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Solid-state dewetting on curved substrates
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Based on the thermodynamic variation to the free-energy functional, we propose a sharp-interface model
for simulating solid-state dewetting of thin films on rigid curved substrates in two dimensions. This model
describes the interface evolution which occurs through surface diffusion-controlled mass transport and contact
point migration along the curved substrate. Furthermore, the surface energy anisotropy is easily included
into the model, and the contact point migration is explicitly described by the relaxed contact angle boundary
condition. We implement the mathematical model by a semi-implicit parametric finite-element method to study
several interesting phenomena, such as “small” particle migration on curved substrates and templated solid-state
dewetting on a prepatterned substrate. Based on ample numerical simulations, we demonstrate that, the migration
velocity of a small solid particle is proportional to the substrate curvature gradient & and inversely proportional
to the square root of the area of the particle ~/A, and it decreases when the isotropic Young’s angle 6; increases.
In addition, we also observe four periodic categories of dewetting on a prepatterned sinusoidal substrate. Our
approach can provide a convenient and powerful tool for exploring how to produce well-organized nanoparticles
by making use of template-assisted solid-state dewetting.
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I. INTRODUCTION

Solid-state dewetting of thin films has been observed
in various thin-film/substrate systems by many research
groups [1-14] and has attracted increasing attention because
of its considerable technological interest. Especially, in recent
years, the solid-state dewetting can be used to provide a sim-
ple method for making ordered nanoparticles and quantum dot
arrays which have a rich variety of applications, such as used
for sensors [15,16], optical and magnetic devices [15,17], and
as the catalysis for the growth of carbon and semiconduc-
tor nanotubes and nanowires [18,19]. Ono et al. [20] first
observed the solid-state dewetting (or agglomeration) in the
silicon-on-insulator (SOI) system. Following the experiment,
many experimental studies on dewetting of single-crystal
films (mostly for SOI [21,22] and Ni [5-8] films) have been
performed and have shown that it could produce well-ordered
and controllable patterns. Unlike single-crystal films, poly-
crystalline films usually lead to disordered structures on a flat
substrate. Whereas recent experiments have shown that thin
films can evolve into ordered arrays of nanoparticles and well-
organized patterns on a prepatterned substrate, i.e., by making
use of the templated solid-state dewetting [8,12,23,24]. These,
and related studies have led to increasing research interests on
studying the kinetics of solid-state dewetting of thin films on
both flat and curved substrates.
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The dewetting of solid thin films deposited on substrates
is similar to the dewetting of liquid films [25], and they
share some common features, such as the moving contact
line [26-28], Rayleigh instability [29-31], and multiscale and
multiphysics features [32-35]. However, they have many im-
portant major differences. For example, their mass transport
processes are totally different, and the solid-state dewetting
occurs through surface diffusion instead of fluid dynamics in
liquid dewetting; in addition, the surface energy anisotropy
plays an important role in determining equilibrium shapes
of particles and the kinetic evolution during the solid-state
dewetting, whereas the isotropic surface energy is usually
assumed in liquid dewetting. In the literature, the solid-state
dewetting is usually modeled as a surface-tracking problem
described by surface diffusion flow, coupled with moving
contact lines where the film-vapor-substrate three phases meet
with each other [36—42].

Based on different understandings to this problem, there
have been lots of theoretical and modeling studies for solid-
state dewetting problems in the literature. Srolovitz and
Safran [36] first proposed a sharp-interface model to in-
vestigate the hole growth under the three assumptions, i.e.,
isotropic surface energy, small slope profile, and cylindri-
cal symmetry. Based on the model, Wong et al. [37] de-
signed a “marker particle” numerical method for solving
the two-dimensional (2D) fully nonlinear isotropic sharp-
interface model (i.e., without the small slope assumption)
and to investigate the two-dimensional edge retraction of a
semi-infinite step film. Dornel et al. [39] designed another
numerical scheme to study the pinch-off phenomenon of
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two-dimensional island films with high-aspect ratios during
solid-state dewetting. Jiang et al. [40] designed a phase-field
model for simulating solid-state dewetting of thin films with
isotropic surface energies, and this approach can naturally
capture the topological changes that occur during evolu-
tion. Although most of the above models are focused on
the isotropic surface energy case, recent experiments have
clearly demonstrated that the kinetic evolution that occurs
during solid-state dewetting is strongly affected by crys-
talline anisotropy [1,2]. In order to investigate surface en-
ergy anisotropy effect, many approaches have been proposed
and discussed, such as a discrete model [39], a kinetic
Monte Carlo model [14,43], a crystalline model [44,45],
and continuum models based on partial differential equations
(PDEs) [41,42,46].

Although most of these works are restricted on the flat
substrate, dewetting of thin solid films on curved substrates
is still not well understood. For simulating template-assisted
solid-state dewetting, Giermann and Thompson proposed a
simple model [24] to semiquantitatively understand some
observed phenomena, but they could not include the contact
line/point migration or the surface energy anisotropy into the
simple model. Klinger and Rabkin [47] developed a discrete
algorithm for simulating capillary-driven motion of nanopar-
ticles on curved rigid substrates in two dimensions. In their
approach, the self-diffusion along the film/substrate interface
(i.e., interface diffusion) and the surface diffusion along the
particle surface are included, and the continuity of fluxes and
chemical potentials of the interface and surface diffusions
at the moving contact point is used to tackle the moving
contact-line problem. Here, we describe completed continuum
PDE models, which are used for simulating the kinetics of
solid thin films on curved substrates.

In recent years, a continuum model based on the sharp-
interface approach was proposed by the authors for simulating
solid-state dewetting of thin films on flat substrates [41,42,48]
in two dimensions. This continuum model is obtained from
the thermodynamic variation to the total interfacial free-
energy functional and Mullins’s method for deriving a surface
diffusion equation [49]. This model describes the interface
evolution which occurs through surface diffusion and contact
point migration, and the surface energy anisotropy is easily
included into the model, no matter how strong the anisotropy
is, i.e, weakly anisotropic [41] and strongly anisotropic [42].
From mathematics, we can rigorously prove that the sharp-
interface model fulfills the area/mass conservation and the
total free-energy dissipation properties when following with
the kinetics described by the model, and a parametric finite-
element method was designed to efficiently solve the math-
ematical model [46]. Furthermore, we have extended these
approaches to simulating solid-state dewetting in three dimen-
sions recently [50,51], i.e., moving open surface coupled with
moving contact lines. In this paper, we will generalize the
modeling techniques and numerical methods to study solid-
state dewetting of thin films on nonflat rigid substrates.

