample is exposed to a 2.2 T
magnetic field parallel to the optical axis of the microscope.
In these conditions the cubic FeGe is in the so-called field
polarized phase with all the spins aligned parallel to the ap-
plied external field [17], yielding the maximal dichroic signal.
To prepare the respective two- and three-beam orientations
the α and β tilt of the sample holder is used to tilt the
sample with respect to the electron beam, until the desired
conditions in the diffraction patterns (see Fig. 3 insets) are
reached. The camera length with respect to the 1 mm entrance

aperture of the Gatan Tridiem 865 energy filter is adjusted in
such a way that the probed areas in the diffraction patterns
are maximal (see colored circles in the diffraction patterns
in the insets of Fig. 3). From each of these positions 100
electron energy-loss (EEL) spectra are recorded, with a single
spectrum acquisition time of 0.5 s and a dispersion 0.5 eV per
pixel, containing the Fe L3 and L2 edges. Afterwards spectra
from each aperture position are resampled by a factor of 4 on
the energy scale, aligned with respect to the Fe L3 edge and
summed. Subsequently the backgrounds of these sum spectra
are removed. In order to account for multiple scattering, these
spectra are deconvoluted with their respective low-loss spectra
using the Richardson-Lucy algorithm [21,22] (15 iterations).
Furthermore the low-loss spectra are used to determine the
thicknesses of the investigated sample areas, denoted in the
respective panels in Fig. 3.

For the two-beam cases [Figs. 3(b) and 3(c)] the treated
spectra from aperture positions “++” and “+–” are postedge
normalized and subtracted, resulting in the EMCD signal
(green curves). For G vectors {4, 0, 0} and {2, 1, 0} a clear
asymmetry at the Fe L3 edge, which reverses sign at the
Fe L2 edge, is visible. This is also reflected in the EMCD
signal which is only nonzero at the positions of the edges.
In the case of the three-beam condition the spectra from
all four aperture positions are postedge normalized and the
spectra σ++(E), σ−−(E) and σ+−(E), σ−+(E) are summed
respectively, displayed in Fig. 3(a). The double difference
procedure leads to the dichroic signal denoted as a green
curve. In contrast to the two-beam cases no asymmetry at the
absorption edges is visible, verifying the importance of the
partial structure factor in EMCD experiments. Nevertheless
it also has to be noted that although an EMCD signal is
qualitatively visible in the two-beam conditions, the signal-
to-noise ratio is still too low to reproducibly get quantitative
results for the ratio of orbital to spin magnetic moment from
the dichroic signal.

V. DISCUSSION

The close connection of the partial structure factor and
the position of the magnetic atoms within the crystal becomes
particular obvious, when comparing the two- and three-beam
condition for the FeGe case in Fig. 1. In Fig. 1(a) the blue
sheets indicate the {2, 0, 0} and {4, 0, 0} lattice planes,
which intersect all magnetic Fe atoms in the unit cell. For
the three-beam case in Fig. 1(b) electrons are only scattered
at a fraction of these planes, whereas for the two-beam case
in Fig. 1(c) planes contributing to the scattering contain all
magnetic atoms of the unit cell. This quite simplistic picture
nevertheless allows for allocating a meaning to the partial
structure factor in real space.

So far the optimization of the EMCD signal is only dis-
cussed for ferromagnets. For more complex magnetic struc-
tures like ferrimagnets the partial structure factor can contain
terms with positive and negative sign influencing the total sum
in Eq. (17). Eventually these terms can be also weighted by
(different) sizes of magnetic moments to include the differ-
ent sublattices. Moreover the partial structure factor can be
further generalized to study complex noncollinear magnetic
structures, allowing for relatively fast simulation of an EMCD

113801-6



SIMPLE METHOD FOR OPTIMIZATION OF CLASSICAL … PHYSICAL REVIEW MATERIALS 2, 113801 (2018)

signal of intrinsic or larger scale structures like skyrmions or
domain walls to set the right experimental conditions.

Turning the argument around for magnets with several
nonequivalent magnetic atoms of the same species, the partial
structure factor can also be used to separate these structures.
The task would be then to find a G1, which minimizes the
signal from sublattice “2” and maximizes the signal from
sublattice “1,” and another G2 for the opposite situation.

From an experimental point of view the quality of the
respective two-beam orientation can only be checked by the
intensity of the diffraction spots. However an exact two-beam
orientation does not necessarily mean that 0 and G have equal
intensity, since the Pendellösung modifies these intensities
as a function of thickness. To account for this problem one
possible solution could be to simulate the elastic diffraction
pattern for the respective thickness to have a rough estimate
for the intensity distribution in the experiment. In principle the
experimental diffraction pattern could also be used as an input
to a computer-controlled tilting system in the microscope to
find the desired orientation.

