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Dynamics in glassy polymers: The Eyring model revisited
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Applying a stress to a glassy polymer accelerates its dynamics as one goes from low stress up to plastic regime.
For decades, the phenomenological Eyring’s model has been used to describe plastic flow in polymers. This
model, however, raises fundamental issues which makes its use deleterious in glassy polymers. We propose an
alternative model in which the elastic energy stored at the length scale of dynamical heterogeneities ξ ≈ 3–5 nm
reduces the free energy barrier for relaxation. Contrary to the Eyring’s activation volume, which has no clear
interpretation, this length scale is derived from physical arguments, based on a detailed account of relaxation
mechanisms at the molecular scale. Recent creep experiments in glassy polymers by Ediger and coworkers
allow for discriminating the two pictures. It is shown that the whole evolution of the τα relaxation time under
stress can be reproduced quantitatively, using as the only adjustable parameter the scale ξ . The obtained value of
ξ is the same as the value previously determined by considering the whole set of properties of glassy polymers.
This confirms the coherence and completeness of the theory of relaxation processes in nonpolar glassy polymers
that we proposed in previous works.
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I. INTRODUCTION

Mechanical and dynamical properties of polymers have
been intensively studied for a long time due to their funda-
mental and technological importance [1–3]. When strained at
a given strain rate, beyond the elastic regime, glassy polymers
exhibit a maximum in the stress-strain curves—a so-called
yield point—at a strain of a few percents and typical yield
stress values of a few tens of MPa’s [3]. Beyond this maxi-
mum, the stress drops by a few tens of MPa (strain-softening
regime) before it reaches a plateau corresponding to plastic
flow. Strain-hardening may then occur at even larger strain,
depending on molecular weight and cross-linking [4].

The fact that yield stress and plastic flow result from a
stress-induced acceleration of the dynamics at the molecular
level has been demonstrated by recent experiments in which
the microscopic dynamics were probed under stress [5–12].
Molecular dynamics simulations also support the fact that
the dynamics is enhanced during plastic deformation [13,14].
On the other hand, the dynamics is known to be strongly
heterogeneous in the vicinity of Tg [15–18]. This results
in nonexponential relaxation moduli, characterized by a so-
called stretching exponent β smaller than 1. Experiments have
shown that β increases during uniaxial extension, which indi-
cates that the dynamics become more homogeneous during
plastic deformation than at rest [7].

The first generic model proposed for describing plastic
deformation has been the Eyring model [19], in which a
thermally activated motion across a free energy barrier is
biased by the flow. While the free energy barrier itself is not
affected by the applied stress, it is quite often (mis)interpreted
as a change of the effective free energy barrier in the regime
of plastic flow or at yield, wherein it is usually used [4,20,21].
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In the Eyring model, the effect of the stress on the dynamics is
controlled by the so-called activation volume v. The activation
volume is a fitted parameter determined a posteriori from the
observed variation of the dynamics under stress. It has no clear
physical interpretation or relationship to material parameters
and simply reflects in a heuristic way the sensitivity of the
yield stress value on the strain rate [22,23].

In this context, a detailed description of the dynamics
during plastic deformation from the molecular level up to the
scale of a few tens of nanometers is crucially needed [25,26].
The mesoscale model denoted “Percolation of Free Volume
Distribution” (PFVD) model (according to Ref. [27]) has been
developed to describe nonpolar polymer glasses [28–31]. In
this model, the heterogeneous dynamics is described at the
scale of subunits (“dynamical heterogeneities”) of size ξ

typically 3–5 nm, based on a detailed account of relaxation
mechanisms at the molecular scale, whose competition sets
the scale ξ . In fact, this scale plays a central role in the model.
It must be emphasized that it is determined from physical
arguments and has been found to be perfectly consistent with
experimental measurements [16]. It was demonstrated that the
PFVD model provides a unified explanation for a full set of
apparently distinct properties of glassy polymers, namely lin-
ear viscoelasticity [32,33], small probe diffusion and Stokes’s
law violation [29], the effect of confinement [28,32,34,35] and
of hydrostatic pressure [36] on Tg , the ageing and rejuvenating
kinetics upon heating [29,30] and the yield stress [1,24,37].