In this paper, we assume that the surface diffusion is the
only driving force for solid-state dewetting, and that elastic
(interface stress, stresses associated with capillarity) effects
are negligible, and there are no chemical reactions or phase
transformations occurring during the evolution. The rest of

FIG. 1. A schematic of a solid film (island) in contact with a rigid
curved substrate in two dimensions, where ¢; and ¢, represent the left
and right contact points, I" is the film/vapor-interface curve, and I is
the curved substrate.

this paper is organized as follows. In Sec. II, based on a
thermodynamic variational approach, we rigorously derive a
mathematical sharp-interface model for simulating solid-state
dewetting of thin films on curved rigid substrates. Then, we
perform numerical simulations to investigate several specific
phenomena about solid-state dewetting of thin films on curved
substrates, i.e., the equilibrium shapes of small island films
and the pinch-off of large island films in Sec. III, the small
solid particle migration in Sec. IV and templated solid-state
dewetting in Sec. V. Finally, we draw some conclusions in
Sec. VL.

II. MATHEMATICAL FORMULATION

We first discuss the surface evolution kinetics for solid-
state dewetting of thin films on rigid curved substrates in
2D. Following the usual nonequilibrium thermodynamic ap-
proach, we model the kinetics as driven by the variation of the
free energy of the system with respect to matter transport in a
sharp-interface framework.

Most of the relevant variables are described by refer-
ence to the example shown in Fig. 1. We denote the film/
vapor-interface profile as I'=X(s)=(x(s), y(s)), s € [0, L]
where s and L represent the arc length and the total length of
the interface, respectively. The unit tangent vector T and outer
unit normal vector n of the film/vapor-interface curve I" can be
expressed as T := (xy, y;) and n := (—y;, x;), respectively.
Angle 6 represents the angle between the local outer unit
normal vector and the y axis (or the local tangent vector and
the x axis).

The curved rigid substrate profile is denoted as " :=
X(c) = (£(c), $(c)) with arc-length ¢ € [0, L), and L repre-
sents the total length of the curved substrate. Similarly, T, fi,
and 6 represent the unit tangent vector, the (outer) unit normal
vector of the curved substrate f‘, and the angle between the
local unit normal vector and the y axis.

The left and right contact points are located at the intersec-
tions of the interface curve I' and the substrate curve I, i.e.,
the contact points are at s =0 and s =L on " and ¢ = ¢
and ¢ = ¢, on [". For simplicity, we denote both as ¢; and
¢ (shown in Fig. 1) and represent the tangent angles to the
external surface I" and substrate I" at the two contact points as
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where 6! and 6! are the left and right extrinsic contact an-
gles [52], respectively. Hence, the left and right intrinsic (or
true) contact angles are

o =0l -0

1" e

0 :==6r — 6. (D
which satisfy

cos 8! = 7(0)-#(c;), cos O =T(L)-%(c,).

Following with the above notations, the total interfacial
free energy of the three-phase solid-state dewetting system
(including possibly anisotropic surface energies) can be writ-
ten as [41,42,48]:

W= / y(O@)dT + (yes — yvs)(cr — c1), (2
r

substrate energy

where the first term represents the film-vapor-interface en-
ergy and the second term represents the substrate interface
energy (we have subtracted the energy of the bare substrate).
Yevs Vrs, and y,s are the surface energy densities of the
film/vapor, film/substrate, and vapor/substrate interfaces, re-
spectively. Here, we assume that y,; and y,s are two con-
stants and the film/vapor-interface energy density is a func-
tion of the interface orientation angle, i.e., y,, = y(6). If
y () = constant, the surface energy is isotropic; otherwise, it
is anisotropic. Furthermore, if the surface stiffness y(9) :=
y(@)+y"(0) > 0 for all § € [—m, ], the surface energy
is weakly anisotropic; otherwise, if y(8) = y(8) + y"(0) <
0 for some orientations 6 € [—m, ], the surface energy is
strongly anisotropic.

As shown rigorously (and in detail) in Appendix A, the
first-order thermodynamic variations of the total free-energy
W with respect to the film/vapor-interface profile I' and the
two contact points ¢, and ¢; are

SW ,
ST = [y(©)+y"(0)]k, 3)
8W r r ’ r M r
s = v (00) cos 0 —y'(6) sin 6 + (ves = 7). (@)
8W [ 1 1 (nl : 1
5_6‘1 = _[)/ (96) COs 91 -y (Qe) sin 91 + (VFS - Vvs)], (5)

where « is the curvature of the interface curve I'.

From the Gibbs-Thomson relation [49,53] [in terms of the
curvature Eq. (3)], we can define the chemical potential
at any point along the interface curve I'. Variations in the
chemical potential along the interface give rise to a material
(film) flux along the interface J and the the normal velocity of
the film/vapor-interface V, [41,49],

w ~
= Qoly (@) +y"(O)k = YOk, (6)

= Qy—
127 0 5T
D;v DvQq 8%
= __Vs s Vn =—-Q Vs' = PR 7
J= Ve oV =g O

where V; is the surface gradient operator (i.e., the derivative
with respect to position s along I'), € is the atomic volume
of the film material, D, is the coefficient of surface diffusion,
v is the number of diffusing atoms per unit length, and k37, is
the thermal energy. Equations (4) and (5) are used to construct

the equations of motion for the moving contact points in the
manner described in Refs. [41,42],

dc(t) swW
—_— = -, tc= 5 8
r 77861 atc =g (8)
de, (1) oW "
=— , ate=c,
di Tse,

where the constant n € (0, 0o) represents a contact-line (or
point) mobility.

