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Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations
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We use density functional theory (DFT) to compute the core structures of a0[100](010) edge, a0[100](011)
edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations in body-centered cubic (bcc) Fe. The
calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to
relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green
function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based
dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in
the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulklike
approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the
core structures of the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0) 71◦ mixed dislocations. This
approximation fails for the a0/2[1̄1̄1](11̄0) dislocation, however, so in this case we derive the LGF from more
accurate force constants computed using a Gaussian approximation potential. The standard deviations of the
dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact,
and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the
cores. We also compute the core structures of these dislocations using eight different classical interatomic
potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye
tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT
results. The DFT core geometries provide benchmarking for classical potential studies of work-hardening, as
well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for
mesoscale models of solute strengthening and solute diffusion near dislocations.
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I. INTRODUCTION

Steel alloys are used in a wide variety of structural applica-
tions due to their low cost and the relative ease of tuning their
mechanical properties via alloying and processing compared
to many other structural materials [1,2]. The ferrite phase
found in many steels is body-centered cubic (bcc) Fe contain-
ing C and other solute atoms [1–3]. As in other bcc metals,
dislocation slip is one of the most important plastic deforma-
tion mechanisms in bcc Fe [4,5]. Therefore accurate modeling
of dislocation structures in Fe and their response to stress
is key to understanding deformation behavior, improving
microstructure-based models of plasticity and fracture, and
ultimately developing new steels with improved mechanical
properties. The a0/2〈111〉-type screw dislocations in bcc met-
als have been widely studied since these dislocations largely
control the low-temperature plastic deformation of bcc metals
and alloys [4–6]. The details of the screw dislocation core
structure are known to affect the Peierls stress and therefore
the mobility of these dislocations [7–9], and density func-
tional theory (DFT) calculations first revealed that the core
is compact and symmetric compared to the degenerate core
structure predicted by many classical interatomic potentials
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[10–13]. The questionable reliability of classical potentials
and the lack of experimental measurements of dislocation core
structures in Fe highlights the need for electronic structure
methods to compute detailed atomic-level structural features
in dislocation cores.

While a0/2〈111〉 screw dislocations predominantly govern
the plastic response of bcc metals at low temperatures, dislo-
cations of edge or mixed character may also play important
roles in controlling plastic deformation in bcc metals. For
example, edge dislocations in bcc metals can form from
reactions of dislocations with a0/2〈111〉-type Burgers vectors.
As screw dislocations move through the material, they can
react with other dislocations intersecting their glide plane to
form stable binary junctions with Burgers vector a0〈100〉 via
a reaction of type [14,15]

a0/2[111] + a0/2[11̄1̄] → a0[100]. (1)

These binary junctions may themselves be mobile, or further
react with other dislocations to form ternary junctions which
contribute to work hardening. These junction reactions are
of interest and have been studied by dislocation dynamics
simulations [16,17]. Here, we consider two possible edge dis-
locations with a0〈100〉-type Burgers vectors—a0〈100〉{010}
and a0〈100〉{011}—along with a a0/2〈111〉{011} edge dislo-
cation, as this is the most commonly observed type of edge
dislocation in bcc Fe [18]. Edge dislocations are also of

2475-9953/2018/2(11)/113605(12) 113605-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.113605&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevMaterials.2.113605


FELLINGER, TAN, HECTOR JR., AND TRINKLE PHYSICAL REVIEW MATERIALS 2, 113605 (2018)

interest for understanding the influence of dislocation loops
[19,20] and cell structures [21] on deformation processes in
Fe. Experimentally observed edge dislocations in nanocrys-
talline samples of bcc W [22] and Ta [23] are believed to be
the primary reason for the reported lower strain rate sensitivity
of nanocrystalline bcc metals and alloys compared to their
coarse-grained counterparts, and may play an important role
in controlling the plastic response of nanocrystalline bcc Fe.
Finally, dislocations in bcc Fe can play a part in other inter-
esting phenomena as well. For example, pipe diffusion (i.e.,
accelerated diffusion along the dislocation line) of C intersti-
tials has been predicted to occur in the a0/2[111](11̄0) 71◦
mixed dislocation in bcc Fe [24]. However, conventional pipe
diffusion was not predicted for other types of dislocations—
the migration of C interstitials was found to be accelerated not
along the dislocation line direction but in a conjugate diffusion
direction formed by a pathway of octahedral interstitial sites
adjacent to the dislocation core. In order to better understand
the complex mechanisms that are likely to be at play here,
accurate and detailed descriptions of the dislocation cores are
necessary.

