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First-principles study of phase stability of bcc XZn (X = Cu, Ag, and Au) alloys
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First-principles density-functional theory is used to study the phase stability/instability and anomalies in the
formation of the high-temperature bcc phases of XZn (X = Cu, Ag, and Au) alloys. Although from perhaps
a naive point of view, their properties are expected to monotonically depend on the noble-metal (X) column
position in the periodic table, this is not the case. For example, the middle-column AgZn alloy has a lower bcc
order-disorder (critical) temperature than the CuZn and AuZn alloys above and below in the column. It is shown
that this and other nonmonotonic behaviors can be explained in terms of a competition between atomic-size
effects and X-atom d-orbital spatial extent. For example, charge-density studies and pair-potential modeling of
XZn alloys show that the effective Ag-Zn bond is significantly weaker than either the Cu-Zn or Au-Zn bond at
their respective equilibrium lattice constants. We find that an increased atomic-core size effect initially weakens
the X-Zn bonding as one goes from CuZn to AgZn, but then the larger d-orbital spatial extent for higher principal
quantum numbers becomes a more dominant effect and increases the bonding from AgZn to AuZn. This study
is focused on the highly symmetric cubic high-temperature phases, where relative bond-strength magnitudes
should be far more important than any bond-directionality effects; the lattice parameters, bulk moduli, elastic
constants, Debye temperatures, heats of formation, and order-disorder temperatures for the bcc phases of the
three XZn alloys are calculated and compared with experiment.
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I. INTRODUCTION

The properties of CuZn (brass) alloys such as resistance
to corrosion, excellent ductility, cold working, machinability,
and relative ease of production give them wide applicability
[1]. AgZn alloys, when used as battery cell materials, have
low internal resistance, high energy density, low weight, and
very reliable operation in different (harsh) environments [2,3],
and have therefore been long used in military, aerospace,
and medical industries. AuZn alloys have been the subject of
experimental and theoretical studies [4,5] due to their shape
memory effect and the nature of their phase transformation.
Because of their wide range of usage and application, the
phase diagram of alloys constituted from the noble metals
Cu, Ag, and Au and the divalent metal Zn have been the
subject of investigations that include the nature of the phases
under cooling and/or pressure, and studies of their electronic
structures and physical properties [4,6–24].

We characterize these three materials as XZn alloys, where
X = Cu, Ag, and Au, respectively a 3d, 4d, and 5d noble
metal from the same column of the periodic table. Since
the periodic table is supposed to organize and order various
properties, one might naively expect the XZn phase diagrams
and properties to be monotonic as one goes down the column.
But they are not. In this paper we explore the reason why
they are not, which allows a deeper understanding into the
interrelationship between the electronic structure and bonding
and other material properties of all three of these important
materials, in a way that could not be achieved by looking at
each material individually.

Near the equiatomic concentration at high temperatures
the majority of these materials form in body-centered cubic

(β) phases that are disordered, except for AuZn. After low-
ering the temperature or quenching from high temperatures,
most of the disordered alloys in the β phase are retained
at room temperature as a metastable ordered body-centered
cubic (β1) phase. Upon further cooling and cold working, the
β1 phases usually transform structurally through a marten-
sitic transformation into new phases. For example, the CuZn
alloy transforms from a bcc disordered phase (A2) into the
CsCl ordered (B2) structure. After further cooling, the B2
phase transforms martensitically to an orthorhombic structure
[6–9]. The AuZn alloy also transforms martensitically to an
orthorhombic structure known as the R phase, but retains its
ordered B2 phase all the way up to its melting point [10,22].

Slow cooling of the disordered A2 AgZn alloy causes a
structural phase transformation at 540 K. This structure is a
complex hexagonal structure (η phase) closely related to the
bcc structure, but with nine atoms per unit cell in partially
ordered arrangements [11–14]. However, when quenched to
room temperature the A2 phase changes to a metastable B2
phase. No structural phase transformation has been observed
with further cooling of the B2 phase. Furthermore, by heating
the B2 phase to about 440 K it transforms to an η phase [14].