In the PFVD model, nonlinear mechanical properties of
glassy polymers are related to the distribution and evolution
of dynamical heterogeneities from equilibrium up to plastic
deformation. The model can be solved by numerical simula-
tions and macroscopic time scales can be reached. In contrast
with the Eyring model, it is assumed that the applied stress
not only biases the motion but also reduces the free energy
barriers between elementary jumps [24].
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The effect of the applied stress on the distribution of relax-
ation times is actually difficult to characterize experimentally
in the yield regime, and direct measurements are rare. In
Refs. [7,9], the evolution of the main relaxation time τα has
been measured during creep (controlled stress) experiments.
In other experiments aimed at measuring the evolution of the
whole distribution, only a part of it was accessible [8,11].

II. DESCRIBING THE GLASS TRANSITION: DYNAMICAL
HETEROGENEITIES, FACILITATION

In this paper, we report on a spectacular outcome of the
PFVD model, namely the quantitative modeling of exper-
imental results on the microscopic dynamics under plastic
deformation published by Ediger and coworkers [7], without
any further adjustable parameter.

Within the generic framework of the free volume model, in
van der Waals liquids or molten polymers, the decrease of free
volume on cooling results in a slowing down of the relaxation
time τα which dominates the mechanical behavior at long
times, according to the semi-empirical Williams Landel Ferry
(WLF) law [2] τα = τ0 exp (�/ε̃), where � is a number
of order unity and ε̃ is the dynamical free volume fraction
[29,30].

It has long been proposed that α-relaxation is a collective
effect which takes place on some cooperative scale ξ [38].
The basic assumption of the PFVD model is that density
(free volume) fluctuations at scale ξ ≈ 3–5 nm generate a
wide distribution of relaxation times according to the WLF
law. The sample may be viewed as a collection of dynam-
ical subunits of volume ξ 3, containing an average number
Nc = ξ 3/a3 monomers. Considering the bulk modulus value,
density fluctuations on scale ξ are ∼±1% [28–31]. Within
the free volume picture, α-relaxation results from the packing
of Nc monomers, in such a way that a volume of order a3

(the monomer volume) is made available for one particu-
lar monomer to move one step away [28,29]. By writing
τα = τ0 exp [�F0(T )/T ] with τ0 ≈ 10−13 s a molecular jump
attempt (collision) frequency, it follows that the overall free
energy barrier �F0(T ) for α-relaxation, resulting from this
cooperative packing of Nc monomers, is of order 30T at rest
close to Tg , where T , the temperature expressed in Joule, is of
order 4–5 × 10−21 J.

The core of the model is then the determination of the scale
ξ . Individual molecular jumps are controlled by two distinct
processes (Fig. 1) [29–31]: (1) Internal reorganization within
a subunit, with the characteristic time τint, related to local free
volume by the WLF law; (2) if τint happens to become very
long, in a very dense subunit, this last may dissolve much
faster (time τdiff ) by diffusion in faster neighboring subunits
(facilitation process). As the size decreases, τint may become
increasingly long since the amplitude of density fluctuations
increases, while, conversely, τdiff becomes faster. The size ξ is
then determined self-consistently by the competition of these
two distinct relaxation mechanisms: ξ (or Nc) is the smallest
scale at which the lifetime of density fluctuations can be equal
to or larger than τα [29,30]. This competition is illustrated in
Fig. 1.

The generic concept of facilitation, i.e., the idea that local
mobility may be accelerated by a faster environment, is not

FIG. 1. Left: A slow (high density) subunit of size ξ ∼ 3–5 nm
within a faster (lower density) surrounding may relax either by
internal free volume reorganization (time τint) or diffusion (time
τdiff ) (density differences are exaggerated). Right: Variation of τint ∼
N−1/2 (dashed curve) and τdiff ∼ N 2/3 (dash-dotted curve) vs the
number N of monomers in subunits.

recent [39,40]. The above argument, based on free volume
diffusion from neighboring faster subunits, gives an explicit
picture of this concept. As a consequence of the facilitation
mechanism, the size ξ = aNc

1/3 also sets the effective width
of the relaxation time distribution, between τα (the long
time cutoff) and a short time limit τf , according to τα =
N

2/3
c τf . This relation means that relaxation of the slowest

subunits corresponds both to internal processes and to melting
by the faster environment. The temporal asymmetry of the
rejuvenation and ageing dynamics in glassy polymers is a
direct manifestation of the facilitation mechanism [30,31,41].
The macroscopic behavior of a system, and specifically the
macroscopic relaxation time τα , is then the relaxation time of
the slowest subunits which percolate, i.e., which are able to
transmit the rigidity within a system.