In this study, we use DFT combined with flexible boundary
conditions (FBC) [25–27] to optimize the core structures of
the a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0)
edge, and a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe.
Previous simulations of edge and mixed dislocations in bcc
Fe have relied on classical interatomic potentials due to the
large supercells needed to contain the long-ranged strain fields
generated by dislocations [18,19,21,24,28–36]. Yan et al. [37]
and Chen et al. [38] used first-principles calculations to study
the electronic effects of C solutes and kinks on edge disloca-
tions in bcc Fe, respectively. However, both of these studies
used a Finnis-Sinclair classical potential to generate the initial
dislocation geometries for the first-principles calculations.
The accuracy of results from classical simulations strongly
depends on the fidelity of the interatomic potential, and there
are no experimental measurements or first-principles calcu-
lations of edge and mixed dislocation core structures in bcc
Fe to benchmark the core structures from classical potentials.
We therefore present the first fully ab initio calculations of
the core structures of edge and mixed dislocations in bcc Fe.
Our DFT-based FBC calculations allow a single dislocation
to effectively relax as an isolated defect in a supercell size
tractable for DFT calculations by coupling the DFT core to
an infinite harmonic lattice through the lattice Green function
(LGF) [25–27,39]. In contrast to most previous DFT-based
FBC calculations of dislocation cores that used the LGF of the
bulk crystal to approximate the LGF of dislocated geometries,
here we use LGFs specifically computed for each dislocation
[40]. The dislocation LGFs account for changes in both the
topology of the crystal lattice in the highly distorted core re-
gion and local strain throughout the lattice. The FBC method
removes any reliance on dislocation multipole arrangements
often used in DFT simulations to cancel the long-ranged
strain fields generated by dislocations, but that may generate
artifacts in the dislocation core structures due to dislocation-
dislocation interactions. Our DFT core structures serve to
benchmark the predictions of existing classical potentials,
provide fitting data for generating new classical potentials,
serve as a basis of comparison for future experimental in-

vestigations of dislocation cores in bcc Fe, and also serve as
the starting point for first-principles calculations of solution
strengthening [41] and solute transport near edge and mixed
dislocations in bcc Fe [42].

The rest of this paper is organized as follows. Section II
presents our computational geometries, discusses the FBC
method, and gives the details of our DFT calculations. Here,
we discuss how we visualize the dislocation cores using
a combination of differential displacement maps [43], Nye
tensor distributions [44,45], volumetric strain, and changes
in the magnetic moments on the Fe atoms. This section also
presents how we quantify the widths of the dislocation cores
using the second moments of the Nye tensor distributions,
and how we distinguish symmetry differences between the
core structures from DFT and classical potentials using the
Fourier coefficients of the Nye tensor distributions. Section III
presents our DFT-optimized dislocation cores, and compares
the results to core structures optimized using eight different
interatomic potentials. Section IV summarizes our results and
provides further discussion.

II. COMPUTATIONAL METHODS

A. First principles calculations with flexible
boundary conditions

Figure 1 shows the initial dislocation geometries that we
optimize using first-principles calculations with FBC. We
construct cylindrical slab geometries and introduce the dis-
locations by displacing all the atoms in the slabs according
to the displacement fields predicted by anisotropic elasticity
theory [46]. The magenta “+” symbols in the figure show the
center of the elastic displacement field for each dislocation.
The displacement fields of edge and mixed dislocations are
incompatible with periodic boundary conditions perpendic-
ular to the dislocation threading direction (pointing out of
the page), so we surround each slab by a vacuum region.
We divide each slab into region 1 (blue), region 2 (red), and
region 3 (yellow) for applying FBC, which we discuss in
the next paragraph. The supercell dimensions perpendicular
to the threading directions are equal for all the dislocations,
with dimensions of 50.46 Å × 50.46 Å. Each supercell is
periodic along the threading direction which requires that
the slabs have different thicknesses along this direction. The
radial thickness of region 2 is determined by the interaction
range of atoms in bcc Fe, and the radial thickness of region 3 is
chosen large enough to isolate regions 1 and 2 from the effects
of the vacuum. We chose the radial thickness of region 1 large
enough to ensure that the highly distorted dislocation cores
are confined to region 1, which is confirmed by the differential
displacement maps and Nye tensor distributions in Figs. 3–6.
Table I gives the radii and numbers of atoms for each region.

The FBC approach [25,27] couples the highly distorted dis-
location core to an infinite harmonic bulk, which effectively
allows a dislocation to relax as an isolated defect. The FBC
approach consists of two steps; in the first step, we use a
conjugate gradient optimization scheme with DFT-computed
forces to relax the defect core (region 1), while holding the
rest of the atoms fixed. This reduces the forces in region 1
but induces forces in region 2. In the second step, we apply
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FIG. 1. Initial supercell geometries for the a0[100](010) edge,
a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦

mixed dislocations in bcc Fe. The lattice parameter a0 = 2.832 Å,
and the supercell dimensions perpendicular to the dislocation thread-
ing direction are 50.46 Å. The atoms are displaced according to
anisotropic elasticity theory and divided into three regions to apply
FBC. The magenta “+” marks the center of the elastic displacement
field. The atoms are surrounded by a vacuum region in all four
cases since the dislocation displacement fields are incompatible with
periodic boundary conditions. Each supercell is subject to periodic
boundary conditions along the threading direction. Table I provides
more details about the dislocation geometries.

displacements on all atoms in regions 1, 2, and 3 in response
to the forces in region 2, as prescribed by the LGF G,

u(R′) =
∑

R

G(R − R′)f (R), (2)

TABLE I. Geometry information for the a0[100](010) edge,
a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦

mixed dislocations in bcc Fe. The table lists the number of atoms and
the outer radius in Å of region 1 (blue atoms in Fig. 1), region 2 (red
atoms in Fig. 1), and region 3 (yellow atoms in Fig. 1). The radius
of each region is nearly equal for each dislocation, but the number
of atoms in each region varies between the dislocations due to the
different slab thicknesses along the dislocation threading direction.