Next, we nondimensionalize the equations by scaling all
lengths by a constant characteristic length scale Ry (e.g., the
initial thickness of the thin-film layer), energies in terms of the
constant, mean surface energy (density) yy = % ffﬂ y(0)d6,
and time by 7y = Ré/(Byo), where B := D‘YUQ(Z)/(kBTe) is a
material constant (the contact-line mobility is therefore scaled
by B/R3). With these scalings, the above sharp-interface
model for the interface evolution [Eq. (7)] becomes

9X 3y
— =V,n=——n,
ot 952
w=yOx =[y@) +y"O)lk. (10)

Note that now X, ¢, V,, s, u, ¥, k, and n are dimension-
less, yet we retain the same notation for brevity.
The dimensionless interface evolution equation (10) is
subject to the following dimensionless boundary conditions:
(i) Contact point condition (BC1),

X(0,1) =X(¢)), X(L,1)=X(c,). (11)

This ensures that the left and right contact points move along
the rigid curved substrate I" and simultaneously lie on both
the film/vapor I' and the substrate [ interfaces.

(i) Relaxed/dissipative contact angle condition (BC2),

dC]

d" r o gr
G = e, =), a2)

dt

where
f (O, 6;) == y(6)cos 6; — y'(6.)sin 6; — o,

and o := (yys — ¥rs)/¥0- The contact angles Gé, 0., 9{, and
0/ are related as per Eq. (1) and hence are intrinsically related
to the substrate shape.

(iii) Zero-mass flux condition (BC3),

9 9
HPon=0 Ewa.n=o. (13)
as s

This condition implies that the total mass of the film is
conserved (see Appendix B).

If the film evolves to a stationary state, the contact angles
evolution equation (12) ensures that the equilibrium contact
angle is achieved by y(6.)cos 6; — y'(6.)sin 6; = o. This
is the classical Young’s equation generalized for the curved
substrate case. If the surface energy is isotropic [i.e., y(0) =
1, and y /(6) = 0], the generalized Young’s equation reduces
to the classical isotropic Young’s equation [54], i.e., cos 6; =
o. On the other hand, when the substrate is flat (é =0),
the generalized Young’s equation reduces to the classical
anisotropic Young’s equation [41,42] (in this case 6. = 6;).
However, when the substrate is curved, we cannot, in general,
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explicitly determine the static intrinsic angles for arbitrary
anisotropy.

We demonstrate, in Appendix B, that the general
(anisotropic) evolution equation (10) together with boundary
conditions (11)—(13) ensure that the total film mass (area) is
conserved and the total free energy of the system decreases
monotonically during film morphology evolution. From a
mathematical point of view, we note that the governing equa-
tions are well posed when the surface energy is isotropic
or weakly anisotropic. On the other hand, when the surface
energy is strongly anisotropic, the equations will become of
the antidiffusion type (e.g., likewise, a second-order diffusion
term with a negative diffusion coefficient) and are ill posed.
We handle this ill posedness by regularizing the equations by
adding high-order terms (e.g., see Ref. [42]).

III. ISLAND EVOLUTION ON CURVED SUBSTRATES

We employ a parametric finite-element method to numer-
ically solve the above mathematical model for the evolution
of islands on curved substrates. The numerical algorithm is
described in Appendix C and was previously applied to solid-
state dewetting problems on flat substrates in Ref. [46]. Our
numerical examples all use an anisotropic film/vapor surface
energy (density) of the following form:

y (@) =1+ B cos(mb), (14)

where the parameter 8 controls the degree of the anisotropy
and m describes the order of the rotational symmetry. For
B =0, the surface energy is isotropic. For 0 < 8 < ﬁ,
it is weakly anisotropic. And, for g > ——, it is strongly
anisotropic. We focus here on the case of large contact point
mobility (n = 100). A more detailed discussion of the influ-
ence of the parameter 1 and contact-line drag on the kinetic
evolution process (and even stationary morphologies) can be
found in Ref. [41].

A. Small island equilibrium

Isotropic islands on flat substrates evolve to the same
stationary state determined by the equilibrium contact angle,
independent of the initial island shape. However, this is not
necessarily the case when the substrate is not flat as illustrated
in Figs. 2(al) and 2(a2) for the case of a sawtooth-profile
substrate. Here, the stationary island shapes (evolving from
different initial island shapes) have very different macroscopic
aspect ratios and cover vastly different substrate lengths
(areas). This suggests the possibility of manipulating island
shape through control of substrate morphology and/or initial
island profile.

Figures 2(b1) and 2(b2) show two stationary island shapes
for islands on a circular substrate with exactly the same values
of the material parameter o . In the first case, the island surface
energy is isotropic, whereas in the second case, the surface
energy is weakly anisotropic. Initially, the two islands have
the same shapes and locations. As can be clearly seen from
the figure, the isotropic island evolves to a symmetric circular
shape with static intrinsic contact angle 2w /3; whereas the
anisotropic island evolves to an asymmetric island shape (the
shape itself is determined by the surface energy anisotropy)

FIG. 2. (al) and (a2) show two equilibrium isotropic islands
with material constant o = 0 (intrinsic contact angles are both 77 /2)
on a sawtooth substrate starting from two different initial island
shapes (indicated by the red dashed lines); (bl) and (b2) show
two equilibrium shapes of island films with material constant o =
—0.5 on a circular substrate with radius R = 20 where (bl) is the
isotropic case with static intrinsic contact angle 27 /3 and (b2) is
the weakly anisotropic case (where m =4, g = 0.06) with static
intrinsic contact angles 2.025 (left) and 2.319 (right).

and has two different left and right static intrinsic contact
angles. These numerical results indicate that the surface en-
ergy anisotropy can lead to multiple static intrinsic contact
angles on curved substrates. The presence of different (left
and right) contact angles on the same island was observed
earlier for strongly anisotropic islands on a flat substrate but
not for weakly anisotropic islands [48]. This feature of weakly
anisotropic islands is associated with the fact that, here, the
substrate is curved.

B. Large island pinch-off

When the aspect ratio of an island film is larger than a
critical value, the island will pinch off and break up into
two or more islands. In analogy to a pinch-off on flat sub-
strates [39,41], we perform numerical simulations of large
islands on circular curved substrates. Figure 3 shows several
configurations during the evolution of a large-aspect-ratio
island on a circular substrate of radius R = 30. As shown in
Fig. 3, surface diffusion very quickly leads to the formation
of ridges at the island edges followed by valleys; then as
time evolves, the two valleys merge near the island center;
eventually, the valley at the center of the island deepens until

FIG. 3. Morphology evolution of a large island film (aspect

ratio L = 60) with weakly anisotropic surface energy on a circular
substrate of radius R = 30, where m = 4, B = 0.06, o = —+/3/2.
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FIG. 4. The number of islands formed from the retraction of
a high-aspect-ratio island (with isotropic Young’s angle 6;; o0 =
cos 6;) as a function of initial length L on circular substrates of radii
(a) R =30 and (b) R = 60. The solid black lines separating the one-
and two-island domains correspond to (a) L. = 79.2/sin(6;/2) +
0.2 and (b) L. = 85.0/sin(6; /2) + 0.3. The black dashed line in (b)
is the solid black line in (a).

it touches the substrate, leading to a pinch-off event that
separates the initial island into a pair of islands. This evolution
is very similar to that on flat substrates [41].