Nc was calculated to be of order 1000 monomers, or
equivalently ξ � 3–5 nm [29], in remarkable agreement with
NMR experiment results [16]. A major outcome of our ap-
proach is that many different features, such as the Stokes’s
law violation [29], Tg shifts in confinement [28,32,34,35]
and related reinforcement effects in filled elastomers [32,42],
the yield and plastic flow of glassy polymers [24], may be
explained using the same or similar values of Nc ≈ 1000 at
Tg , as extensively discussed in Ref. [31].

III. THE CLASSICAL EYRING PICTURE

In the Eyring model [19], the diffusion of molecules or
monomers is biased by the applied stress, while the free
energy barrier between two consecutive states �F0, and hence
the relaxation time τα , is not affected. The shear rate (flux) γ̇

is given as a function of the stress σ by

γ̇ = 1

τ0
exp

(
−�F0

T

)
sinh

σv

T
, (1)

where v is the so-called activation volume and τα =
τ0 exp(�F0/T ) the dominant relaxation time τα in the ab-
sence of stress. τ0 is a microscopic time which must be of
order 10−12 s if the function in the exponential is properly
interpreted as a free energy barrier, as it is done here. This
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expression is the standard result of the Eyring model which
is currently used in the literature for describing plastic yield
and flow such as in Ref. [43]. The temperature dependance of
this free energy barrier, which contains enthalpic and entropic
contributions, may be complex. In particular, the entropic
contribution may lead to apparent values of the microscopic
time τ0 dramatically smaller than 10−12 s. This point of view
is a standard approach in the literature when the α-relaxation
is described in the context of an energy, or more properly, a
free energy-landscape [44,45].

The model is not aimed at calculating the free energy
barriers, which, for instance, would be required for computing
the WLF parameters. The only assumption made here is that
the stress affects the free energy barrier, in a way which is
described below.

Note that even though polymers close to or below Tg

exhibit very broad relaxation time distributions, a dominant
relaxation time in mechanical or dielectric experiments, de-
noted τα , can always be defined by integrating a properly
normalized relaxation function to infinity. This is a classical
issue discussed, e.g., in Refs. [46] and [31].

In the small stress limit, the expression η = σ/γ̇ ≈ T τα/v

is obtained for the viscosity. On the other hand, the viscosity
is given by η ≈ Kτα where K is the high frequency storage
modulus in the glassy state. Therefore, in the linear regime,
K should be related to the activation volume by v = T/K .
With K ≈ 4 × 109 Pa typically, this would give a volume v′ ≈
10−3 nm3, of the order the atomic volume, while the Eyring’s
activation volume, determined in the plastic flow regime, is
usually found to be v ∼ 1 nm3. There is thus a discrepancy
of typically three orders of magnitude between the plastic and
linear regimes in the standard Eyring model.

IV. THE PFVD MODEL: ACCELERATION OF THE
DYNAMICS UNDER STRESS, YIELD

It is experimentally known that relaxation is accelerated
with respect to the equilibrium rate τ−1

α when a large enough
stress is applied on a glassy material [3,6–12]. This implies
that the local relaxation time is not a function of the local
density only, but must also depend on the local stress. Our
central assumption is that the stress, besides biasing molecular
motion [Eq. (1)], also lowers the free energy barrier �F0,
which results in shorter time scales. As explained in Ref. [24],
this change must be quadratic. It is not contained in the Eyring
model.