region 1 region 2 region 3

dislocation atoms radius atoms radius atoms radius

a0[100](010) edge 60 8.8 110 14.7 216 22.4
a0[100](011) edge 82 8.7 150 14.6 300 22.9
a0/2[1̄1̄1](11̄0) edge 142 8.7 261 14.5 514 21.8
a0/2[111](11̄0) 71◦ mixed 52 8.8 96 14.8 190 22.4

where u(R′) is the displacement vector of the atom at R′ and
f (R) is the Hellmann-Feynman force on the atom at R. The
LGF is the pseudoinverse of the force constant matrix D [39],∑

R′′
D(R − R′′)G(R′′ − R′) = 1δ(R − R′), (3)

where the force constant matrix element Dij between the
atoms at R and R′ is

Dij (R − R′) = ∂2U total

∂ui (R)∂uj (R′)

∣∣∣∣
u=0

. (4)

Here, U total is the total potential energy of the crystal, and ui

and uj are Cartesian components of the displacement vectors.
The displacements given by the LGF describe the response of
an infinite harmonic system; since our system deviates from
this harmonic approximation particularly in the dislocation
core, this generates forces in region 1. Therefore we alternate
between these two steps until all forces in regions 1 and
2 are smaller than a defined tolerance. We use an efficient
numerical method developed in Ref. [40] to compute the
LGFs from the force constants in the dislocated geometries.
The force constant and LGF calculations are discussed in the
following paragraphs, and the details of the DFT calculations
are discussed in Sec. II B.

We compute the force constants for the a0[100](010) edge,
a0[100](011) edge, and a0/2[111](11̄0) 71◦ mixed disloca-
tions using the bulklike approximation described in Ref. [40].
We use the small displacement method [47–49] to compute
the force constants of perfect bulk bcc Fe (see Sec. II B for
details). We then approximate the force constants between
pairs of atoms in the dislocation geometries by assigning to
them the force constants from the pair of atoms in the bulk
which have the closest equivalent pair vector. We have found
that this simple approximation works well for most disloca-
tions in simple crystal structures since the force constants
are short-ranged and the local environment of atoms appears
bulk-like even close to the core [40].

We use a Gaussian approximation potential (GAP) for bcc
Fe [50] to compute the force constants for the a0/2[1̄1̄1](11̄0)
edge dislocation. For this dislocation, the bulklike approxima-
tion failed to produce adequate force constants. This appears
to be due to atoms in the initial dislocation core geometry
being too close, making it difficult to correctly determine the
appropriate pairs of atoms in the bulk corresponding to pairs
of atoms in the dislocation. Therefore, we compute the force
constant matrix for this dislocation using a finite-difference
scheme on each atom in the dislocation geometry to compute
derivatives in forces. Since it is prohibitively expensive to
do so with DFT, we instead use the Fe GAP to compute the
dislocation force constants. The GAP method [51] generates
classical interatomic potentials that accurately interpolate the
potential energy surface of a material using highly flexible
basis functions called “smooth overlap of atomic positions”
(SOAP) kernels. The SOAP kernels can represent a large
range of different local atomic environements that can be
encountered during atomistic simulations, and the accuracy
and transferability of GAP steps from fitting the SOAP co-
efficients to a large set of DFT energies, forces, and virials
that capture the potential energy surface. We chose the GAP
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FIG. 2. Difference between the DFT and GAP force constants vs
distance r between pairs of atoms for different volumetric strains eV .
For each value of r , we take the Frobenius norm of the difference be-
tween the DFT and GAP force constant matrices D. The dashed lines
show ||DDFT|| for each value of strain. The force constants decay as
r increases and the differences show similar behavior. The maximum
difference for each strain occurs at r = 0 (i.e., the on-site term),
where ||DDFT|| = 19.273 eV/Å2 and ||DGAP|| = 19.713 eV/Å2 for
eV = 0. The corresponding relative error is 2.28%, with similar max-
imum errors for eV = −5% (2.69% error) and eV = +5% (1.42%
error).

potential for computing the large number of force constants
in the a0/2[1̄1̄1](11̄0) edge dislocation geometry since it
provides a good balance between accuracy and speed—while
orders of magnitude slower than EAM or MEAM, GAP is still
much faster than DFT and can provide accuracy comparable
to DFT for computing the properties of bcc Fe [50]. We check
that the GAP accurately reproduces the lattice and elastic
properties from DFT, which is important to ensure consistency
between the DFT and LGF relaxations. The GAP lattice con-
stant for bcc Fe is a0 = 2.834 Å and the elastic constants are
C11 = 285.9 GPa, C12 = 154.3 GPa, and C44 = 103.8 GPa,
which agree well with our DFT-computed lattice constant
of a0 = 2.832 Å and elastic constants C11 = 277.5 GPa,
C12 = 147.7 GPa, and C44 = 98.1 GPa [52]. In addition, we
check that the force constants from the GAP agree well with
the force constants from DFT. Figure 2 compares the DFT
and GAP force constants computed for bulk bcc Fe under
different volumetric strains eV . The maximum absolute errors
between the GAP and DFT force constants occur for the
on-site term (r = 0), which correspond to relative errors of
less than 3% for all three strain values, eV = −5%, 0%, and
+5%. Therefore we expect the GAP to predict force constants
in the strained dislocation geometries which are consistent
with DFT.