It might be expected that an isoelectronic system, where
X = Cu, Ag, and Au belong to the same column of the
periodic table, would all have similar electronic properties.
This is confirmed for the densities of states and d bond energy
calculated in this work (Sec. VII). However, cohesive energy
and related properties should be different. By moving down
the periodic table column and changing the d orbital from 3d
(Cu) to 4d (Ag) to 5d (Au), the main electronic effect is a
more extended d orbital. The atomic wave function of each
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higher principal quantum number needs an additional node in
order to be orthogonal to the wave functions of lower principal
quantum number. This makes the wave functions bend more
to include this node, increasing the curvature (and hence the
∇2 or Laplacian operator). This increase in the kinetic energy
of the orbital can increasingly compensate for the attractive
electromagnetic force of the positive nucleus making the wave
function of the orbitals extend farther away from the nucleus.
As this occurs, the bonding between the X and Zn atoms is
expected to become monotonically stronger for a fixed X-Zn
interatomic distance, since the X-atom d orbitals hybridize
more strongly with the Zn orbitals. Therefore, the bcc phase
(ordered and disordered) of XZn systems might be assumed to
follow the same trend with AuZn being the most stable (lowest
formation energy) phase and CuZn the least stable.

However, the phase diagram of these alloys does not show
such a trend. Instead, the critical temperatures for the order-
disorder transition of the B2 phase in CuZn, AgZn, and AuZn
are significantly different. Estimated values for XZn (X = Cu,
Ag, and Au) alloys are 763, 518, and 1240 K, respectively
[6,10]. Also, only the CuZn system has stable ordered and
disordered bcc structures. By comparison, the disordered bcc
phase of AgZn is stable at high temperatures while the B2
phase is metastable. In the case of the AuZn alloys, the site
disorder seems to be absent and the ordered bcc (B2) phase
extends all the way up to the melting temperature.

More generally, if the underlying physical properties only
depended on a single variable like the spatial extent of the
noble-metal d orbital, the properties might be expected to be
monotonic. To explain properties that have either a maximum
or a minimum as a function of the principal quantum number
of the noble element that alloys with Zn, as is seen in much
of the data (see below), requires a competition between two
different underlying causes that push the property in opposite
directions. In the present case, we will show that this com-
petition is between (1) effects caused by the increasing size
of the atomic cores of the noble metals, and (2) the spatial
extent of the noble-metal d orbitals. With increasing principal
quantum number, the larger atomic cores push the noble-metal
atoms farther away from the Zn atoms reducing the effective
hybridization (and hence the bonding) between the noble-
metal d orbitals and the Zn orbitals, and counteracting the
effect of the greater spatial extent of the d orbitals with higher
principal quantum number that causes increased hybridization
and bonding. Only the type of quantitative calculations that we
perform here can determine which effect is stronger or more
dominant at smaller or larger principal quantum number.

To study this, we used first-principles methods to inves-
tigate the formation energies of the ordered and disordered
bcc phases of XZn (X = Cu, Ag, and Au) alloys, which
can provide a quantitative measure of the effective X-Zn
hybridization overlaps (bond strengths). The stability of each
structure was carefully studied by analyzing their chemical
and elastic formation energies; a fit of the band-structure
calculations to a Morse pair-potential model [25] allowed us
to make a direct comparison of the relative X-Zn bonding
strengths. In addition, the charge-density distribution and par-
tial density of states were also examined in detail to improve
our understanding of the nature of the X-Zn interactions. We
find that the increased atomic-size effect initially weakens the

X-Zn bonding as one goes from CuZn to AgZn, but then the
larger d-orbital size effect overcomes this and increases the
bonding as one goes from AgZn to AuZn.

This paper is organized as follows: Section II describes the
details of calculations. Section III discusses the atomic-size
effects by calculating the chemical and elastic formation ener-
gies. In Sec. IV the pair-potential modeling and its results are
discussed. Section V contains the charge and partial density of
states analysis. Section VI contains the results of stability
of B2 versus A2 structures at finite temperature. A summary
of our results is presented in the last section.

II. DETAILS OF CALCULATIONS

In the present work we use the first-principles density-
functional package VASP [26–28] with the generalized-
gradient approximation (GGA) to the exchange-correlation
potential, and the parameters recommended by Perdew,
Burke, and Ernzerhof [29]. The VASP code is a projector
augmented-wave technique; our plane-wave cutoff kinetic
energy is 400 eV [30,31]. The solution of the general-
ized self-consistent Kohn-Sham equation employs efficient
matrix-diagonalization routines based on the sequential band-
by-band residual minimization technique and a Pulay-like
charge-density mixing [32]. The pseudopotentials of Cu, Ag,
Au, and Zn were provided by the VASP package.