We now investigate how the substrate curvature affects
the critical pinch-off length L, of island films (above which
pinch-off occurs). Figure 4 shows the number of small islands
formed during solid-state dewetting on circular substrates
of radii R =30 and 60 for isotropic surface energy and
Young’s angles 6; € [0, w]. This shows that the boundary
line separating domains of different numbers of pinched off
islands is well fitted by straight lines: L. = 79.2/sin(6; /2) +
0.2 for R =30 and L. = 85.0/sin(6;/2) 4+ 0.3 for R = 60,
respectively. We performed similar calculations for substrates

TABLE 1. Critical island film length L. for island breakup as a
function of isotropic Young’s angles 6; (i.e., the material constant
o = cos ;) and substrate radius R for the isotropic surface energy
case. The symbol “~” implies that no pinch-off occurred (i.e., L, >
2w R). The R — oo (flat substrate) data are obtained from earlier
results [39].

R=20 R=30 R=40 R=50 R=60 R— o

6 =m 73.5 71.5 79.5 80.5 81.5 87.9
0; = %rr 74.5 78.5 80.5 81.5 82.5 88.8
0; = gn 76.5 81.5 83.5 84.5 84.5 91.3
0; = %rr 80.5 85.5 87.5 88.5 89.5 95.9
0; = %rr 86.5 91.5 94.5 95.5 96.5 102.9
0; = 17—271 94,5 1005 1035 1055 1065  113.1
0; = %n 1055 1135 1195 1195 1215  128.0
0; = %n 1205 1315 1375 1405 1425  150.0
0; = %71 - 1575 1665 1705 1725 1845
0; = 13—271 - - 2105 2195 2245 2438
6, =27 - - - 306.5 3195 364.6

of several curvatures and intrinsic contact angle 6;. The re-
sultant critical pinch-off lengths for different R’s and 6;’s are
shown in Table I (the flat substrate result R — oo is obtained
from the fitting formula of Dornel ez al. [39]). This table shows
that the critical pinch-off length increases with decreasing
isotropic Young’s angle 6; and increasing substrate radius R.
We fit these numerical results for the critical pinch-off film
length L, (as a function of isotropic Young’s angle 6; and
substrate radius R) to the functional form

_a(R)
 sin(6;/2)

where the functions a(R) and b(R) are well approximated by
a(R)~ —320.2/R + 89.9 and b(R) ~ 0.0 for R > 20.

+ b(R), (15)

IV. MIGRATION OF SMALL ISLANDS

In this section, we will examine the evolution of small
islands on substrates with nonconstant surface curvature. As
discussed above (see Sec. III A), the equilibrium shape of
small islands on substrates with constant surface curvature
for both cases of isotropic and anisotropic surface energies
can be determined. Interestingly, when the substrate curvature
is not constant, island migration is possible. Using a simple
model, Ahn et al. showed that a solid particle will migrate
from convex to concave substrate sites [55]. Klinger and
Rabkin, using a different algorithm, examined the motion
of (for example) a particle on a substrate with a sinusoidal
profile [47]. Here, we apply the proposed mathematical model
to investigate the motion of a small solid particle on an
arbitrarily curved substrate for the case of isotropic surface
energy. As we discuss below, small implies that the product of
the island size (i.e., the area of particle in 2D) and the substrate
curvature gradient are small compared with one. This implies
that the relaxation time of the island shape is short compared
with the time necessary for the island to translate by an island
radius.
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0 400 800
t [Ro/(B)]

FIG. 5. (a) Simulation results for a small solid particle migration
on a curved rigid substrate with a constant curvature gradient £'(c) =
—0.01 at different times r = 0, 0.02, 300, 600, 900, respectively,
where the isotropic Young’s angle is chosen as 6; = 7/2 and the
red dashed line represents the initial shape and location of the solid
particle (its area A = 0.4); (b) simulation results for the position of
the particle P(z) as a function of time.

Here we focus on the leading-order term in the expansion
of the total free-energy variation that gives rise to particle
migration [56]; that is, we focus on the effect of a substrate
curvature gradient [i.e., &'(c) = const.] on the evolution of
the particle on the substrate (we assume that £ is positive for
a convex substrate curve). Figure 5(a) shows several images
during the kinetic evolution of a small initially square solid
island evolving on a substrate with &’ = —0.01; the evolu-
tion was determined by numerical solutions of the proposed
sharp-interface model. The position of the particle versus time
P(t) := [c;(t) + ¢, (¢)]/2 is shown in Fig. 5(b). As is clearly
shown, the island rapidly evolves from its initial square shape
(red dashed line) into a nearly perfect circular arc (blue shape
at about r = 0.02) in an instant of time. After the island
achieves its near-equilibrium shape, it slowly migrates down
along the substrate (translates to the right in Fig. 5). During the
migration, the island keeps with its near-equilibrium shape.
Here, we refer to the time period associated with the island
morphology relaxation to its near-equilibrium shape as the
relaxation time tg, it may be estimated from the inset of
Fig. 5(b), and we estimate this time 7 to be around 1072.

Since the -capillarity-driven evolution is dictated by
Eq. (10) (fourth order in space and first order in time), the
characteristic island shape evolution time ~R3, where Ry ~
V/A is the nominal island radius. We demonstrate below that
the island translation velocity is proportional to the substrate
curvature gradient and inversely proportional to the nomi-
nal island radius Ry. This implies that the shape evolution
rate is much faster than the particle translation rate when
|AR'| <« 1. This is the case for the results shown in Fig. 5

a) 6 i . .
( ) e _i'=0.04
v —4'=0.02
u —/%::0.01
— ¢ — 45 =0.005
o 4+
=
=
a2
0,
20 60 100
4
t [Ry/(B7o)]
(b) x10%
6l + Numerical result |
— Fitting
O&O
S 47 ]
F\
=l
S 2r i
0
0 0.01 0.02 0.03 0.04 0.05
—&" [1/Rj]

FIG. 6. (a) Plot of the position of the small solid island on the
substrate as a function of time for different values of the substrate
curvature gradient &° where the black solid lines are least-squares
linear fits to the numerical simulation data (points). (b) Plot of the
island velocity as a function of the curvature gradient &’. These data
are well fit by the expression v = —1.27&" (red solid line). In all of
these numerical simulations, we fix the island area to be A = 1 and
the isotropic Young’s angle to be 6, = /3.