We numerically invert the dislocation force constant ma-
trices following the method developed in Ref. [40]. This
method requires setting up a large system divided into five
regions: regions 1, 2, and 3, which make up the DFT supercell,
a buffer region, and a far-field region. The far-field region

contains atoms far away from the core whose displacements
we approximate using the bulk elastic Green function (EGF),
which is the known large distance limit of the LGF [39,53],
while the buffer region contains the remaining atoms between
region 3 and the far-field. For all the dislocations studied here,
we used a buffer size of at least 20a0, for which the errors in
the LGF computation due to the far-field approximation are

on the order of 10−3Å
2
/eV or less. We compute the LGF for

forces in region 2 by applying a unit force on an atom in region
2, evaluating the resulting far-field displacements based on
the EGF, determining the forces these displacements generate
in the buffer region, and finally solving for the displacement
field corresponding to the effective forces in the system by
using a conjugate gradient method to numerically invert the
force constant matrix. This gives one column of the LGF; by
systematically looping through every atom in region 2, we
compute the LGF matrix that gives displacements on atoms in
regions 1, 2, and 3 due to forces in region 2. For more details
on this method, the reader is referred to Ref. [40].

B. Density functional theory calculation details

We use the plane-wave basis DFT code VASP [54] to
generate data for computing bulk force constants and to
optimize the geometries of the edge and mixed dislocations
in bcc Fe. The Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) functional [55] accounts for
electron exchange and correlation energy, and a projector
augmented wave (PAW) potential [56] with electronic con-
figuration [Ar]3d74s1 generated by Kresse and Joubert [57]
models the Fe nuclei and core electrons. The calculations
require a plane-wave energy cutoff of 400 eV to converge the
energies to less than 1 meV/atom. We ensure accurate forces
for force constant calculations and atomic relaxation using
Methfessel-Paxton smearing [58] with an energy smearing
width of 0.25 eV. We chose this smearing width to ensure
close agreement between the smeared electronic density of
states (DOS) of bulk bcc Fe near the Fermi energy and the
DOS computed using the linear tetrahedron method with
Blöchl corrections [59]. The energy tolerance for the elec-
tronic self-consistency cycle is 10−8 eV. All of the calculations
are spin polarized to model the ferromagnetism of bcc Fe.

We use the small displacement method [47–49] to compute
the force constants of bulk bcc Fe used in the bulklike ap-
proximation of the dislocation force constants (see Sec. II A).
To ensure that the LGFs computed from the force constants
match the elastic Green function in the limit R → ∞, the
elastic constants Cijkl computed from the bulk force constant
matrix Dij (R) must match the elastic constants computed
using standard stress-strain calculations [39]. The elastic con-
stants Cijkl of a crystal with a single basis atom can be
computed from the force constant matrix Dij (R) using the
method of long waves [39,60],

−
∑

R

Dij (R)RkRl = V0(Cikjl + Ciljk ), (5)

where V0 is the volume of the primitive cell. However, nu-
merical errors in the DFT forces between pairs of atoms
with large R can compound to produce large errors in the
Cijkl . We examine the effect of supercell size on the errors
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FIG. 3. Core structure of the a0[100](010) edge dislocation in bcc Fe. The first three panels show the differential displacement maps using
black arrows and the Nye tensor components α3i as contour plots (blue to red color scale). The α31 and α32 distributions reflect the edge
character of the dislocation, and the α33 distribution reflects the screw character. The fourth panel shows the volumetric strain eV as a contour
plot (cyan to magenta color scale). The atoms in all four panels are colored based on their magnetic moments m (orange to purple color scale).
The core has edge character in both the x and y directions and it remains compact after relaxation. The screw component α33 of the dislocation
is zero. The magnetic moments on the Fe atoms decrease in the compressive region above the slip plane and increase in the tensile region
below the slip plane.

in the force constants and the corresponding computed Cijkl

by performing small displacement method calculations using
3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5, and 6 × 6 × 6 supercells
with 10 × 10 × 10, 8 × 8 × 8, 6 × 6 × 6, and 6 × 6 × 6 �-
centered Monkhorst-Pack k-point meshes [61], respectively.
In all these calculations, the atom at the origin of the supercell
was given a displacement of 0.02 Å along a supercell lattice
vector and the resulting forces were input into the code PHON

[49] to compute the force constants. We find that the force
constants computed using the 4 × 4 × 4 supercell produce
Cijkl values closest to the Cijkl from stress-strain calculations
[52], but the values differ by up to 25 GPa. We therefore com-
puted the force constants of bulk bcc Fe using the force data
from the 4 × 4 × 4 supercell calculation under the constraint
that the sum in Eq. (5) gives Cijkl values that exactly match
the Cijkl from our stress-strain calculations. These constrained
force constants are used in the bulklike approximation of
the force constants for the a0[100](010) edge, a0[100](011)
edge, and a0/2[111](11̄0) 71◦ mixed dislocations. Figure 2
compares the unconstrained force constants under volumetric
strain computed with GAP and DFT using 6 × 6 × 6 super-
cells. Force constants computed using classical potentials like
GAP are not subject to the same types of numerical error as
the DFT force constants, so we do not constrain the GAP
force constants computed directly for the a0/2[1̄1̄1](11̄0)
edge dislocation (see Sec. II A).

