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Effect of nanoscale phase separation on the fracture behavior of glasses:
Toward tough, yet transparent glasses
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Although oxide glasses have many unique properties, their range of applications remains limited by their
brittleness. By mimicking the microstructure of composite materials, the presence of controlled nanoscale phase
separation in glass could overcome this limitation. However, the nature of the toughening mechanism induced
by such nanostructuring remains poorly understood. Here, based on peridynamic simulations, we investigate
the effect of nanoscale phase separation on the crack propagation mechanism. We show that phase separation
can significantly increase glass’s toughness (with up to a 90% increase in the fracture energy for the range of
conditions investigated herein). The extent of toughening is found to arise from a balance between the overall
cohesion of the phase-separated glass and the propensity for crack deflection. This suggests that controlled
nanoscale phase separation is a promising route toward the development of tough, yet optically transparent
glasses.
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I. INTRODUCTION

Thanks to their unique optical, chemical, and mechani-
cal properties, glasses have been key enablers for modern
human civilization (e.g., windows, lenses, containers, etc.)
[1]. This societal impact has only increased as the use of
glasses for liquid crystal display panels, optical fibers, and
damage-resistant protective covers has transformed the way in
which humans interact with computing devices and with each
other [2]. However, despite recent advances in the mechanical
performance of glass [3], it still achieves only a fraction of
its theoretical strength and remains mechanically brittle. In
contrast to crystals, glasses lack a stable shearing mechanism
and, hence, show very poor ductility and high brittleness [4].
As such, the fracture toughness (KIc, the resistance to fracture)
of most inorganic, nonmetallic glasses remains between 0.2
and 1.4 MPa m1/2 [5].

The brittleness of glass is the main limitation of its use
in many applications, since impacts, scratching, or fatigue
can result in undesirable or even dangerous fracture [2,3].
This is a serious safety concern, as the number of injuries
related to glass breakage (e.g., during car crashes) is sig-
nificant. Furthermore, improving the mechanical properties
of glasses is crucial to address major challenges in energy,
communications, and infrastructure—brittleness is a major
bottleneck for further development in short-haul high-capacity
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telecommunication, fiber-to-the-home technologies, flexible
substrates and roll-to-roll processing of displays, solar mod-
ules, planar lighting devices, next-generation touch-screen
devices, large scale and high altitude architectural glazing,
etc. [3]. Increasing the strength and fracture toughness of
glass would also lead to a significant reduction of mate-
rial investment and energy and production costs for existing
applications while achieving comparable or improved per-
formance. Among other applications, this could enable the
design of tough, yet light car windshields that would reduce
fuel consumption.

Much effort has been made to enhance the toughness of
glass by means of intrinsic and extrinsic toughening strategies
[5,6]. On the one hand, extrinsic techniques rely on the use of
reinforcements to control the driving force behind the crack
tip, e.g., through crack-tip shielding or crack bridging [6–9].
However, such reinforcements usually significantly hinder
the transparency of glass [3]. On the other hand, intrinsic
techniques rely on the optimization of the inherent fracture
resistance of the matrix by tuning their atomic structure or
microstructure—with some partial success [10,11].

As an alternative route, phase separation—which arises
from liquid-liquid immiscibility in the melt [12,13]—has
been suggested to potentially enhance the fracture toughness
of glasses [14–17]. Depending on the glass composition,
phase separation can occur via (i) a nucleation-growth mech-
anism, which results in the formation of spherical droplets
within a glassy matrix, or (ii) spinodal decomposition, which
yields two interconnected glassy phases [18]. By inducing the
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appearance of a microstructure within an initially homoge-
neous material, phase separation mimics the toughening strat-
egy that has been successfully used in composite materials
[7,9,19–25]. Indeed, the insertion of particles in brittle phases
has been shown to induce various toughening mechanisms,
including crack deflection [26,27], trapping [28–30], pinning
[31], or bridging [32,33]. Although the formation of large
phases (with droplets larger than 500 nm or resulting from
spinodal decomposition) typically induces a loss of trans-
parency in the glass [34], it has recently been shown that
the dimensions of the droplets forming upon phase separation
in calcium aluminosilicate glasses can be finely controlled
(from 20 to 500 nm) [35], which makes it possible for
phase-separated glasses to retain their transparency in the
visible spectrum. However, the toughening mechanism of
such nanoscale phase separation in glasses remains unknown.