(JAR'] = 0.004). Since the relaxation time is short compared
with the time required for the island to move an island radius,
it is reasonable to assume that the particle shape is always in
equilibrium at the local substrate site [56].

We now examine how the island velocity v varies with
substrate curvature gradient &', the island area A, and the
isotropic Young’s angle 6; (i.e., the material constant is chosen
as o = cos 6;). Numerical simulations were performed for
several values of the substrate curvature gradient at fixed
island area A = 1 and Young’s angle 6; = 7 /3, and Fig. 6(a)
shows the particle position P(¢) versus time. These data are
well fitted by straight lines where the slope is a function of
substrate curvature gradient &', i.e., the particle velocity is
nearly constant after a very short-time transient [shown in
Fig. 5(b)]. Least-squares linear fits to these data yield island
velocity versus substrate curvature gradient &' as shown in
Fig. 6(b). This plot demonstrates that small island velocity is
proportional to the substrate curvature gradient &’

113401-6



SOLID-STATE DEWETTING ON CURVED SUBSTRATES

PHYSICAL REVIEW MATERIALS 2, 113401 (2018)

x 10 ‘
1.6 + Numerical result +
— Fitting
=)
~
~
127 i
=)
<)
0.8 1
0.6 1.4

]
1/VA [1/R]

FIG. 7. Plot of the island velocity as a function of 1/+/A. These
data are well fit by the linear relation v = 0.01/+/A (blue solid line).
In all of these numerical simulations, we fix the substrate curvature
gradient to be £’ = —0.01 and the isotropic Young’s angle to be
91' =T / 3.

We also examined the relation between the island velocity
and the initial island area A and Young’s angle 6;. The
numerical simulation results for the effect of island size are
shown in Fig. 7 for a constant substrate curvature gradient
&’ = —0.01 and an isotropic Young’s angle 6; = /3. These
data demonstrate that the small island velocity is inversely
proportional to the island radius (or more precisely the square
root of the island area \/Z), although there are small devia-
tions from this relation for very small islands. The numerical
simulation results for the effect of isotropic Young’s angle 6;
is shown in Fig. 8 for fixed curvature gradient &' = —0.01
and fixed island size A = 1. The island velocity increases
with decreasing Young’s angle 6; and decreases to zero as
6; — 7. The latter observation is consistent with the fact

x 102
24+t ©®
RS [ ]
SREL
g )
=P o
> [ ]
[ ]
0.6 .
[ ]
[ )
0 ®e [ J W —
0.2 0.4 0.6 0.8 1
97/71'

FIG. 8. Plot of the island velocity as a function of the isotropic
Young’s angle 6;. In all of these numerical simulations, we set the
substrate curvature gradient to be &” = —0.01 and the initial island
areato A = 1.

12 ‘ ‘ ‘
—= - — - ODE Model 7
R gt Full Model ]
= 4 — *
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FIG. 9. Comparison between solving the full model and the
ODE model [i.e., Eq. (16)] for obtaining the position of a small
particle at different times during the migration time on a sinusoidal
substrate § = 4 sin(%/4) where the red line represents the numerical
result by solving the full model, i.e., Eq. (10) together with the
boundary conditions (11)-(13), and the blue dashed line represents
the numerical results by solving the ODE model, i.e., Eq. (16), with
C(6;) = 1.2. The other parameters are chosenas A = 1, 6, = /3.

that a completely dewetting island (6; = ) will not cover
the substrate and hence its free energy is independent of the
location where it stands on the curved substrate.

Based upon the numerical results presented here, we con-
clude that the migration velocity of small solid islands on
curved substrates are well described by the following relation:

dP &' (P
o) = % - —BVOC(Q‘)%, (16)

where B := D‘YVQ% /(kpT,) is a material constant, y; is the
isotropic particle surface energy density, C(6;) is a function of
the isotropic Young’s angle 6; that decreases with increasing
6;, and &'(P) is the local substrate curvature gradient at the
arc-length point P on the curved substrate, where P € [0, i]
is the arc length along the curved substrate. In a forthcoming
paper [56], based upon Onsager’s variational principle, we can
obtain an analytical expression for the function C(6;), which
is consistent with the above numerical results.

Although the above numerical results focused on substrate
of fixed curvature gradients, we can characterize an arbitrary
substrate profile by a position-dependent substrate curvature
gradient &'(P). Hence, since we can determine the velocity of
a small solid particle at any point along the substrate and by
numerically solving the ordinary differential equation (ODE)
in (16), we can predict the trajectory of a small solid particle
on a substrate surface of arbitrary shape. To validate this
approach, we numerically simulate the migration of small
solid particles (A = 1, 6; = w/3) on a sinusoidal substrate
¥y = 4 sin(X /4). The results are shown in Fig. 9 where the red
line represents the results of the numerical simulation via the
full model, i.e., Eq. (10) together with the boundary conditions
(11)—(13), whereas the blue dashed line represents the solution
of the ordinary differential equation in Eq. (16) for C(xr/3) =
1.2 (see Fig. 8). These results show the excellent agreement
between our ordinary differential equation model Eq. (16) and
the numerical solution to the full model.
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FIG. 10. Solid-state dewetting of a thin film with different initial lengths on a prepatterned sinusoidal substrate where the initial length of
a thin film is chosen as 100, 150, and 200, respectively, and the length scale Ry is chosen as the initial thickness of the thin film. The magenta
dashed line is the initial shape of the thin film, and the shaded blue region is the final equilibrium pattern.