The free energy barrier �F0 for a local change of configu-
ration (α relaxation) is decreased by an amount corresponding
to the strain energy stored in the material at the scale ξ , leading
to a new free energy barrier under stress of the form

�F (T , σ ) = �F0(T ) − ξ 3

2

σ : σ

G′
0

, (2)

where the quantity σ :σ is defined as σ :σ =
(1/2)[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] with σ1, σ2, σ3

the eigenvalues of σ , the local (deviatoric) stress tensor. This
expression, analogous to a von Mises criterium, is a scalar.
It is the only quadratic function of the stress tensor which is
invariant by rotation and vanishes when the stress is zero or
isotropic. Apart from a pressure term, this term is the first

term in a series expansion describing how a scalar can change
under an applied stress. This term is sufficient for discussing
the experiments by Ediger et al. [7]. This expression may
be extended to take the effect of pressure into account [36],
which shall be done in further extension of this model.

It follows that the relation between the shear rate and the
stress [Eq. (1)] is modified into [24]

γ̇ = 1

τ0
exp

(
−�F0

T
+ ξ 3σ : σ

2KT

)
σv′

T
. (3)

This expression for plastic flow differs from the standard
Eyring model [Eq. (1)] in two distinct ways. First, the argu-
ment of the exponential (the free energy barrier) is decreased
by the term quadratic in σ . Second, in the Eyring-like term
sinh σv′/T , which is necessary to bias the flow and describe
linear flows analytically, the volume v′ = T/K ∼ 10−3 nm3 is
typically three orders of magnitude smaller than the standard
Eyring’s activation volume, generally measured experimen-
tally in the yield regime.

With σ ≈ 5 × 107 Pa at most, the quantity σv′/T in
Eq. (3) is always smaller than about 10−2 and the sinh term
can be safely linearized. Thus, we obtain that the strain rate,
which is a tensor, is given by a scalar (the inverse of the
relaxation time) multiplied by the tensor σv′/T .

Equation (3) then gives the viscosity η = σ/γ̇ , and there-
fore the τα relaxation time, as a function of the applied stress
in an explicit form

τ (T , σ ) = τα (T ) exp

(
− ξ 3

2 T

σ : σ

G′
0

)
, (4)

where τα (T ) is the relaxation time in the absence of stress.
It is important to note that the change of free energy

barrier at yield per monomer, as compared to the thermal
energy T , δf/T = a3σ : σ/(2T K ) is very small, of order
10−2. Would relaxation take place at a monomer scale, the
yield stress values would be considerably larger than observed
experimentally. Conversely, at the scale of Nc monomers (or
equivalently at the scale ξ 3), the decrease of free energy
barrier Ncδf/T = ξ 3σ : σ/(2T K ) is of order 10. It follows
that the free energy barrier for relaxation drops from, e.g.,
40T to 30T and may therefore be crossed on the experi-
mental timescale. The effect thus becomes important because
α-relaxation corresponds to collective reallocation of free
volume at the scale of Nc monomers. This scale corresponds
as well to the correlation scale of the dynamics [29,30]. In
a very slow subunit which does not relax, monomers do not
move. Conversely, in a neighboring fast subunit, monomers
may move cooperatively in the direction associated to the
applied stress. The free energy cost for creating a vacuole
of one monomer volume through cooperative motion of Nc

monomers is thereby reduced by the amount Ncδf .
Contrary to α-relaxation, the so-called secondary β-

relaxation is generally not modified at stress values corre-
sponding to yield [8,11]. This is a further illustration of the
importance of the characteristic scale ξ . Indeed, β-relaxation
takes place on a very small scale, typically the scale of
one chemical bond or atom, of order δv ∼ 10−30m3, and, as
mentioned above, the elastic energy stored under stress at this
scale is negligible with respect to thermal energy. On the other
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hand, the β-process may in some cases be necessary for the
α-process to occur. In such cases, should the β-process be
slower than the experiment timescale, as it may be the case
in impact tests, then the α-process would be inhibited, which
would inhibit plastic flow and make the material brittle [49].

A critical stress value σc
2 = 2KT/ξ 3 may be defined from

Eq. (4). When σ :σ � σc
2(linear regime), the equilibrium

distribution of relaxation times is not modified and τ (σ ) ≈ τα .
The distribution of relaxation times starts to deviate from
equilibrium, and mechanical rejuvenation is induced, when
σ :σ ∼ σc

2. Using 2T ≈ 10−20 J, K ≈ 3 × 109 Pa, and ξ 3 ≈
10−25 m3 (which corresponds to ξ = 5 nm) gives a typical
value σc ≈ 1 − 2 × 107 Pa, which corresponds to the onset
of stress induced softening, obtained without any additional
adjustable parameter.