Here, we investigate the effect of nanoscale phase sepa-
ration on the fracture behavior of glass using peridynamic
simulations. We demonstrate that nanoscale phase separation
can significantly increase the fracture toughness of glasses
(by up to 90% based on the range of parameters explored
here). The increase in the fracture toughness is found to be
controlled by a competition between the overall cohesion
of the phase separated glass and the propensity for crack
deflection at the droplet-matrix interfaces. This suggests that,
when properly controlled and optimized, phase separation can
yield tough, yet optically transparent glasses.

II. METHODS

A. Peridynamic theory

Although many studies have focused on investigating the
fracture of composite materials, they typically rely on the
finite element method (FEM), which, in turn, relies on a
differential formulation of mechanics (i.e., based on partial
differential equations) [43,44]. As such, this approach may
yield unrealistic results—due to numerical difficulties arising
from the existence of discontinuities within the simulated
system, e.g., stress discontinuities during crack propagation
or in composite materials [40], which are not well handled
by methods relying on partial differential equations. In turn,
the peridynamic method is based on a nonlocal formulation of
mechanics [36–38]. Rather than relying on partial differential
equations (as usually considered in FEM [39]), the peridy-
namic formalism involves integral equations. This integral
formulation allows one to avoid the numerical difficulties
arising from the use of FEM in composite materials and
makes peridynamics an attractive method to simulate crack
propagation.

In peridynamics, the material domain is discretized into
points with a finite volume. Each material point x interacts
with the other points x′ that are located within a specific region
Hx, which is called the family of x. For convenience, this
region is often assumed to be a sphere centered around x
with a radius δ, which is known as the horizon. The relative
position between two interacting points is defined as a bond
ξ , which can be expressed as

ξ = x − x′. (1)

The relative displacement between two points is defined as
η and can be expressed as

η = u(x′, t ) − u(x, t ) (2)

where u is the displacement vector field. Within the peri-
dynamic formalism, the equation of motion, based on the
conservation of linear momentum, can then be expressed as

ρ(x)ü(x, t ) =
∫
Hx

{T− [x, t]〈x′ − x〉 − T−

× [x′, t]〈x − x′〉}dVx′ + b(x, t ) (3)

where t is the time, ρ is the local density, b(x, t) is the
external body force density, dVx ′ is an infinitesimal volume
around x′, and T is called the force vector state that describes
the interaction force between points. Note that T depends on
the constitutive model used in the peridynamics simulation,
e.g., linear elastic, elastoplastic etc., governing the mechanical
response of the material. For the ordinary state-based model,
the constitutive model can be expressed as

T =
{
C

ξ+η

‖ξ+η‖ ‖ξ + η‖ �= 0
0 ‖ξ + η‖ = 0

(4)

where C is the scalar state, which is determined by the elastic
parameters of material.

In this paper, we adopt the linear peridynamics solid consti-
tutive model introduced by Silling et al. [41], which assumes
that the force is proportional to the deformation following the
linear elastic response until the fracture point is reached. The
scalar state is then given by

C = 3Kθ

m
ωx + 15G

m
ωed (5)

where ω is an influence function, m is a weighted volume,
ed is the deviatoric part of the extension scalar state e, θ is
the dilatation (a measure of the volumetric strain at small
deformation), and K and G are the bulk and shear moduli,
respectively.

In peridynamics, the formation and propagation of cracks
are modeled via the breaking of the bonds, ξ , that initially
exist between each material point and its family. A given
bond is considered broken if the bond stretching η exceeds a
threshold value sc, which depends on the constitutive model.
At this point, the interaction between these points ceases to
exist. For three-dimensional systems, sc can be determined as
[42]

Sc =
√

Gc[
3G + (

3
4

)4(
K − 5G

3

)]
δ

(6)

where Gc is the fracture energy of the material.