We use DFT with FBC to relax the atoms in re-
gions 1 and 2 of the edge and mixed dislocation ge-
ometries. We sample the Brillouin zones of the disloca-
tion supercells using 1 × 1 × 18, 1 × 1 × 14, 1 × 1 × 8,
and 1 × 1 × 20 �-centered Monkhorst-Pack meshes for the
a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge,
and a0/2[111](11̄0)71◦ mixed dislocations, respectively. We
relax the atoms in regions 1 and 2 of the a0[100](010) edge,
a0[100](011) edge, and a0/2[111](11̄0) 71◦ mixed disloca-
tion geometries until the forces on the ions are less than
5 meV/Å. Due to the larger computational cost of relaxing
the a0/2[1̄1̄1](11̄0) edge dislocation, we relax the atoms in
regions 1 and 2 of this dislocation until all of the forces on

the ions are less than 18 meV/Å. We compared the final
relaxed core structures of the other dislocations to their core
structures earlier in their relaxation when the largest forces
were ∼18 meV/Å, and found negligible differences in the
geometries; therefore, we consider the a0/2[1̄1̄1](11̄0) edge
dislocation core structure to effectively be fully optimized by
that point in the relaxation.

C. Dislocation core visualization

We visualize the relaxed core structures of the dislocations
using a combination of differential displacement (DD) maps
[43], Nye tensor components αjk [44,45], volumetric strain
eV , and changes in the local magnetic moments m on the
Fe atoms. The DD maps display the core structure of a
dislocation as arrows that indicate the relative displacements
between pairs of atoms. The Nye tensor components αjk

represent the local Burgers vector density at each site in
the dislocation core, where the first index j corresponds to
the dislocation threading direction and the second index k

specifies the Cartesian component of the local Burgers vector
at each site. For the dislocations in this study, the only nonzero
Nye tensor components are α3k since the threading direction
of each dislocation is chosen along the z axis. We visualize
the Nye tensor distributions as linearly interpolated contour
plots. The dislocations strain the lattice, and magnetostrictive
materials such as Fe show changes in magnetism under strain
[62]. The dislocation strain fields and the corresponding local
changes in the magnetic moments on the Fe atoms give a
complementary view of the core structures.

We define the centers and widths of the dislocation cores as
the first and second moments of the Nye tensor distributions.
We define the normalized Nye tensor components α̃3k as

α̃3k (x, y) := |α3k (x, y)|∑
x ′,y ′ |α3k (x ′, y ′)| , (6)

where (x, y) is the coordinate of a site in the plane normal to
the dislocation threading direction. The first moments x3k and
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FIG. 4. Core structure of the a0[100](011) edge dislocation in bcc Fe. Similar to the a0[100](010) edge dislocation, the core is compact,
the screw component is zero, and the magnetic moments decrease (increase) if the atoms are above (below) the slip plane due to the dislocation
strain field. The edge component of this dislocation in the y direction is nearly zero.

y3k of the normalized Nye tensor components,

x3k :=
∑
x,y

x α̃3k (x, y),

y3k :=
∑
x,y

y α̃3k (x, y), (7)

define the center of each α3k distribution. The second mo-
ments σ3k,x and σ3k,y of the normalized Nye tensor compo-
nents,

σ 2
3k,x :=

∑
x,y

(x − x3k )2α̃3k (x, y),

σ 2
3k,y :=

∑
x,y

(y − y3k )2α̃3k (x, y), (8)

give the widths of a Nye tensor distribution.
We compute the Fourier coefficients of the Nye tensor

distributions to quantify the symmetry differences between
the dislocation core structures computed using DFT and the
core structures computed using different classical potentials.
The pth Fourier coefficient c3k,p of each α3k about the center
(x3k, y3k ) is

c3k,p :=
∑
x,y

α3k (x, y)e−ipθ (x,y), (9)

where θ (x, y) := arctan [(y − y3k )/(x − x3k )] is the angular
coordinate of a site (x, y). The c3k,p quantify the p-fold
rotational symmetry content of the Nye tensor distributions.

Lastly, we compute the local volumetric strain at each site
near the dislocation cores using [41]

eV :=
[

det
{∑

v′ v
′
j v

′
k

}
det

{∑
v vjvk

} ]1/2

− 1, (10)

where v′ are the nearest-neighbor vectors of an atom in
the dislocation geometry, v are the corresponding nearest-
neighbor vectors in bulk, and j and k denote Cartesian com-
ponents. Since the strain is computed at discrete sites like the
Nye tensor components, we visualize the strain distributions
as linearly interpolated contour plots.