In this calculation, the electronic degrees of freedom were
optimized with a conjugate-gradient algorithm, and the lattice
constants and ionic atomic positions of the unit cell were
totally relaxed. A two-atom periodic cell was used for most of
the calculations. The k-point integration in the Brillouin zone
was done via a modified tetrahedron method (24 × 24 × 24
mesh) [33].

The elastic constants were calculated by monitoring rela-
tive changes in the total energy as the lattice was strained. For
a symmetric cubic structure there are three independent elastic
constants C11, C12, and C44, two of which (C11 and C12)
can be calculated from the bulk modulus and the tetragonal
shear constant C

′
. Moreover, the equilibrium volume (lattice

constant) is obtained by fitting the total energy-volume data
with Murnaghan’s equation of state [34]. The bulk modulus
(B) for a cubic crystal is equal to B = (C11 + 2C12)/3 and can
be obtained from the second derivative of the energy-volume
curve. The remaining elastic constant C44 can be calculated
by a monoclinic volume-conserving distortion [35,36]

ε =

⎡
⎢⎣

0 δ/2 0

δ/2 0 0

0 0 δ2/(4 − δ2)

⎤
⎥⎦, (1)

where the energy is given by

E(δ) = 1/2C44δ
2 + O(δ4). (2)

The tetragonal shear constant C
′
is

C
′ = C11 − C12

2
, (3)
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TABLE I. Calculated zero-temperature values of the B2 phase
for the equilibrium lattice parameters (a), elastic constants
(C11, C12, C44, and C

′
), bulk modulus (B), Zener anisotropy (A),

and melting temperatures (Tm) of XZn (X = Cu, Ag, and Au) along
with available experimental values.

Alloys CuZn AgZn AuZn

a (Å) 2.970 (2.954)a 3.192 (3.159)d 3.195 (3.149)e

C11 (GPa) 126.3 (129.1)b 92.1 (101.9)d 121.3 (147.4)e

C12 (GPa) 110.5 (109.7)b 85.0 109.3 (133.9)e

C44 (GPa) 89.3 (82.4)b 52.5 (54.8)d 62.0 (62.26)e

C
′

(GPa) 7.9 (9.70)b 3.55 6.0 (6.72)e

B (GPa) 115.7 (116.2)b 87.3 113.3 (138.4)e

A 11.30 (8.50)b 14.80 10.33 (9.26)e

Tm (K) 1299 ± 300 1097 ± 300 1270 ± 300
(1162)c (944)c (1058)c

aReference [39].
bReference [40].
cReference [41].
dGraphical extrapolation of data in Ref. [14].
eReference [42].

and the strain matrix is given by

ε =

⎡
⎢⎣

δ 0 0

0 −δ 0

0 0 δ2/(1 − δ2)

⎤
⎥⎦. (4)

The equation for the energy with the distortion can be written
as

E(δ) = 2C
′
δ2 + O(δ4). (5)

The bulk modulus is calculated from the volume-pressure
relation

B(V ) = −V
∂P

∂V
= ∂2E(V )

∂V 2
. (6)

The calculated elastic constants can be used to estimate the
melting temperature of cubic metals and compounds through
the empirical (linear) relationship between C11 and the melt-
ing temperature of cubic solids [37], given by

Tm = 553 + 5.91 K

GPa
C11 ± 300 K. (7)

The typical error bar of this relationship (±300 K) is also
indicated in the table.

III. STABILITY OF B2 CRYSTAL STRUCTURE

The B2 phase is a CsCl type structure with Pm3m group
symmetry. The ground-state properties and elastic parameters
for the B2 phases of XZn (X = Cu, Ag, and Au) have
been calculated and are presented in Table I. The theoretical
results are generally in good agreement with the available
experimental data. The calculated melting temperatures seem
consistently high by a couple of hundred degrees but track the
experimental trend relative to the Cu, Ag, and Au compounds.