FIG. 4. Flowchart describing the guideline how to perform an
EMCD experiment on an arbitrary crystal structure to get a maximum
dichroic signal.

VI. CONCLUSIONS

In conclusion, we explicitly revised the theory of EMCD
in a two-beam orientation. The introduced partial structure
factor is identified as a parameter that can be optimized
relatively easily in order to maximize the EMCD signal in
the experiment by choosing the right crystal orientation. We
have also discussed the effect of the thickness function on
the strength of the dichroic signal. Furthermore the partial
structure factor is calculated for several two-beam conditions
and the three-beam orientation with G = (200) of the heli-
magnet FeGe in the B20 phase to get qualitative suggestions
for which orientation is most suitable experimentally. The
partial structure factor for the three-beam case is signifi-
cantly decreased in comparison with the two-beam orienta-
tions. Additional simulations of the lateral distribution of the
EMCD signal in the diffraction plane as a function of sample
thickness confirm these findings. With the determined optimal
experimental parameters EMCD signals of an actual fully
saturated FeGe sample in two- and three-beam conditions are
measured. As suggested by our developed theory a significant
dichroic signal is detectable for the two-beam orientations,
whereas it is absent in the three-beam case. In summary, our
findings reveal the importance of the crystal orientation for
EMCD measurements. Besides we provide an easy hands on
tool for experimentalists to choose the optimal setup for their
dichroic measurements. The general workflow of this opti-
mization procedure for EMCD experiments on an arbitrary
crystal structure is summarized in Fig. 4.
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APPENDIX A: GENERAL TWO-BEAM APPROXIMATION

In a two-beam approximation with a nonzero excitation
error sG, the secular equation is(−2Kzγ U−G

UG −2Kzγ − G2 − 2K · G

)(
C0

CG

)
= 0 (A1)

and solving it gives for elongations

γ (1,2) = −(G2 + 2K · G) ±
√

(G2 + 2K · G)2 + 4|UG|2
4Kz

(A2)

and the relation between Bloch coefficients is

C
(1,2)
G = eiφGC

(1,2)
0

2Kzγ
(1,2)

|UG| . (A3)

More commonly, the elongations are written in terms
of dimensionless parameter w = −G2+2K·G

2|UG| and extinction
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distance ξG [see Eq. (12)] as

γ (1,2) = 1

2ξG
[w ±

√
1 + w2]. (A4)

The effective extinction distance ξ ′
G is given by

γ (1) − γ (2) =
√

1 + w2

ξG
≡ 1

ξ ′
G

(A5)

and for z-dependent Bloch coefficients from Eq. (2) we obtain

C0(z)e−iπwz/ξG = cos
πz

ξ ′
G

− iw√
1 + w2

sin
πz

ξ ′
G

, (A6)

CG(z)e−iπwz/ξG = ieiφG

√
1 + w2

sin
πz

ξ ′
G

. (A7)

In an exact two-beam orientation the term G2 + 2K · G = 0,
or equivalently w = 0 and ξ ′

G = ξG, and results from the main
text are reobtained.

Following now the optimization criterion Eq. (8) leads to a
more complicated expression,

−
∑

a

Im

{
e−i(G·a+φG )

[
i

2

sin 2πaz

ξ ′
G√

1 + w2
+ w

2

1 − cos 2πaz

ξ ′
G

1 + w2

]}
.

(A8)

Splitting again the sum over a = R + u into two sums, ne-
glecting uz/ξ

′
G in sines and cosines, one obtains two terms for

optimization; first

− 1

2
√

1 + w2

∑
R

sin
2πRz

ξ ′
G

∑
u

cos(G · u + φG), (A9)

which is an equivalent of what we have obtained above, and
second

w

2(1 + w2)

∑
R

(
1 − cos

2πRz

ξ ′
G

) ∑
u

sin(G · u + φG),

(A10)

which brings some new aspects. First, it is proportional to
the imaginary part of the partial structure factor. Second,
and more surprising: every single unit cell of the system
contributes with a non-negative prefactor, because the cosine
in the sum over R cannot be larger than 1.