III. RESULTS

A. Dislocation core structures: first-principles calculations

Figures 3–5 show that the DFT-optimized core structures
of the edge dislocations are compact and the magnetic mo-
ments on the atoms above (below) the slip planes decrease
(increase) due to the volumetric strain fields around the dislo-
cation cores. The α32 and α33 distributions are nearly zero for
the a0[100](011) and a0/2[1̄1̄1](11̄0) edge dislocations, but

FIG. 5. Core structure of the a0/2[1̄1̄1](11̄0) edge dislocation in bcc Fe. Similar to the a0[100](010) and a0[100](011) edge dislocations,
the relaxed core is compact, the screw component is zero, and the magnetic moments decrease (increase) in response to compressive (tensile)
strains in the core. The edge component of this dislocation in the y direction is nearly zero.
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TABLE II. Widths of the Nye tensor distributions α3k for the
edge and mixed dislocations in bcc Fe. We define the widths of α3k

in the x- and y-directions as two times the corresponding second
moment computed using Eq. (8). The edge and mixed cores are
compact since their widths are comparable to the widths of α33 for
the a0/2[111] screw dislocation in bcc Fe (x width = 3.20 Å and y

width = 3.25 Å).

dislocation, α3k x width (Å) y width (Å)

a0[100](010) edge, α31 3.78 3.92
a0[100](010) edge, α32 4.69 3.04
a0[100](011) edge, α31 4.31 3.38
a0/2[1̄1̄1](11̄0) edge, α31 4.33 3.00
a0/2[111](11̄0) 71◦ mixed, α31 3.97 3.28
a0/2[111](11̄0) 71◦ mixed, α33 4.41 3.30

unexpectedly we find that α32 is about one-half as large as α31

for the a[100](010) edge dislocation. The x and y directions
for the a[100](010) dislocation are both 〈100〉-type directions,
and we surmise that it is more energetically favorable to
displace in the y direction compared to the other two edge
dislocations. Separately, we have optimized the core structure
of the a0/2[111] screw dislocation in bcc Fe using FBC [63].
The relaxed core structure is symmetric and compact like in
other bcc metals [10–13,64,65], and we compute the widths
of the core as 2σ33,x = 3.20 Å and 2σ33,y = 3.25 Å. Table II
shows that the widths of the edge dislocation cores are similar
to the widths of the screw dislocation core, confirming that the
edge dislocation cores remain compact after relaxation. The
α31 and α32 distributions of the a0[100](010) edge dislocation
go to zero at similar distances from their centers, but α32

has a larger x width since it is antisymmetric. The fourth
panels in Figs. 3–5 illustrate the magnetostrictive effect in the
dislocation cores—compressive strain reduces magnetization
and tensile strain increases magnetization. We initialize the
magnetic moments for all four dislocations in this study in a
ferromagnetic state with equal moment values. The relaxed
moment values decrease or increase based on the local strain
distribution, but the ordering remains ferromagnetic through-

FIG. 7. Local magnetic moments m near the dislocation cores
vs average nearest-neighbor distance d

avg
NN . The discrete points are

the values for the magnetic moments near the dislocation cores and
the solid line shows the variation of the magnetic moment of bulk
bcc Fe vs nearest-neighbor distance. The average nearest-neighbor
distance is an alternative measure of local volumetric strain which
better correlates the magnetic moments near the dislocations with
the moments in strained bulk, especially for the large strains found
in the dislocation cores. The average nearest-neighbor distance in
unstrained bulk bcc Fe is d

avg
NN = 2.453 Å.

out all four geometries. We further explore the changes in
magnetic moments later in this section (see Fig. 7).

Figure 6 shows that the DFT-optimized core structure of
the a0/2[111](11̄0) 71◦ mixed dislocation is compact and
the changes in the magnetic moments on the atoms near the
core reflect the volumetric strain field of the edge component.
The Burgers vector and threading direction for the mixed
dislocation are along two different body-diagonals of the
cubic unit cell, separated by an angle of ≈71◦. Hence the
edge component α31 of the dislocation is larger than the screw
component α33 as shown in Fig. 6. The edge component

FIG. 6. Core structure of the a0/2[111](11̄0) 71◦ mixed dislocation in bcc Fe. In this case, the dislocation has both edge (α31) and screw
(α33) components due to its mixed character. Since the volumetric strain due to the screw component is small, the changes in the magnetic
moments of the Fe atoms are largely due to the edge component of the dislocation. The dislocation core is compact after relaxation like the
edge dislocation cores.
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perpendicular to the Burgers vector (α32) is nearly zero.
Similar to the edge dislocations, the magnetic moments on
atoms above the slip plane are reduced from their bulk values
due to compressive strain and the moments on the atoms
below the slip plane are enhanced due to tensile strain. This
is primarily due to the volumetric strain field generated by
the edge component of the dislocation (see Fig. 7), since the
volumetric strain induced by the screw component is small.

Figure 7 shows that the magnetic moments around the
dislocation cores closely follow the magnetic moments in
bulk bcc Fe for small volumetric strains but deviate for the
larger strains found in the cores. We use the average nearest-
neighbor distance as an alternative measure of local volumet-
ric strain since it better correlates the magnetic moments near
the dislocation cores with the moments in strained bulk. For
reference, the average nearest-neighbor distance in unstrained
bulk bcc Fe is

√
3a0/2 = 2.453 Å. We compute the bulk

magnetic moments by applying different volumetric strains to
the bcc unit cell. However, each dislocation is under a different
strain condition since the normal strain along their different
threading directions is zero. We have also computed the
variation in magnetization of bulk bcc Fe under the different
strain conditions corresponding to each dislocation and found
that the behavior is nearly identical to the volumetric strain
dependence for the strain range shown in the figure. We find
that the magnetic moments on the atoms in the dislocations
closely follow the magnetic moments in strained bulk for sites
with about −2% to +5% local volumetric strain. The outlying
data points correspond to atoms right in the dislocation cores
where the local strains are larger and nonvolumetric contribu-
tions to strain may become important.