The Zener anisotropy factor A is defined as the ratio of
the C44 and C

′
elastic constants. According to Zener [38], the

elastic anisotropy of the lattice and the tendency for a material
to display a structural phase transformation are interrelated.
He proposed that there is a mechanical instability in the bcc
phase caused by a high elastic anisotropy. More specifically,
it was found that a bcc phase with small elastic constant C

′

(weak shear resistance) promotes elastic anisotropy, while
alloys for which A > 6 are unstable and often display a
structural (martensitic) phase transformation [38].

The calculated anisotropy factors A for CuZn, AgZn, and
AuZn are nonmonotonic, 11.3, 14.8, and 10.4, respectively.
As these values are much greater than 6, according to Zener
the B2 phase of these alloys should not be stable and should
have a tendency towards a structural phase transformation
[10,16,43].

AgZn, which has the highest anisotropy factor among these
alloys, also has the smallest elastic parameters and hence
suggests that the B2 phase for this system is highly unstable
relative to the other systems [10]. In fact, this phase can only
form during a quench from the disordered bcc phase [11,13].
In order to understand the importance of chemical bonds and
atomic-size effects on stability or instability of XZn systems,
we calculated their chemical and elastic formation energies.

IV. CHEMICAL AND ELASTIC FORMATION ENERGIES

The separation of the formation energy of alloys into the
chemical and elastic formation energies directly shows the
competition between the strength of the X-Zn interatomic
bonding and the size effect (strain) between constituent atoms.
The chemical formation energy �Hchem of a binary alloy is
the difference between the total energy of the compound in
equilibrium, E(AxB1−x ), and the component energies, E(Ax )
and E(B1−x ) (cf. Refs. [44–46]). The chemical formation
energy of a binary compound with concentration x is thus
given by

�Hchem = E(AxB1−x ; (a)) − xEA(a) − (1 − x)EB (a).

(8)

The elastic formation energy �Helast is the necessary en-
ergy needed to distort pure components A and B from their
respective equilibrium lattice constants a0

A and a0
B , to the

lattice constant a of the combined system, and is given by
[44–46]

�Helast = [
EA(a) − EA

(
a0

A

)]
+ (1 − x)

[
EB (a) − EB

(
a0

B

)]
. (9)

Although the zero-temperature crystal structures of X and
Zn atoms are different from bcc (viz., face-centered cubic or
fcc for the noble metals and hexagonal close-packed or hcp
for Zn), in order to minimize the effect of directional bonding
between atoms, we used the bcc phase as the reference state
for all of the elements studied here. To better understand
effects of the atomic size on the stability of the XZn systems,
the chemical and elastic energies of AgZn and AuZn were
calculated at both their calculated equilibrium volumes (lattice
constants) as well as at the CuZn equilibrium volume (i.e.,
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FIG. 1. Calculated chemical and elastic formation energies for
the XZn (X = Cu, Ag, Au) B2 phase. The solid circles are the
calculated energies at the equilibrium volume of each system, while
the solid squares are the energies of AgZn and AuZn at the CuZn
equilibrium volume. The dashed lines are guides for the eye.

using the same fixed CuZn lattice constants for the formation
energy calculations for all three compounds).

Calculated chemical and elastic formation energies for
different alloys are depicted in Fig. 1. As shown, if all three
compounds used the same fixed CuZn equilibrium lattice
constant, the chemical energy of the systems follow a mono-
tonic trend. That is, CuZn has the highest chemical energy
and AuZn the lowest while the energy of AgZn will be in
between. This chemical energy trend shows that the increased
spatial extent of the d orbital systematically increases the
Cu-Zn bond strength, when the distance between the X and
Zn atoms is fixed. However, this causes the elastic energies of
AgZn and AuZn to become very large due to the increasing
atom size of Cu, Ag, and Zn (which manifests as a larger
and larger core-core repulsion term when modeled with pair
potentials; see below). The result is to expand the lattice
constants when the AgZn and AuZn equilibrium volumes
are calculated. This reduces the elastic energies of all three
systems at their equilibrium volumes, which have comparably
small values. The competition between these two opposing
formation-energy trends gives rise to the maximum in the
chemical formation energy for AgZn in the curve calculated
for equilibrium volumes of each compound (solid circles in
Fig. 1). We next examine this effect in a more detailed manner
by using a pair-potential model to estimate the interaction
between the neighboring atoms.