V. TEMPLATED SOLID-STATE DEWETTING

In this section, we will apply the sharp-interface model
to simulate templated solid-state dewetting on a prepatterned
substrate. The recent experiments have demonstrated that tem-
plated solid-state dewetting can be used to controllably pro-
duce complex and well-ordered patterns [1,8,23,24]. For ex-
ample, Giermann and Thompson used a topographically pat-
terned substrate to modulate the curvature of thin gold films,
creating the instabilities which are driven by the solid-state
dewetting and results in well-ordered patterns and almost-
uniform size of particles, and furthermore, they observed four
general types of island morphologies on this inverted pyramid
topography [23]. In a companion paper [24], they proposed
two simple models to semiquantitatively understand the ob-
served phenomena. In this section, we choose the prepatterned
substrate as the sinusoidal curve, which is expressed as y =
H sin(wx) with amplitude H and frequency w and apply
the proposed sharp-interface model to investigate the relation
between different types of periodic patterns and the substrate
parameters (i.e., H and w).

Figure 10 depicts how the finite (initial) length of a thin
film influences the equilibrium pattern. As shown in the figure,
the finite length of the thin film will result in nonperiodic

patterns due to the edge effect, but when the initial length is
chosen to be longer and longer, its equilibrium shape will be-
come closer and closer to a periodic pattern. Note that during
numerical simulations, when a pinch-off event happens, a new
contact point is generated; then, after the pinch-off event, we
compute each part of the pinch-off curve separately.

In the following, we performed numerical simulations to
investigate the relation. In order to consider the periodic equi-
librium pattern, we choose the initial length of thin films to be
long enough. This is the common case because thin films often
have very large aspect ratios. As shown in Fig. 11, we divide
the observed periodic equilibrium patterns into the following
four categories of dewetting on a sinusoidal substrate: (I)
one particle per pit with no empty intermediate pits; (II) one
particle occupies one pit with empty intermediate pits; (IIT)
one particle occupies multiple pits with empty intermediate
pits; (IV) different sizes of particles.

The phase diagram of the four periodic categories of
dewetting is also depicted in Fig. 11. As shown in the phase
diagram, when the amplitude H > R, (where Ry is the initial
thickness of thin film and is chosen as the length scale),
the equilibrium pattern will fall into category (I). This can
be explained because the thin film tends to flatten in or-
der to minimize the total interfacial free energy, and if the

vi mnn xm e vl (0
v vV Vv VvvYwvwy v
R R R EEREY. VV. VYV N
I_‘v.L.J‘L*J‘L.J..
E ®E E %X X %x O o o
m momomox x x x o ofl
ogm = x *x *x *x x o o \GPR 2@ N AW
B oE % % %X %X %x %X @
B E X X X X X X @
(V)
o A7 VAVA Y2527 AVAVA A A VAVA
0.1 0.2 0.3 0.4 0.5
27w |1/Ry]

FIG. 11. Phase diagram of the four observed periodic categories of solid-state dewetting on a prepatterned sinusoidal substrate, which are
as follows: (I) one particle per pit with no empty intermediate pits, (II) one particle occupies one pit with empty intermediate pits, (III) one
particle occupies multiple pits with empty intermediate pits, and (IV) different sizes of particles. In all the above numerical simulations, the
isotropic Young’s angle 6; = 27r/3 and the initial length of the thin film is chosen to be long enough.
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amplitude of the sinusoidal substrate is too large, it will touch
the substrate before flattening and result in one particle in
each pit. A simple model [24] was proposed to predict the
critical amplitude of the substrate, i.e., the condition in which
the area of thin film is equal to the area of one pit. Here, for
a sinusoidal substrate, by some simple calculations, the initial
area of the film in one pit is 27 Ry/w, and the area of one pit is
27 H /w. If they are equal, the critical amplitude is Ry, which
is excellently consistent with our numerical results.

On the other hand, as shown in Fig. 11 when H < Ry,
the equilibrium pattern will fall into three possible categories:
(ID)—V). In these categories, (II) and (III) are both uniform
sizes of particles, and the intermediate space between these
particles can be well controlled by adjusting the parameters
H and w. When the amplitude H is fixed and the frequency
w increases to be higher than a critical value, the final pattern
will fall into category (IV), i.e., a nonuniform size of particles
will appear. Numerical simulations indicate that this critical
frequency increases as amplitude H decreases, and when
H/R, goes to zero, the critical frequency will go to infinity.
Furthermore, in this case (i.e., H/Ry < 1), our numerical
simulations have demonstrated that the periodicity of the final
equilibrium pattern is very close to the one predicted by Wong
et al. in their “mass-shedding model” for a thin film on a
planar substrate [37].

VI. CONCLUSIONS

In this paper, we proposed a sharp-interface mathematical
model for simulating solid-state dewetting of thin films on
a nonflat rigid substrate in two dimensions and applied this
model to studying several interesting phenomena about solid-
state dewetting problems on a nonflat substrate.

First, we rigorously derived the governing equations of
solid-state dewetting from the thermodynamic variation of the
total interfacial free-energy functional. The morphology evo-
lution of thin films is governed by surface diffusion and con-
tact point migration on a nonflat rigid substrate curve. Similar
to the flat substrate case [41,42], we introduced a relaxation
kinetics with a finite contact point mobility for describing the
contact point migration. For equilibrium shapes, we obtained
a bivariate equation (referred to as the generalized Young’s
equation) to determine the static intrinsic and extrinsic contact
angles of equilibrium shapes. This generalized Young’s equa-
tion will reduce to the classical isotropic/anisotropic Young’s
equation when the substrate is flat [41,48,57,58].

Second, we used a parametric finite-element method for
numerically solving the proposed mathematical model. Am-
ple numerical experiments were performed for examining
several interesting examples about solid-state dewetting of
thin films on curved substrates, i.e., equilibrium shapes of
small islands, pinch-off of large islands, migration of small
solid particles on curved substrates, and template-assisted
solid-state dewetting on a prepatterned sinusoidal substrate.
For equilibrium shapes of small islands, we found that on
curved substrates different initial shapes may evolve into
different equilibrium morphologies even for the isotropic case
and the weak anisotropy can lead to asymmetric equilib-
rium shapes with multiple intrinsic contact angles. For the
pinch-off of large islands, we found that the critical pinch-

off length L. becomes longer when the isotropic Young’s
angle 6; decreases and the radius R of the circular substrate
increases, respectively, and a simple fitting formula for L. as
a function of 6; and R is also given. For a small solid particle
migration on a curved substrate with a constant substrate
curvature gradient &', our numerical results demonstrated that
the migration velocity v is proportional to &', inversely pro-
portional to the square root of the area of the particle +/A, and
furthermore, it decreases when the isotropic Young’s angle
increases from O to . For templated solid-state dewetting of
thin films on a sinusoidal substrate, we observed four periodic
categories of dewetting which have been experimentally and
theoretically studied for a similar prepatterned substrate in the
reference [23]. Our simulation results are able to capture many
of the complexities associated with solid-state dewetting ex-
periments on prepatterned curved substrates [23,24,55,59].
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APPENDIX A: FIRST VARIATION
TO THE ENERGY FUNCTIONAL