B. Dislocation core structures: comparison
of interatomic potentials to DFT

Figure 8 compares the DFT core structures of the edge
and mixed dislocations to the cores from GAP [50], MEAM
[66], and EAM [67–73] potentials using the Fourier coef-
ficients c3k,p of the Nye tensor distributions. The classical
potential calculations are performed using the code LAMMPS

[74], with potential parameters downloaded from the NIST
interatomic potential repository [75] with the exception of
Ref. [68] EAM, which used the recommended POTENTIALB.FS

file downloaded from Ref. [76]. The supercells in the classical
potential calculations contain cylindrical slab geometries with
approximately 20 000 atoms surrounded by vacuum. We use
fixed boundary conditions where the atoms at a distance less
than the potential cutoff radii from the vacuum are held at their
positions from anisotropic elasticity theory, while all the other
atoms are relaxed using a conjugate gradient method. The
c3k,p [see Eq. (9)] quantify the differences in the p-fold sym-
metry content between the dislocation cores computed using
different methods. For example, the core of the a0[100](011)
edge dislocation relaxes to a different structure than the DFT
core using the GAP and there are large differences between
the GAP and DFT c31,p for p > 1. In contrast, the EAM
and MEAM c31,p for this dislocation agree well with the
DFT values. Figure 9 shows that the core computed using
the EAM potential from Ref. [71] is similar to the DFT core,
but the GAP core relaxes to a more open structure. We find

the largest differences from the DFT core structures when the
a0[100](010) edge dislocation is relaxed using the EAM po-
tentials from Refs. [68,73], when the a0[100](011) edge dis-
location is relaxed using GAP [50], when the a0/2[1̄1̄1](11̄0)
edge dislocation is relaxed using the EAM potential from
Ref. [73], and when the a0/2[111](11̄0) 71◦ mixed dislocation
is relaxed using the MEAM potential [66]. The study in
Ref. [21] found that the EAM potential from Ref. [71] pro-
duces a different core structure for a0/2〈111〉{110} edge dis-
locations compared to the EAM potentials in Refs. [67,69,70],
whereas we find that all of these potentials produce core
structures similar to our DFT core. We are able to reproduce
the core structures in Ref. [21] by choosing different elastic
centers for the initial dislocation geometry, but these cores
transform to the other core after annealing from 300 K. We
also find that the two types of cores are nearly degenerate
in energy which is consistent with the nudged elastic band
calculations in Ref. [21], so it is likely that the core we found
is the ground-state structure and the other core is a transition
state as the dislocation moves in its slip plane.

The alternate structure of the a0/2[1̄1̄1](11̄0) edge dislo-
cation for the EAM potential from Ref. [71] discussed in
the last paragraph raises the question about the existence of
metastable states for the other dislocation cores considered
in this study. Metastable core structures are most likely for
dislocations with large spreading in the slip plane or that
dissociate into partial dislocations separated by a stacking
fault since multiple energy minimia are present in the slip
plane. We do not expect metastable core structures to exist
for the dislocations in this study since all the DFT cores are
compact. We investigate this idea further by annealing the
cores from the EAM and MEAM potentials that are most
similar to the DFT cores to examine if these structures are
stable. We anneal the a0[100](010) edge dislocation cores for
the EAM potentials from Refs. [67,71] and the MEAM poten-
tial, the a0[100](011) edge cores for the EAM potentials from
Refs. [67–72] and the MEAM potential, the a0/2[1̄1̄1](11̄0)
edge cores for the EAM potentials from Refs. [67–72] and
the MEAM potential, and the mixed cores for the EAM
potentials from Refs. [67–72]. In each case, the initial geom-
etry for the annealing simulation is the conjugate gradient-
optimized geometry with Fourier coefficients shown in Fig. 8.
We anneal the cores from a starting temperature of 300 K
and then perform a subsequent conjugate gradient geometry
optimization. All of the annealed core structures remain un-
changed except for the a0[100](010) edge dislocation from
the EAM potential in Ref. [71], which remains compact but
becomes asymmetric in the slip direction, the a0[100](011)
edge dislocation from the MEAM potential which has a larger
spreading in the slip plane than the initial structure, and the
mixed dislocation from the EAM potential in Ref. [67], which
transforms to a structure similar to the MEAM structure. The
GAP cores of the a0[100](010) edge, a0/2[1̄1̄1](11̄0) edge,
and a0/2[111](11̄0) 71◦ mixed dislocations are similar to
the DFT cores. GAP calculations are more computationally
expensive than EAM and MEAM calculations, so we only
annealed the GAP mixed dislocation core. For the two GAP
edge dislocations that are similar to DFT, we applied small
random displacements to the atoms in the core region and
then relaxed the geometry using a conjugate gradient method.
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FIG. 8. Fourier coefficients of the Nye tensors computed using DFT and GAP [50], MEAM [66], and EAM [67–73] potentials. The
coefficients with even indices are real and the coefficients with odd indices are imaginary. We show only the coefficient values for positive
indices since the negative even coefficients equal the positive even coefficients, and the negative odd coefficients have equal magnitudes and
opposite signs as the positive odd coefficients. The scaled coefficients in the figure are defined as c̃3k,p = c3k,p/c31,0. The plots reveal the
differences in symmetry between the cores, and can be used to quickly judge if a given potential produces a core structure similar to DFT. For
example, the GAP cores of the a0[100](010) edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations agree well with DFT, but
the GAP core of the a0[100](011) edge dislocation relaxes to a more open structure (see Fig. 9 for a direct comparison of the cores).
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FIG. 9. Comparison of DFT, EAM [71], and GAP [50] results for the core structure of the a0[100](011) edge dislocation. The figures show
the α31 edge component of the Nye tensor, and the atoms in this DFT figure are not colored based on their magnetic moments. The EAM
potential produces a core structure similar to DFT, but the GAP core is different. This is reflected by the large differences between the DFT
and GAP Fourier coefficients in Fig. 8