V. PAIR-POTENTIAL MODEL

The Morse potential has been widely used to model and es-
timate chemical bonds or the bond strength between atoms in
solids [47,48] and in diatomic molecules [25]. This potential
has competing attractive and repulsive terms that give rise to
a minimum separation between the atoms that corresponds to
their equilibrium distance. The potential is given by

�(rij ) = D[e−2α(rij −r0 ) − 2e−α(rij −r0 )], (10)
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FIG. 2. Morse potential model for XZn (X = Cu, Ag, Au) bonds
in the B2 phase which is fitted up to the fourth-nearest neighbors.

where �(rij ) is the potential energy (interaction) between
two atoms separated by a distance rij , D and α are potential
parameters, and r0 is the distance where the potential is a
minimum.

When we use a Morse potential, we ignore any explicit
directional dependence of the bonding (no dependence on
bond angles is included in the parameters). This is suitable
for our situation since all of the structures of interest have
B2 symmetry, viz., the bcc and B2 crystal structures. The
high symmetry of the cubic structures should minimize any
directional bonding effects, and enables us to focus on the
magnitude of the relative bond strength, which is the main
quantity of interest for us. For other less symmetric crystal
structures, it may be important to include directional effects
in the modeling.

Our fits for the Morse potential were extended up to fourth-
nearest-shell interactions with improved agreement when in-
cluding more shells of interactions [49]. The first-principles
calculations of the total energy for different volumes of the
pure elements were used to determine the bcc X-X and Zn-Zn
potential parameters. Then, these same calculated X-X and Zn-
Zn parameters were used in the energy versus volume curves
of the XZn alloys to obtain the X-Zn potential parameters. A
similar approach has been successfully used for modeling the
interactions in Ni-Al systems [50].

The calculated Morse potentials for different X-Zn atoms
are shown in Fig. 2. The relative bond-strength trend is
in complete agreement with the predicted chemical-energy
formation of the system (Fig. 1). Since our analysis shows that
the nearest-neighbor interactions are the major contribution to
the XZn phase stability, this indicates Ag-Zn is the weakest
bond in XZn (X = Cu, Ag, Au). What essentially is happening
is that the X-Zn bond becomes stronger and stronger for
fixed atom distance as one goes down the column of the
periodic table, since 5d orbitals are more extended than 4d or-
bitals which are more extended than 3d orbitals, increasing
hybridization with the Zn orbitals. However, opposing this
effect is an increased X-Zn atomic distance from the lattice
expansion caused by the core-core repulsion (of the larger
atomic cores as one goes down the column), which reduces the
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FIG. 3. The charge-density distribution of XZn alloys in the [110] plane where the Zn atom is at the center and the X atoms are at the
corners.

overlap of these wave functions. Initially, the distance effect
dominates and the AgZn bond is weaker than the CuZn bond,
but then the increased d-wave orbital spatial extent of Au
wins out, and the AuZn bond becomes strongest of all. The
dominance of this effect is that the lattice constant is almost
identical between AgZn and AuZn. The larger Au core wants
to push the atoms farther apart, but is not able to accomplish
this due to the increased AuZn bond strength. This result can
also explain the small elastic parameters of the AgZn system
relative to the CuZn and AuZn alloys.

VI. CHARGE-DENSITY DISTRIBUTION
AND DENSITY OF STATES

The charge-density distribution for the B2 XZn phases in
the [110] plane is depicted in Fig. 3 for each system. In each
figure, the atoms in the center represent Zn, with X (either Cu,
Ag, or Au) shown at the corners [51]. A closer examination of
the contour map of the electron charge density plot suggests
that the electron charge density between Ag and Zn is the
lowest of all the XZn alloys, in agreement with the chemical
potential formation energies and the Morse potential fits.

To better understand the nature of the bonding between
the atoms in different systems the electronic partial densities
of states have been calculated and analyzed. Figures 4, 5,
and 6 and Table II show the Zn s and p and X d symmetry
decompositions and their integrated values of the densities of
states for the B2 CuZn, AgZn, and AuZn alloys.