In order to calculate the first variation of the total free-
energy functional, i.e., Eq. (2), we first consider an in-
finitesimal perturbation of the interface curve I' := X(s) =
(x(s), y(s)) with arc-length s € [0, L] along its normal and
tangent directions,

=T+ €p(s)n+ ey (s)T,

where the perturbation parameter € represents an infinitesimal
number which controls the magnitude of the perturbation and
¢(s), ¥(s) are smooth functions with respect to arc-length
s. Then the two components of the new curve I' can be
expressed as follows:

I =X(s) + e #(s),

(AD)

where #(s) := (u(s), v(s)) represents an increment vector
(which is related to the direction of the position increment)
and from Eq. (A1), its two components along the x axis and
the y axis are easily obtained as

u(s) = —ys($)e(s) + x,(s)¥(s),
v(s) = x4(s)p(s) + ¥ ()P (s).

Equivalently, the functions ¢(s) and ¥ (s) can also be ex-
pressed as

@(s) = xg($)v(s) — ys()u(s) = F(s) - n(s),
Y (s) = xs(s)u(s) + ys(s)v(s) = B(s) - T(s).

(A2)

(A3)

113401-9



JIANG, WANG, SROLOVITZ, AND BAO

PHYSICAL REVIEW MATERIALS 2, 113401 (2018)

Because the contact points must move along the curved rigid
substrate, the increment vectors at the two contact points must
be parallel to the unit tangent vectors of substrate curve I, i.e.,

#O0) =At(c), F(L) =4 T(cr), (A4)

where A,, A; are the magnitude of the increment vectors.
Therefore, the total free-energy W€ of the system with
respect to the new curve I' can be calculated as follows:

we = f Y ONAT + (Vs = eo)(€r + €h) = (1 + €M)
1—‘6

L
= / V(ee)\/(xs + e”x)z + (ys + va)zds
0

+ (Ves — wws)l(cr +€r,) — (e + €y,

where 0¢ € [—m, 7] can be defined as the following general-
ization of the arctangent function:

€
9 = Arctan(y—s>
xE

s
€
S

(AS5)

arctan =<, €
€
€
y€
arctan —i +m, x{<0, y&=0,
€
yE
:= { arctan —i -, x{<0, yi<0,

"l €— € 0
E’ Xy =Y, Yy =04,

T €_0 € 0
_E’ Xy =Y,y <b,
0, xi =0, yi=0,

where x{ = x; + eu, and y; = y, + €v,.

Then, inserting Eq. (A2) into Eq. (AS), we can calculate
its energy change rate about the curve I' because of this
infinitesimal perturbation with respect to €,

dwe AT 4
= lim —
de e—~0 €

o
- /0 1 Oy — yutt) + YOt + 30l
+ (Ves — Yos)(Ar — A1)
- /OL[yf(g)(% — k) + 7 O) kg + ¥)lds
+ (Vrs — Yos)(Ar — A1)
- fo I ®) + 7" Olkcpds
+ 1Y (0)p + OV + (Ves — Vos)hrls=t

— [y @) + y (O + (Ves — Yvs)hils=o,

where k = —y X + X4 Vs 18 the curvature of the curve.
Since the two contact points must move along the curved

substrate, we can obtain the following relations for ¢, ¢ at

s = 0 and s = L by combining the above Eqs. (A3) and (A4):

@(0) = A2 (c;) - n(0) = —A;sin 6/, (A72)
Y (0) = A (c;) - T(0) = A cos 6, (A7b)

(A6)

o(L) = A 2(c,) -n(L) = —A,sin 6], (A7¢)
Y(L) = A 2(c,) - T(L) = A, cos 6] . (A7d)
Therefore, Eq. (A6) can be rewritten as follows:
dwWe L
= [ @+ @wpds
dE =0 0
+ [J/ (eg) cos eir —y/(eé) sin 01r+(7/m - Vvs)])\r

- [J/ (Oé) cos 9!—]/(6%) sin 911‘1‘(3/” - Vvs)])tl-

APPENDIX B: MASS CONSERVATION
AND ENERGY DISSIPATION

We introduce a new variable p € I = [0, 1], which is
independent of time ¢, to parametrize the moving film/vapor
interface as I'(¢) = X(p, 1) = (x(p, 1), y(p, 1)), where p = 0
and p =1 are used to represent the left and right contact
points, respectively. The relationship between the parameter
p and the arc-length s can be given as s(p, t) = fop |0,X|dp,
and then we can obtain that 9,5 = |0,X]|. For simplicity,
we use subscripts to denote partial derivatives, such as s, =
9,5, X, =9,X.

Proof of mass conservation. The dimensionless total area
(or mass) of the thin film on the curved substrate " :=
(x(c), ¥(c)) is defined as

1 [N
A(t):/ yxpdp—/ YX.dc.
0

9]

Therefore, the rate of change of the dimensionless total area
(or mass) can be calculated as

dA 1 .. dc, oo da
o= O(y,x,,—i-yxpr)dp— yx"z C:Cr—i_ yxCE e=c

1
= / (ixp — ypx)dp + yxi b2,
0

dx(cy)
dt

dx(c,)
dt

1
:/0 (s 30) - (=yps xp) dp

L(1) L(t)
=/ X; -nds :/ Wssds
0 0

= MS(L(l)s t) - /’LS(O9 t) =0.

During the above calculations, we have used the integration
by parts, and that the contact points simultaneously lie on the
film/vapor-interface I" and the substrate curve I, i.e.,

(x(0,1), y(0,1)) = (X(c1), ¥(c1)),
(x(1, 1), y(1, 1)) = (X(cr), $(cr)).