B. Generation of the phase-separated microstructures

To assess the effect of nanoscale phase separation on the
mechanical response of glasses, two initial configurations are
considered: (i) a homogeneous glass [see Fig. 1(a)] and (ii)
a phase-separated glass containing some spherical nanoinclu-
sions [see Fig. 1(b)]. Note that, here, we do not attempt to
simulate the type of microstructure that would result from
spinodal decomposition as such microstructure would likely
compromise glass transparency. The nanoinclusion diameter
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FIG. 1. Schematic describing the geometry of a (a) homogeneous
and (b) “droplet phase-separated” glass subjected to uniaxial tension.

is fixed at 200 nm, which is small enough for the glass to retain
its transparency [35]. Both systems have a cubic geometry
and free surface boundary conditions and comprise an initial
notch of 200 nm to induce some stress concentration and
initiate the crack in the middle plane. In addition, a series
of simulations using systems of varying lengths L (from 500
to 3000 nm) is performed to investigate the influence of the
system size. We find that the computed fracture energy shows
a fair convergence for L > 1000 nm. This is consistent with
previous results suggesting that, for composite materials, the
simulated system should at least five times larger than the
diameter of the inclusions [43,44]. In the following, the length
of the system is chosen to be constant and equal to 1000 nm.
In the case of the phase-separated glass, the nanoinclusions
are initially placed within the glass via the taking-placing
procedure [45], by randomly inserting a given number of
spheres within the cubic matrix while ensuring the absence
of any overlap. The number of nanoinclusions is fixed so
that their volume fraction is 30%—a realistic value based on
experimental observations [35].

The peridynamic domain is then discretized into lattice
points with a simple cubic lattice structure of constant grid
spacing. Previous studies suggested that peridynamic models
can properly describe the fracture behavior of composite sys-
tems when the grid spacing is equal to or smaller than a tenth
of the particle diameter [46,47]. In this paper, a grid spacing
of 16.7 nm is found to yield a convergence of the computed
stress-strain curve. The horizon is defined as three times the
grid spacing. The mechanical properties of each point are
then assigned based on the phase it belongs to (i.e., matrix or
nanoinclusion). The Young modulus Emat and fracture energy
Gmat

c of the glass matrix are fixed as 93 GPa and 4.5 J/m2, i.e.,
to mimic the mechanical properties of a calcium aluminosil-
icate glass [48]. The effect of the stiffness and toughness of
the nanoinclusions is then investigated by considering vary-
ing values of nanoinclusion of Young’s modulus Epart (from
0.5Emat to 2Emat) and fracture energy G

part
c (from 0.5 Gmat

c
to 2.5 Gmat

c ). Note that, in practice, the phase separation of
calcium aluminosilicate glasses can result in the formation
of stiff/weak or soft/tough nanoinclusions consisting of Ca-
or Si-rich droplets, respectively [35]. Poisson’s ratios of all
phases are fixed as 0.3. These inputs are used to define the
constitutive model of each phase [see Eqs. (4) and (5)]. Based
on the fact that experiments suggest the existence of a strong

FIG. 2. Computed (a) stress-strain curve and (b) fracture energy
of the phase-separated glass under different strain rates. The solid
line in panel (b) is shown to guide the eye.

interface between the nanoinclusions and matrix (which arises
from strong van der Waals forces) [35], the constitutive model
governing the bonds across the interface is here assumed to be
the same as that of the matrix.

C. Simulations of mode I fracture

The mode I fracture of the phase-separated glasses is
then investigated by subjecting each configuration to a
displacement-controlled tensile load. This is achieved by
assigning some constant velocities to the top and bottom
boundaries of the sample. A boundary thickness of three grid
spacings is used to avoid any spurious effect arising from
nonlocal interactions close to the free surface [42]. To ensure
the stability of the simulation, the integration timestep is
selected based on a von Neumann stability analysis [37]. The
simulations are performed by using the open-source PERIDIGM

package [49]. The fracture energy of the phase-separated
glasses is obtained by integrating the stress-strain curve as
follows:

Gglass
c = s0

∫
σzdlz (7)

where σz and lz are the stress and displacement in the loading
direction (z axis), respectively. The term s0 is a unitless
correction factor (equal to 1.25 herein) that accounts for the
existence of the initial notch in the glass.

III. RESULTS AND DISCUSSION

A. Effect of the strain rate

We first assess the effect of the strain rate on the frac-
ture behavior of phase-separated glasses. Figure 2 shows
the computed stress-strain curve and fracture energy for
select strain rates for a phase-separated glass with Epart =
72.5 GPa, Emat = 93 GPa, Gmat