To study the role of size effects on the stability of the struc-
tures, the AgZn and AuZn partial densities of states (PDOSs)
are calculated at the CuZn lattice constant (a = 2.970 Å)
as well as at their relaxed or equilibrium lattice constants
(a = 3.192 and 3.195 Å, respectively). As shown in Fig. 4,
the Cu d band in CuZn is more localized (narrower, with
sharper features) than for the Ag and Au d bands. However,
the Zn s-p bands in CuZn are broader than is the case for
AgZn and AuZn, indicating better bonding between Cu d and

Zn s-p bands. The hybridization between the Zn s-p bands and
the Cu d band has also been verified independently with the
KKR-CPA method [52]. In AgZn (Fig. 5), the Ag d band and
Zn s-p bands at the CuZn lattice constant are wider than at its
equilibrium lattice constant, as an expected band narrowing
for expanded lattice constants (larger distance between the
atoms and hence reduced hybridizations). The broader bands
indicate better hybridization between the Ag and Zn atoms in
agreement with the chemical formation energy trends (Fig. 1).
However, due to the much bigger atomic radius of Ag with
respect to Cu, the AgZn alloy has a very high strain energy,
resulting in an expanded equilibrium lattice constant for AgZn
relative to that of CuZn. As a consequence, the hybridization
between Ag and Zn drops significantly (narrower bands)
resulting in a weaker bonding between Ag and Zn atoms
(Fig. 5).
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FIG. 4. Partial densities of states (Fermi level at 0) for the Cu
d states (upper panel) and for the Zn s and p states (lower panel).
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FIG. 5. A comparison of the partial densities of states (Fermi
level at 0) for the Ag d states (upper panel) and for the Zn s and
p states (lower panel), both at the AgZn relaxed (equilibrium) lattice
constant of 3.192 Å and at that for CuZn, 2.970 Å.

AuZn is similar to AgZn, with stronger Au-Zn bonds at
smaller lattice constants (Fig. 6). However, despite this, Fig. 6
shows that the relaxed Au 5d orbital is still more extended
than for Cu or Ag, causing the strongest bonding among all of
these compounds.

In order to estimate the order and relative size of the bond
energies in these alloys for the d orbitals of Cu, Ag, and Au
atoms, this was calculated at different lattice constants using
the equation

Ebond =
∫ Ef

(E − Ec )n(E)dE. (11)

In this equation, n(E) is the density of states, Ef the Fermi
energy, and Ec the energy of the center of the band. For
the case of the d band, Ec is the energy when the orbital
is half filled (5 electrons). The results of the bond energies
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FIG. 6. A comparison of the partial densities of states (Fermi
level at 0) for the Au d states (upper panel) and for the Zn s and
p states (lower panel), both at the AuZn relaxed (equilibrium) lattice
constant of 3.195 Å and at that for CuZn, 2.970 Å.

TABLE II. Integrated number of electrons for Zn s and p and X d
symmetry decompositions.

Alloy Zn (s) Zn (p) X (d)

CuZn 0.573 0.521 9.174
AgZn 0.588 0.582 8.899
AgZn (relaxed) 0.552 0.404 8.900
AuZn 0.565 0.615 8.731
AuZn (relaxed) 0.514 0.414 8.676

are depicted in Fig. 7. As discussed in the introduction,
in the XZn system, when all three calculations are done at
the same CuZn lattice constant, the d-bond energy of the
X atoms decrease monotonically (Fig. 7). However, at their
relaxed or equilibrium lattice constants the bond energies are
nonmonotonic, with the Ag d bond having the highest energy,
and Au the lowest. This shows the role played by repulsive
atomic cores in changing the lattice constant, which in turn
modifies the relative d-bond energies.

Based on the chemical-strain formation energies, pair-
potential modeling, charge-density distributions, band-
structure analysis, and d-bond energies, one can explain
the nature of the weak bonding between Ag-Zn atoms
as a consequence of the competition between the effect
of the d-orbital spatial extent on the X-Zn hybridizations
and the atomic-size effect (core-core repulsion expanding the
lattices). In the next section, calculations are extended to finite
temperature and it is shown that bond strength also influences
the stability of the B2 structure at high temperatures.

VII. STABILITY OF B2 VERSUS A2 STRUCTURES
AT FINITE TEMPERATURE

A. The heat of formation of ordered and disordered bcc phases

The heat of formation (or formation energy) is the amount
of energy added or released when a compound is formed from
the separate elements; it indicates whether it is favorable to
create the material or not. It also is a measure of the relative
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FIG. 7. d-bond energies of Cu, Ag, and Au at lattice constant of
CuZn (solid circles) and their relaxed (equilibrium) lattice constants
(solid squares). The dashed lines are guides for the eye.
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TABLE III. Calculated values at 0 K of Cu, Ag, Au, Zn elements
for equilibrium lattice parameter (a), c/a ratio, and bulk modulus
(B), with some available experimental values.