Hence, by using the zero-mass flux condition u(0, t) =
us(L,t) =0, the total area (mass) of the thin film is con-
served during the evolution. |

Proof of energy dissipation. The dimensionless total free
energy of the system defined in Eq. (2) can be rewritten as

- y(cr) + y(cr)

1
W(t) = / Y(@)spdp —ole,(t) — (@),
0
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where o := (yys — Vrs)/¥o. Following with the similar
method we used in the flat substrate case [41], we can calcu-
late the rate of change of the dimensionless total free energy
as follows:

AW r de, dg
= = A [y'(0)0;sp + y(©)spldp — o -

dt dt
de, dc,)

1
=f0 X, - [y <9>n+y(9)r]dp—o(dt =

1
. / X, - {ly"(0)0,n + ' (O)cs, 7]
0

+[y'(0)8,T — v (0)xs,nl}dp

_ de, d
+ (X, [V Om + y (@)1}, — 0< dcf dil)

L)
= / kly @)+ y"(0)IX; -nds
0

dc,
+ dt
dCl
Cdr

_ /’L(” ds—C de, \? N de;\?
=) s . -

_ L) de, \? de\?

s=L(t) 2 r 1
fr— s o — d —_— C —

250 = [ i [( dr) +(dr)
Lo de, \? de\?
2 r 1
= — “ds — C — 0,
|, s [(m)*(m) -

where the constant C = 1/n > 0for0 < n < oo. In the above
calculations, we have used integration by parts, the relaxed
contact angle boundary conditions, and the zero-mass flux
condition.

Hence, the total free energy of the system decreases during
the evolution. |

[y (96’) cos 0 — y’(@e’) sin 6 — o]

[y(@el) cos 911 — y’(@é) sin 911 — O’]

~

APPENDIX C: NUMERICAL ALGORITHM

We implement the proposed sharp-interface model by a
semi-implicit parametric finite-element method [46]. In this
Appendix, we briefly present its variational formulation and
the corresponding finite-element approximation.

1. Variational formulation

Given an initial curve I'(0) = X(p,0), pe I =10, 1]
for t € (0, T], find the evolution curves I'(z) = X(p, 1) €
Hal’b(l) X HCI’d(I), the chemical potential u(p,t) € HY(I),
and the curvature x (p, t) € H'(I) such that

(X;, on) + (15, @) =0, YoeH'(I), (Cl)
(n, ¢) — (YO, ¢) =0, V¢eH (), (C2
(kn, @) — (X;, w;) =0, VYweH ) x Hi(I), (C3)

where H'(I) and Hol(l ) are the standard Sobolev spaces
with the derivative taken in the distributional or weak
sense [60] and a, b, ¢, and d stand for the x coordinates
and y coordinates of the left and right contact points, i.e.,
x(0,1), x(1,¢), y(0,t), and y(1,¢) at time ¢, respectively.
The functional space H a' »(1) is defined as follows:

H, (D) ={f € H'(I): f(0) =a, f(1)=b},
and HO1 1) := Hol,o(l)~ The symbol (-,-) is the L? inner
product with respect to the curve I'(¢) defined as follows:

(f,8) = f-gds,

I'(t)
where f, g are scalar (or vector) functions.

In fact, the above variational formulation (C1) is obtained
by reformulating the first equation in Egs. (10) as X; -n =
Wss, multiplying the test function ¢, integrating over I, in-
tegration by parts, and using the boundary condition (13).
Similarly, (C2) is derived from u = y(6)x by multiplying the
test function ¢, and (C3) is obtained from the second equation
in Egs. (10) by reformulating it as kn = —d,,X and taking
the dot product with the test function @. For more details, the
readers can refer to Ref. [46].

2. Finite-element approximation

First, we decompose [ into N small intervals,

N N
I=[0,1]= U I; = U[q./‘—l,q,/‘]a
j=1

j=1

with the nodes g; = jh, h = 1/N. In addition, let 0 =7y <
Hh<---<ty_1 <ty =T be a partitioning of the time-
interval [0, T']. Define I'" = X™ as the numerical approxi-
mation to the moving curve I'(#,,). Similarly, we can define
other numerical approximation notations, e.g., n”, u™, and
k™. Then, we define the conforming finite-element spaces for
the numerical approximation solution as follows:

Vii={ueCU)ul,eP, ¥Yj=12..M} (C4

Vi, = {u e V" u0) =a, u(l) =1b}, (C5)

where a and b are two given parameters related with the
two moving contact points and, for simplicity, we denote the
solution space Vj = V. The normal vector of the numerical
solution I'”*, which is a step function with possible disconti-
nuities or jumps at nodes ¢, can be computed as

(xm)"

mz_XmJ-z_

where “1” denotes a clockwise rotation through 90°.

For any two scalar (or vector) functions u and v, we define
the L? inner product (u, v)r» over the current polygonal curve
'™ at the time-level ™ as follows:

1
(u, v)pm = / (u-vyds = / (u - U)|X';|dp.
rm 0

Furthermore, if # and v are two piecewise continuous scalar or
vector functions defined on the domain I with possible jumps
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at the nodes {g j}?’: 1> we can define the mass lumped inner
product (-, )’]1 as follows:

h N
(u, V) =3 D X0 g a2 [ v)(g;) + - v)gi,
j=1

where u(qj_) and u(q;’) represent the limit values at the the
possible jump node g; from the left-hand side and the right-
hand side, respectively.

The parametric finite-element approximation to the weak
formulations (C1)—(C3) can be described as follows:

Given the curve I'* = X" at time-level t,,, for the next
time-level #,41, find the evolution curve I+l = X"+l ¢
Vi, x V!, with a, b as the x coordinates of the two contact

points at #,,4; and c,d as the y coordinates, the chemical
potential "+ € V" and the curvature ! € V" such that

h

Xm+1 _Xxm"
<—, <pn'"> + (i o), =0, VeeVh
tm+1 - lm rm
M ) N K ) m = ) € )
(" @)rw — (FO™ K" ) Voev

1 h 1 h o yoh
(""", @), — Xy @), =0, YeeVyxVy,

where the arc lengths of moving contact points, i.e., ¢;(f+1)
and c¢,(t,+1), are updated by solving the relaxed contact
angle condition Eq. (12) via the forward Euler scheme. Then,
according to the values of ¢;(#,,+1) and ¢, (#,,+1), we can obtain
the values of the parameters a, b, c, and d at the time-level
tn+1 by using the formula of the substrate curve.
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