c = 9.2 J/m2, and G
part
c =

4.5 J/m2. Overall, we observe that the system exhibits a fairly
elastic response, wherein stress linearly increases with strain
until the fracture point is reached [see Fig. 2(a)]. We note that
the elastic regime remains unaffected by the strain rate. How-
ever, at high strain rate (>106 s−1), we observe the appearance
of some ductility, which manifests itself as an increase in
the fracture energy of the system [see Fig. 2(b)]. This can
be explained by the fact that, when the strain rate increases,
inertia effects around the crack tip become noticeable, which
can result in crack branching or a zig-zag crack path [50]. In
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FIG. 3. (a) Computed stress-strain curves for selected values
of Young’s modulus (Epart) for the nanoinclusion particles—the
properties of the matrix (Emat, Gmat

c ) remaining constant and with
Gpart

c = Gmat
c . (b) Relative variation in the fracture energy of the

phase-separated glass (Gglass
c ) as a function of the reduced Young

modulus of the nanoinclusion particles (Epart/Emat) for selected
reduced fracture energy (Gpart

c /Gmat
c ).

turn, we observe that both the stress-strain curve and resulting
fracture energy converge when the strain rate becomes lower
than 105 s−1. This suggests that, although such strain rate
remains high as compared to those achieved experimentally,
the fracture response of phase-separated glasses only weakly
depends on the strain rate in this regime. This likely arises
from the fact that the simulated system is relatively small so
that the inertia effects can be neglected for this range of strain
rates. Note that the same convergence can also be observed
when the mechanical properties are varied (for the range of
values considered herein). In the following, for the sake of
balance between computational efficiency and accuracy, we
keep a fixed strain rate of 8 × 104 s−1.

B. Effect of the stiffness of the nanoinclusions

We now assess the effect of a dissimilarity in stiffness
between the matrix and nanoinclusions. Figure 3(a) shows
the stress-strain curves of phase-separated glasses for selected
Young’s modulus values for the nanoinclusions while keeping
their fracture energy fixed. As expected, we observe that the
overall stiffness (i.e., the slope of the stress-strain curve) of
the phase-separated glasses increases with increasing Young’s
modulus of the nanoinclusions. However, the presence of
softer inclusions results in an increase in the ultimate strain
before fracture. This arises from the fact that soft particles
locally reduce the stress experienced by the glass and, thereby,
postpone the yielding of the system.

Figure 3(b) shows the evolution of the resulting fracture en-
ergy of the phase-separated glasses as a function of the Young
modulus of the nanoinclusions (for selected nanoinclusion
fracture energies). At fixed fracture energy for each phase, we
observe that the fracture energy of the phase-separated glass is
minimum when the stiffness of the matrix and nanoinclusions
is similar. In turn, the fracture energy of the system increases
as the nanoinclusions become softer or stiffer than the glass
matrix. This minimum results from the competition between
the two effects previously mentioned, that is, the variations in
the stiffness and ultimate strain of the phase-separated glass.
However, we note that the effect of a dissimilarity of stiffness
between the matrix and nanoinclusions is not symmetric. In

FIG. 4. (a) Computed stress-strain curves for select values of
fracture energy (Gpart

c ) for the nanoinclusion particles—the proper-
ties of the matrix (Emat, Gmat

c ) remaining constant and with Epart =
Emat. (b) Relative variation in the fracture energy of the phase-
separated glass (Gglass

c ) as a function of the reduced fracture energy of
the nanoinclusion particles (Gpart

c /Gmat
c ) for selected reduced Young

moduli (Epart/Emat).

particular, the increase in the fracture energy is found to be
more pronounced (i) for stiffer nanoinclusions when those are
weaker than the matrix (i.e., with lower fracture energy) and
(ii) for softer nanoinclusions when those are tougher than the
matrix. The origin of these distinct effects will be discussed in
Sec. III D.

C. Effect of the fracture energy of the nanoinclusions

We now assess the effect of a dissimilarity in fracture
energy between the matrix and nanoinclusions. Figure 4(a)
shows the stress-strain curves of phase-separated glasses for
selected fracture energy values for the nanoinclusions while
keeping fixed their Young’s modulus. As expected, we ob-
serve that, in this case, the elastic regime (i.e., before yield and
fracture) remains unaffected by the presence of the nanoinclu-
sions. However, we note that the ultimate strain (and ultimate
stress) before fracture increases with increasing nanoinclusion
fracture energy. This arises from that fact that an increase in
the fracture energy of the nanoinclusions effectively increases
the overall cohesion of the phase-separated glass and, thereby,
increases the yield stress of the system. In addition, we note
the appearance of plasticlike behavior (manifesting itself as
a small plateau in the stress-strain curve before fracture) for
high values of nanoinclusion fracture energy. This suggests
that, in this regime, the phase-separated glass exhibits some
strain hardening [51] and can be irreversibly deformed while
keeping the stress constant.