We can again evaluate the sum over R. For the first term
we obtain the same thickness function as in Eq. (16), and for
the second term

1

Nxy

∑
R

(
1 − cos

2πRz

ξ ′
G

)
= t

c
− 1

2
−

sin
(

2πt
ξ ′

G
− πc

ξ ′
G

)
2 sin πc

ξ ′
G

≈ t

c
− ξ ′

G

2πc
sin

2πt

ξ ′
G

, (A11)

which for small thicknesses (t � ξ ′
G) is close to zero, however

for large thicknesses (t � ξ ′
G) the term t/c dominates. This

leads to an interesting and unexpected suggestion: if the
structure of the material allows us to choose a systematic row
condition with the partial structure factor having a large imag-
inary part, then for thick crystals it should be advantageous to
set the orientation such that we maximize the amplitude of

the prefactor w
2(1+w2 ) , which is ± 1

4 obtained for w = ±1, or in
other words

G2 + 2K · G = ±2|UG|, (A12)

and a sizable EMCD should be detectable at large thick-
nesses. One should however keep in mind that at large sample
thicknesses this simple two-beam approximation might not be
accurate.

APPENDIX B: THREE-BEAM ORIENTATION

In an exact three-beam orientation (K · G = 0) the secular
equation in the three-beam approximation becomes⎛
⎜⎝

−2Kzγ − G2 U−G U−2G

UG −2Kzγ U−G

U2G U−G −2Kzγ − G2

⎞
⎟⎠

⎛
⎜⎝

C−G

C0

CG

⎞
⎟⎠ = 0.

(B1)

In noncentrosymmetric systems potentials U±G, U±2G can be
complex. In such case the algebra becomes too cumbersome.
However, in cases when the potentials are real—and for
specific G that can happen also in a noncentrosymmetric
case—then the analytical solution is tractable, as will be
shown below.

There are three Bloch waves, which are solutions of this
eigenproblem. One can exploit symmetries of the eigenprob-
lem [23] to show that one of them, let’s mark it Bloch-wave
number 1, has C

(1)
0 = 0. Because C0 is also an excitation

coefficient, we can neglect this Bloch wave, since it won’t be
excited when the plane wave enters the crystal. The other two
Bloch waves have C

(2,3)
−G = C

(2,3)
G and their Anpassung factors

are

γ (2,3) =
U2G − G2 ±

√
(U2G − G2)2 + 8U 2

G

4Kz

= 1

2

[
s ′

G ±
√

s ′2
G + 2

ξ 2
G

]

= 1

2ξG
[w′ ±

√
2 + w′2], (B2)

where we introduced effective excitation error s ′
G = U2G−G2

2Kz
,

extinction distance as in the exact two-beam case ξG = Kz

UG
,

and their product as a dimensionless parameter w′ = s ′
GξG.

We can then similarly as in the general two-beam approxima-
tion, introduce an effective extinction distance ξ ′′

G = ξG√
2+w′2 .

It’s almost the same as in the general two-beam approxima-
tion, Eq. (A5), just with redefined w′ and a 2 instead of 1 in
the square-root expression.

For the Bloch wave numbers 2 and 3 the relation between
Bloch coefficients is C

(2,3)
G = C

(2,3)
0 ξGγ (2,3). Normalization of

Bloch waves leads to a condition

∣∣C (2,3)
0

∣∣2 = 1

2

[
1 ± w′

√
2 + w′2

]
, (B3)
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which can be used to derive

C0(z) = e
iπw′z

ξG

[
cos

πz

ξ ′′
G

− iw′
√

2 + w′2 sin
πz

ξ ′′
G

]
, (B4)

C±G(z) = e
iπw′z

ξG
i√

2 + w′2 sin
πz

ξ ′′
G

. (B5)

Note the formal similarity with expressions in two-beam
approximation, Eqs. (A6) and (A7).

In a centrosymmetric crystal structure the structure factor
is real, thus the EMCD prefactor from Eq. (8) becomes

∑
a

cos(G · a)Im[C0(az)C�
G(az)]

= − 1

2
√

2 + w′2
∑

u

cos(G · u)
∑

R

sin
2πRz

ξ ′′
G

. (B6)

Note that with real structure factor there is no cross term
between CG(z) and C−G(z) that would contribute to the
EMCD, since the product of CG(z)C�

−G(z) is real.
Another remark is related to w′: while in two-beam ap-

proximation w was a parameter whose value could change
as a function of tilt from the exact two-beam orientation, in
this treatment of exact three-beam orientation it has a fixed
value. Only in such conditions there is a tractable analytical
treatment of three-beam approximation.

Returning to the case of FeGe from the main text, in three-
beam orientation with G = (200), the potentials U±G, U±2G
are real. Therefore one can use the analytical treatment out-
lined in this appendix. The partial structure factor over iron
atoms then has a value∑

u

cos(G · u) ≈ 0.501, (B7)

which is far from the optimized values in Table I, explaining
the weak EMCD observed in this experimental geometry.
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