Elements Phase a (Å) c/a B (GPa)

Cu fcc 3.63 (3.61)a 136.18 (142.03)b

Ag fcc 4.16 (4.09)a 88.84 (108.72)c

Au fcc 4.17 (4.08)a 132.08 (180.32)c

Zn hcp 2.66 (2.66)a 1.867 (1.856)a 79 (84.70)d

aReference [39].
bReference [54].
cReference [55].
dReference [56].

stability of the different compounds, providing an estimate of
the effective bonding strength. The heat of formation, �H , of
a binary alloy A1−xBx can be calculated from

�H (A1−xBx ) = E(A1−xBx ) − (1 − x)E(A) − xE(B ),

(12)

where E(A1−xBx ) is the total energy of the binary structure,
and E(A) and E(B ) are the energies of the elements with
x mole concentration, each in its equilibrium state [53]. In
this work, formation energies are calculated at zero kelvin,
and free energy contributions to the formation energy are
neglected.

To calculate the formation energies of the XZn compounds,
the ground-state energies of the X and Zn elements are re-
quired. Cu, Ag, and Au have face-centered cubic (fcc) crystal
structures at zero temperature and pressure, while Zn has a sta-
ble hexagonal close-packed (hcp) crystal structure. All calcu-
lations were performed on relaxed lattices at their equilibrium
volumes and atomic positions, with all structural parameters
chosen to minimize the total energy. The calculated ground-
state properties, such as the equilibrium lattice constants a
and the bulk moduli B, are given in Table III, where their
values are compared to the corresponding available experi-
mental data, indicating good agreement. It should be noted
that including the spin-orbit interaction for Au increased the
calculated bulk modulus by 20 GPa, in better agreement with
experimental measurement.

To study the disordered bcc phases, in principle we should
do ensemble averages of the energy of the system over many
different disordered configurations. This would require a huge
number of calculations and would be extremely difficult. To
get around this, we employ a common trick in alloy calcula-
tions of replacing the ensemble average with a single approx-
imate surrogate structure whose total energy is expected to be
an excellent approximation to the average energy that would
have been found by performing the ensemble average. For our
surrogate structure we have used a particular special quasir-
andom structure (SQS; in our case, with a 32-atom periodic
cell) to represent our effective disordered system [57]. The B2
and SQS heats of formation that we have calculated using this
structure are summarized in Table IV and Fig. 8.

Three points are apparent when examining this data: First,
the negative heat of formation demonstrates that the bcc
ordered and disordered XZn structures are stable materials

TABLE IV. Calculated values of the B2 and SQS phases for the
heat of formation of XZn (X = Cu, Ag, and Au) alloys, calculated at
0 K.

Alloys Phase �H (meV/atom)

CuZn B2 − 90.4
SQS − 50.8

AgZn B2 − 47.9
SQS − 22.8

AuZn B2 − 211.5
SQS − 146.0

relative to their pure elements. In addition, it is shown that the
B2 heat of formation is lower (more stable) than that of SQS
for all three materials. Second, when comparing the relative
energy differences between the B2 and SQS phases, that of
AgZn is much smaller than CuZn or AuZn, and, in fact, AuZn
has an especially large difference. Since the entropy at high
temperatures tends to favor disorder, in the absence of any
other information, these results immediately suggest that at
lower temperatures there is likely to be ordered B2 phases
for CuZn and AuZn, with the case of AgZn less clear. In
fact, this is consistent with the experimental phase diagram.
For example, the B2 AuZn structure is so stable that it is
retained all the way to melting and the disordered bcc phase
never forms at all (hence the energy phase stability difference
is stronger than the entropy effects of configuration mixing).
CuZn has a disordered phase at high temperature that then
transforms to an ordered B2 phase at lower temperatures.
AgZn is also disordered at high temperatures but can form
the B2 phase only by quenching. The final and third point
that can be surmised from the data is that the relative order of
bonding strength is AuZn (highest), CuZn, and AgZn (lowest)
in the disordered phase, just as we found previously in our
calculations for the ordered B2 phase.