Figure 4(b) shows the evolution of the resulting fracture
energy of the phase-separated glasses as a function of the
fracture energy of the nanoinclusions (for selected nanoinclu-
sion of Young’s moduli). We observe that, in this case, the
fracture energy of the phase-separated glass monotonically
increases with the fracture energy of the nanoinclusions,
irrespective of their stiffness [see also Fig. 3(b)]. However,
a break of slope is observed, namely, the fracture energy of
the phase-separated glass increases faster when the nanoinclu-
sions become tougher than the matrix and it decreases when
the nanoinclusions become weaker (i.e., less tough) than the
matrix. This can be understood from the fact that, when the
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FIG. 5. Contour plot summarizing the combined effects of the
stiffness and toughness of the nanoinclusions on the overall fracture
energy of the phase-separated glass.

nanoinclusions are weaker than the matrix, they do not carry
any significant load once the glass is placed under tension,
so that, in this regime, the overall fracture energy of the
phase-separated glass only weakly depends on the mechanical
properties of the nanoinclusions.

Figure 5 presents the combined effects on the overall
fracture energy of the phase-separated glass of a dissymmetry
between the Young modulus and fracture energy of the matrix
and nanoinclusions. Overall, we note that, with the exception
of the case where the nanoinclusions have a lower fracture
energy but the same stiffness as the matrix, the fracture tough-
ness of the glass systematically increases upon the presence
of phase separation. Based on these results, we find that the
most significant increase in the fracture energy is achieved
when the nanoinclusions exhibit high fracture energy, but low
stiffness (i.e., lower right corner of Fig. 5). The origin of this
observation is discussed in Sec. III D.

D. Nature of the toughening mechanism

We now discuss the origin of the enhancement of fracture
energy for each of the regimes previously mentioned (see
Secs. III B and III C). To this end, we analyze the different
contributions to the fracture energy of the phase-separated
glass (Gglass

c ), as described in the following. We first decom-
pose the fracture energy of the phase-separated glass as

Gglass
c = Gcoh + Gother (8)

where Gcoh is the effective cohesive energy of the phase-
separated glass (which accounts for the effective surface en-
ergy and real crack area) and Gother captures all other types
of energy contributions that are dissipated through plastic
events (e.g., energy dissipated during crack deflection, crack
pinning, crack trapping and bridging, etc. [19]). The effective
cohesive energy of the phase-separated glass (Gcoh) can be
further expressed as

Gcoh = 2γ glassk (9)

FIG. 6. (a) Fraction of the final crack surface that crosses the
nanoinclusions as a function of the reduced Young modulus of
the nanoinclusion particles (Epart/Emat) for selected reduced frac-
ture energy (Gpart

c /Gmat
c ). The dotted line indicates the average surface

fraction covered by particles (about 30%), that is, the fraction of the
crack surface crossing the particles if no deflections are observed.
(b) Effective surface energy [γ glass, see Eq. (10)] experienced by
the crack during propagation in the phase-separated glass as a func-
tion of the reduced Young modulus of the nanoinclusion particles
(Epart/Emat) for selected reduced fracture energy (Gpart

c /Gmat
c ). The

dotted line indicates the surface energy of the matrix, that is, in the
absence of any phase separation.

where γ glass is the effective surface energy of the phase-
separated glass (as experienced by the crack during its propa-
gation) and k = Aglass/A0 is a geometrical factor that captures
the fact that the real crack surface area Aglass is larger than the
cross section of the sample A0. The geometry and area of the
crack geometry are here extracted postmortem by following
the procedure provided in a previous work [52]. The effective
surface energy of the phase-separated glass is then defined as

γ glass = (1 − ϕ)γ mat + ϕγ part (10)

where γ mat and γ part are the surface energy of the matrix and
nanoinclusion particles, respectively, and ϕ is the fraction of
the final crack surface that crosses the nanoinclusions (1 − ϕ

being the fraction of the crack surface that crosses the matrix).
As such, the effective cohesive energy of the phase-separated
glass (Gcoh) captures the real overall cohesion energy that is
experienced by the crack as it propagates. Note that this term
differs from the average cohesion of the phase-separated glass
as it depends on the propensity of the crack to be deflected
either toward or around the nanoinclusions. Based on this
formalism, one can define a brittleness index as

B = Gcoh

G
glass
c

(11)

wherein B = 1 corresponds to a perfectly brittle fracture,
that is, where Gother = 0. In the following, we investigate to
what extent each of these energy contributions contributes to
increasing the fracture energy of the phase-separated glass.