All three GAP dislocation cores relax back to their starting
geometries. Finally, we investigated the stability of the DFT
mixed dislocation geometry by performing restoring force
calculations. We added small displacements along the slip
direction to the four atoms directly above the slip plane that
are closest to the center of the dislocation core, and computed
the resulting forces using DFT. The forces primarily point
opposite to the displacement direction, indicating that the
core will relax back to the original geometry. All of these
test calculations strongly suggest that the DFT core structures
reported in this study are stable ground-state structures, and
that the core transformations we find after annealing are due
to artifacts in the interatomic potentials. None of the potentials
is able to produce core geometries similar to DFT for all
of the dislocations, but the EAM potential from Ref. [71]
has the best overall performance. All of the core geome-
tries optimized with this potential using a conjugate gradient
method are similar to DFT, and they all remain stable under
annealing except for the a0[100](010) edge dislocation which
breaks symmetry but remains compact. This EAM potential
also produces a compact and symmetric core structure for
a0/2〈111〉 screw dislocations similar to DFT [69].

IV. SUMMARY AND DISCUSSION

We use density functional theory (DFT) with lattice flexi-
ble boundary conditions (FBC) to optimize the core structures
of a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0)
edge, and a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe.
The FBC approach couples the highly-distorted dislocation
core, which is treated with DFT to an infinite harmonic lattice
via the lattice Green function (LGF), which allows the dislo-
cation to effectively relax as an isolated defect. In contrast to
most previous first-principles FBC calculations of dislocation
cores that use the bulk LGF to relax the harmonic region
outside the core, we use LGFs specifically computed for each
dislocation geometry. The simple bulklike approximation we
used for generating the force constants and corresponding

LGFs for the a0[100](010) edge, a0[100](011) edge, and
a0/2[111](11̄0) 71◦ mixed dislocations fails to produce an
adequate LGF for the a0/2[1̄1̄1](11̄0) edge dislocation. For
this case, we found that a Gaussian approximation potential
(GAP) for bcc Fe produces accurate force constants under
strain, which lead to a dislocation LGF capable of optimizing
the core geometry. We find that the cores of all the dislocations
in this study are compact and the magnetic moments on the
atoms in the cores increase in the tensile region below the slip
planes and decrease in the compressive region above the slip
planes. Except for highly distorted sites nearest to the cores,
the strain response of the magnetic moments on the atoms
in the dislocated geometries closely follows the volumetric-
strain response of the magnetic moment in bulk bcc Fe. We
find that the initial ferromagnetic ordering we impose on the
magnetic moments in each geometry remains after relaxation,
showing that ferromagnetic ordering in the cores is at least
metastable. Future studies could investigate the impact of dif-
ferent initial magnetic configurations in the dislocation cores
on their relaxed magnetic states and geometries. We find that
most of the core structures computed using the GAP, MEAM,
and EAM interatomic potentials compare well with the DFT
core structures, with a few notable exceptions where the cores
relax to different structures. While none of the potentials is
able to produce core geometries similar to DFT for all of the
dislocations, the EAM potential from Ref. [71] has the best
overall performance. All of the core geometries optimized
with this potential using a conjugate gradient method are
similar to DFT, and they all remain stable under annealing
except for the a0[100](010) edge dislocation which remains
compact but becomes asymmetric along the slip direction.
Additionally, this EAM potential produces a compact and
symmetric core structure for a0/2〈111〉 screw dislocations
similar to DFT [69]. Relaxed dislocation core structures are
of fundamental importance for understanding plasticity in
bcc Fe, provide the geometries required for first principles-
based studies of solid-solution strengthening [41] and solute
diffusion near dislocations [42], provide data for parametriz-
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ing and benchmarking more computationally efficient models
such as classical interatomic potentials, and serve as a com-
parison point for future experimental measurement of edge
and mixed dislocation core structures in bcc Fe.

V. DATA AVAILABILITY

The VASP and LAMMPS input files used to per-
form the calculations along with the relaxed disloca-
tion core geometries are available to download from
http://hdl.handle.net/11256/978.
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