B. The bcc order-disorder transition temperature

As expected and shown in previous studies [58], a good
transition temperature for the order-disorder transformation
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FIG. 8. Calculated heat of formation for the XZn B2 and SQS
phases. The dashed lines are guides for the eye.
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FIG. 9. Calculated order-disorder transition temperatures for
XZn and their comparison with experimental values [10] and melting
temperatures [41]. The dashed lines are guides for the eye.

can be obtained by only including the configurational entropy
contribution to the free energy. The configurational entropy of
a binary alloy is given by [53]

Sideal = −kb[x ln x + (1 − x) ln(1 − x)], (13)

where kb is the Boltzmann constant and x is the concentration
of the atom, and has a value of Sideal = −0.69kb for 50%
concentration. The order-disorder transition temperature can
then be obtained from the following equation:

T ≈ �HSQS − �HXZn

Sideal
. (14)

The calculated transition temperatures and their measured
values and the melting temperatures of each system are shown
in Fig. 9.

For all the alloys, the predicted order-disorder transition
temperatures are systematically about 100 K too low, which
can be caused by either the neglect of contributions from
the vibrational and electronic entropies, or also perhaps from
systematic errors arising from the use of the SQS structure
as a surrogate for the ensemble average of the disordered
system. However, the predicted transition temperatures follow
the same trend seen in the experiments (which is a justification
for our use of the SQS structure); they also follow a similar
pattern to that observed in the differences in the heat of
formation between the ordered and disordered structures (B2
and SQS) shown in Fig. 8. This is reasonable because these
differences indicate how much energy it takes to disorder
the material. As mentioned above, these differences in turn
appear to track the relative value of the magnitude of the
heats of formation for the ordered structures, suggesting that
the effective bond strength is actually the ultimate controlling
factor setting the energy (or temperature) scale for all of these
processes.

More specifically, with respect to Fig. 9, AuZn had the
most stable B2 structure relative to SQS and has a theoreti-
cally predicted transition temperature slightly above melting,

consistent with no order-disorder transition (experimentally,
AuZn remains in the B2 structure all the way to melting [59]).
CuZn has a larger difference than AgZn, which is consistent
with the higher transition temperature for CuZn relative to
AgZn (i.e., the more stable the B2 structure is relative to the
disordered SQS, the higher the temperature it takes to provide
enough entropy to disorder the material).

VIII. SUMMARY

In this study, first-principles calculations were performed
to investigate the formation and stability of the ordered and
disordered bcc phases in CuZn, AgZn, and AuZn alloys.
We demonstrated that the nonmonotonic behavior of many
of the properties of these materials, as one goes down the
noble-metal column of the periodic table, results from a
competition between atomic-core size and the spatial extent
of the noble-metal d orbitals for different principal quantum
numbers. The first effect pushes the atoms apart reducing
hybridization, whereas the second increases hybridization,
leading to a minimum in the X-Zn bonding strength for AgZn
relative to CuZn and AuZn. These results were confirmed
in detail by using pair-potential modeling, charge-density
analysis, and studies of the partial density of states. It was
specifically shown that the Ag-Zn bond is indeed the weakest
of the XZn systems, while the AuZn is the strongest. The
weak Ag-Zn bond is responsible for the structural instability
of the B2 phase and the lower order-disorder transition tem-
perature. Moreover, the strong Au-Zn bond is responsible for
the stability of the ordered phase all the way up to the melting
temperature, unlike for CuZn and AgZn which disorder before
melting.

Pair-potential modeling confirmed this result, which ex-
plains chemical and elastic formation energy trends in these
materials. In addition, in agreement with experimental obser-
vations, calculations of the anisotropy factor of the XZn sys-
tems confirm that the B2 AgZn alloy is structurally unstable
relative to the other systems. Furthermore, while AgZn has
the lowest critical temperature, the disordered bcc phase for
AuZn does not exist.

The special quasirandom structure (SQS) was used to
estimate the energy of the disordered bcc phase of the XZn
materials. Calculated formation energies of ordered and disor-
dered bcc phases were used to estimate the bcc order-disorder
transition temperature in all systems, which were found to
be in good agreement with the experimental measurements.
In addition, the AuZn order-disorder transition temperature
is higher than its melting temperature, confirming that the
disordered phase cannot form in this system.
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