We first investigate how the mechanical properties of the
nanoinclusions control where the crack eventually propagates.
Indeed, the existence of local stress heterogeneity can force
the crack to propagate in the nonplanar direction, which
can result in some crack deflection [26]. Figure 6(a) shows
the fraction ϕ of the final crack surface that crosses the
nanoinclusions (i.e., rather than the matrix) as a function
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of the Young modulus of the nanoinclusions (for selected
nanoinclusion fracture energy). Note that, in the absence of
any crack deflection, one obtains ϕ ≈ 30%, i.e., the volume
fraction of the nanoinclusions. As such, ϕ > 30% indicates
that the crack is attracted toward the nanoinclusions whereas
ϕ < 30% indicates that the crack tends to go around the
nanoinclusions [see the schematics in Fig. 6(a)]. Overall,
we observe that ϕ systematically increases with decreasing
values of nanoinclusion fracture energy. As expected, this
indicates that the crack preferentially propagates through the
weak regions (i.e., low local fracture energy) and tends to
avoid the tough regions. In addition, we observe that ϕ also
increases with decreasing values of nanoinclusion stiffness
[see Fig. 6(a)]. This can be explained by the fact that the local
stress intensity factor near the crack tip is affected by the local
stiffness. According to Eshelby equivalent inclusion approach
and finite element analysis, the mode I stress intensity factor
increases with Epart/Emat when the inclusion lies on the crack
front [53]. As a result, the crack is more likely to deflect within
the matrix with stiff inclusions. In contrast, soft inclusions can
effectively attract the crack. Moreover, the crack deflection is
observed in the stiff nanoinclusion reinforced glass by recent
molecular dynamics simulation [54]. Overall, we find that
the propensity for crack deflection is controlled by a balance
between the stiffness and toughness of the nanoinclusions.
We note that stiffness and toughness have a fairly similar
influence on the propensity for crack deflection. Indeed, for
instance, no propensity for crack deflection is observed in a
phase-separated glass wherein the fracture energy and Young
modulus of the nanoinclusions are two times lower and larger
than those of the matrix, respectively [see Fig. 6(a)]. Crack
deflection has multiple effects on the fracture energy of the
phase separated glass by (i) changing the effective surface
energy experienced by the crack upon propagation [which is
captured by γ glass, see Eq. (10)], (ii) affecting the roughness of
the crack surface [i.e., its final surface, as captured by the co-
efficient k = Aglass/A0 in Eq. (9)], and (iii) resulting in plastic
energy dissipation [as captured by Gother, see Eq. (8)]. Each of
these energy contributions is described in the following.

We first focus on the effective surface energy experienced
by the crack during propagation, which solely depends on the
fraction ϕ of the final crack surface that crosses the nanoin-
clusions and the surface energies of each phase [see Eq. (10)].
As shown in Fig. 6(b), we observe that the effective surface
energy of the phase-separated glass remains constant when the
fracture energies (and, hence, surface energies) of the matrix
and nanoinclusions are equal to each other. Indeed, in this
case, the specific path of the crack is relevant. We then observe
that the effective surface energy increases with increasing
values of the nanoinclusion fracture energy. This is expected
as an increase in the fracture energy (and, hence, surface
energy) of the nanoinclusions increases the overall average
cohesion of the phase-separated glass. However, we note that,
at fixed high values of nanoinclusion fracture energy, the
effective surface energy decreases with increasing values of
nanoinclusion stiffness [see red series in Fig. 6(b)]. This arises
from the fact that the crack tends to avoid stiff particles [see
Fig. 6(a)]. In contrast, we note that, at fixed low values of
nanoinclusion fracture energy, the effective surface energy
increases with increasing values of nanoinclusion stiffness

FIG. 7. (a) Area of the final crack (normalized by the cross
section of the sample) as a function of the reduced Young modulus of
the nanoinclusion particles (Epart/Emat) for selected reduced fracture
energy (Gpart

c /Gmat
c ). (b) Effective cohesion energy [see Eq. (9)] of the

phase-separated glass. The dotted line indicates the cohesion energy
of the matrix, that is, in the absence of any phase separation.

[see blue series in Fig. 6(b)]. Again, this arises from the fact
that the crack tends to avoid stiff particles [see Fig. 6(a)],
which, in this case, is beneficial as the nanoinclusions exhibit
a lower toughness than the matrix. Altogether, we find that
the effective surface energy experienced by the crack during
propagation is controlled by a balance between the fracture
energy of each phase and the propensity for the crack to avoid
or go toward the nanoinclusions. Overall, these results show
that an optimal increase in the effective surface energy of the
phase-separated glass is achieved in the presence of soft, yet
tough nanoinclusions—as such nanoinclusions favor the de-
flection of the crack toward the high-fracture-energy regions
of the glass. In contrast, minimum effective surface energy is
obtained in the presence of soft and weak nanoinclusions—as
such nanoinclusions favor the deflection of the crack toward
the low-fracture-energy regions of the glass.

We now investigate the energy contribution of the rough-
ness of the final crack surface that results from the presence
of some crack deflection. Such rough crack surfaces have been
observed in nanoparticle-reinforced epoxy nanocomposites
[56,57]. Figure 7(a) shows the area of the final crack surface
Aglass, normalized by the cross section of the sample A0(i.e.,
a metric that captures the roughness of the crack surface).
Overall, we observe that, with the exception of the case where
the glass is fully homogeneous (i.e., with no phase separation),
the real area of the crack surface is systematically larger
than the cross section of the sample. This is expected as
the cross section represents the minimum theoretical value
of the crack surface, i.e., the shortest path from the crack to
reach the right end of the sample. We observe that the area
of the crack surface increases with increasing dissimilarity in
the mechanical properties of the matrix and nanoinclusions,
that is, when the crack has a propensity to avoid or be
attracted by the nanoinclusions [see Fig. 6(a)]. Overall, we
find that the maximum increase in the roughness of the crack
is achieved in the presence of tough and stiff nanoinclusions
[see Fig. 7(a)], that is, when the crack presents the high-
est propensity to avoid the nanoinclusions [see Fig. 6(a)].
Experimental observations also support these conclusions—
as scanning electron microscopy micrographs obtained on
fractured nano-particle-modified epoxy phases suggest that
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FIG. 8. (a) Energy dissipated through ductile events and (b)
brittleness index [see Eq. (11)] as a function of the Young modulus
of the particles (Epart) for selected particle fracture energy (Gpart

c ),
wherein the particles’ mechanical properties are normalized by those
of the matrix (Emat and Gmat

c ).

particle debonding/pullout is the main mode of fracture in the
presence of nanosilica particles (i.e., stiff inclusions), whereas
nanocavitation is observed in the presence of rubber particles
(i.e., soft inclusions) [55].

However, we note that, in all cases, the increase in the
crack surface remains limited (7.5% at most for the range of
parameters explored herein). This suggests that the geometri-
cal roughness of the crack surface has a low contribution to
the overall cohesion of the phase-separated glasses. Indeed,
as shown in Fig. 7(b), the effective cohesive energy of the
phase-separated glass [Gother, see Eq. (9)] closely follows the
value of the effective surface energy [γ glass, with a factor of 2,
see Eq. (9)]. Crack roughness only results in a small increase
in the effective cohesion energy of the glass in the case of
tough and stiff nanoinclusions.

Finally, we investigate the energy contribution that is
dissipated through some plastic events. Figure 8(a) shows
the plastic component of the fracture energy of the phase-
separated glasses (Gother), which is calculated by subtracting
the effective cohesive energy from the total fracture energy
[see Eq. (8)]. We observe that the dissipated energy increases
with higher degree of dissymmetry between the mechanical
properties of the matrix and nanoinclusions. We observe that
the amount of dissipated energy is significantly higher in the
case of tough nanoinclusions than for weak nanoinclusions.
Overall, the dissipated energy exhibits a trend that is fairly
similar to that of the area of the crack surface [see Fig. 7(a)].
This suggests that such dissipated energy primarily arises
from some variations in the direction of the crack propagation.
In the case of stiff nanoinclusions, the dissipated energy is
expected to mostly arise from crack deflections [26]. In the
case of soft nanoinclusions, the dissipated energy is expected
to mostly arise from crack trapping and bridging [28]. In both
cases, phase separation results in a significant decrease in the
degree of brittle fracture [see Fig. 8(b)].

IV. DISCUSSION

Altogether, these results allow us to identify the under-
lying toughening mechanism for each type of system (see
Fig. 5). We note that the presence of phase separation sys-
tematically results in an increase in the fracture toughness

of the glass, with the exception of the case of weak and
soft nanoinclusions [see Figs. 3(b) and 4(b)]. In this situa-
tion, the low stiffness of the nanoinclusions tends to attract
the crack [see Fig. 6(a)] toward the weak nanoinclusions,
which results in a decrease in the effective cohesion of the
phase-separated glass [see Fig. 6(b)]. In contrast, all the
other situations cause the fracture energy to increase. First,
in the case of weak and stiff nanoinclusions, some crack
deflection is observed [see Fig. 6(a)]. Although this results
in a decrease in the cohesion of the glass [see Fig. 6(b)], this
loss of energy is counterbalanced by the existence of some
plastic dissipated energy arising from the crack deflection
mechanism [see Fig. 8(a)]. Second, in the case of tough and
stiff nanoinclusions, a significant degree of crack deflection
is observed, wherein the crack shows a high propensity to
avoid the nanoinclusions [see Figs. 6(a) and 7(a)]. Although
the increase in the effective cohesion of the glass is limited
[see Fig. 6(b)], the crack deflection mechanism is associ-
ated with a large amount of plastic energy dissipation [see
Fig. 8(a)]. Finally, the largest extent of toughening is achieved
in the case of tough and soft nanoinclusions. In this situation,
the low stiffness of the nanoinclusions tends to attract the
crack [see Fig. 6(a)] toward the tough nanoinclusions, which
results in a large increase in the effective cohesion of the
phase-separated glass [see Fig. 6(b)]. This is augmented by
a large amount of plastic energy dissipation [see Fig. 8(a)].
Overall, our results suggest that the presence of soft, yet tough
nanoinclusions is the most promising route toward the devel-
opment of tougher phase-separated glasses that retain their
transparency.

In practice, depending on the composition of the glass
and its position with respect to the immiscibility dome, the
phase separation of calcium silicate glasses can result in the
formation of Ca- or Si-rich nanoinclusions [35]. In the first
case, the Ca-rich droplets are likely to be stiffer, but weaker
than the matrix [48,58]. Our results suggest that this situation
would result in only a minor increase in the fracture toughness
of the phase-separated glass. However, in the second case,
the Si-rich droplets are likely to be softer, but tougher than
the matrix [48,58]. Based on previous molecular dynamics
simulations, this situation would yield Epart/Emat = 0.7 and
G

part
c /Gmat

c = 2.1 [48]. Based on the present paper, one can,
therefore, expect the phase-separated glass would exhibit a
60% increase in its fracture energy with respect to that of the
isochemical homogeneous glass (see Fig. 5).

Note that these predictions are restricted to microstructures
consisting of small spherical droplets. On the one hand, it is
likely that the magnitude of the toughening effects identified
herein would increase in the presence of larger inclusions.
On the other hand, spinodal decomposition (which occurs
when the glass composition is located in the middle of the
immiscibility domain) would result in the formation of rather
large interconnected phases. The propensity for this kind
of microstructure is likely to be superior to that of matrix-
droplets microstructures, so that the increase in toughness re-
sulting from spinodal decomposition is likely to be higher than
that induced by nucleation growth [15]. However, this kind
of microstructure typically results in a loss of transparency,
which reduces the range of potential applications for such
phase-separated glasses.
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V. CONCLUSION

Overall, our peridynamics simulations offer a realistic de-
scription of the effect of nanoscale phase separation on the
fracture behavior of silicate glasses. We show that, in most
cases, phase separation results in an increase in the fracture
energy of the glass. By quantifying the various contributions
to the fracture energy, we show that the extent of toughening
is governed by a balance between the propensity for crack
deflections, the effective cohesion of the phase-separated
glass, the existence of plastic energy dissipation, and (to a
lower extent) the roughness of the crack surface. The largest
extent of toughening is achieved in the case of soft, yet
tough nanoinclusions. In this situation, the crack shows a high
propensity for traveling through the softer nanoinclusions,

which results in a large increase in the effective cohesion
of the phase-separated glass. In all cases, phase separation
results in some significant plastic energy dissipation, which
renders it a promising route toward the development of novel
phase-separated glasses that exhibit some nanoductility while
retaining their optical transparency.
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