Though our model describes relaxation under stress in a
different way, it may be mapped on the Eyring model by
giving a physical interpretation to the activation volume. At
the yield stress σy , the dominant relaxation time [Eq. (4)]
becomes of order γ̇ −1, which relates the yield stress σy to the
parameters K , ξ and τα (T ): σy

2 = (2KT/ξ 3) ln[γ̇ τα (T )] =
σc

2 ln[γ̇ τα (T )]. Below Tg , as typically ln[γ̇ τα (T )] ≈ 10,
σy ≈ 5 × 107 Pa, which is the correct value of the yield
stress. On the other hand, in the Eyring model [Eq. (1)],
approximating sinh σv/T ≈ exp σv/T (as σv/T ∼ 10 close
to the yield stress) gives σy = (T/v) ln[γ̇ τα (T )]. Elim-
inating ln[γ̇ τα (T )] then gives v = σyξ

3/K ≈ 3σcξ
3/K ≈

3(2T/K )1/2ξ 3/2, which would correspond to the standard
Eyring’s activation volume calculated from our model. A
value v ≈ 1 − 2 nm3, typical for glassy polymer plasticity, is
obtained.

V. A COMPARISON WITH EXPERIMENTAL DATA

The effect of stress on the relaxation time distribution is
difficult to measure in the yield regime [11]. In Ref. [7], the
authors measured the molecular mobility in a poly(methyl
methacrylate) glass during tensile deformation following a
fixed stress (creep) protocol. The dominant relaxation time τc

is calculated by integrating the orientation correlation function
of a fluorescent probe up to infinity. This relaxation time is
equivalent to the mechanical relaxation time τα , as assumed
by the authors of Ref. [7] and discussed in Refs. [31,46].
This timescale is given by the corresponding WLF law of the
considered polymer [47]. Lee et al. used the Eyring model
for fitting the small deformation regime, which, as mentioned
above, is not the usual use of this model. They relate the
relaxation time τα to the stress through the expression for
the viscosity τα ∼ η = σ/γ̇ ∼ σ/ sinh (σv/T ), where the last
equality comes from Eq. (1). They find an Eyring’s activation
volume v varying from 2.7 nm3 at 375.7 K to 4.4 nm3 at
385.7 K. These data, together with the Eyring model fitting,
are plotted in Fig. 5 of Ref. [7]. Two problems are apparent.
First, in addition to the Eyring’s activation volume, an ad-hoc,
arbitrary prefactor of order 102–103 is needed to recover the
equilibrium τc value at zero stress due to the discrepancy
when extrapolating the Eyring’s equation adjusted in the yield
regime to small stress, as mentioned above. Second, upon
increasing the stress into the non linear (plastic flow) regime,
the fit tends towards a linear variation of the relaxation time
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FIG. 2. The data points are the experimental results by Lee et al.
[7]. Continuous curves through have been calculated by Eq. (4) with
the constant values ξ = 5 nm and a bulk modulus G′

0 = 2 × 109 Pa.
A prefactor μ is used in the argument of the exponential (μ = 1.0 at
375.7 K, 1.26 at 380.7 K, and 1.61 at 385.7 K).

with the stress, while experimental data follow a stronger,
nonlinear variation. The authors indeed acknowledged that
the fit is limited to the small stress regime. Actually, for the
lowest considered temperature, the fit is correct when τc has
decreased by less than a factor of 3 only, while it decreases
by two to three orders of magnitude over the whole measured
stress range.

Equation (4) was used to fit the microscopic dominant
relaxation time τα , as directly measured in Ref. [7]. Parameter
values G′

0 = 2 GPa and ξ = 5 nm were used. Note that the
bulk modulus G′

0 varies with temperature. The temperature
dependance of the bulk modulus for PMMA has been reported
and analyzed in Ref. [28]. It varies by about 20% over the 10 K
range investigated here [7]. To fit the data, the value of the
modulus was kept constant while instead a prefactor μ was
introduced in the argument of the exponential in Eq. (4). The
data are reproduced by using the values μ = 1.0 at 375.7 K,
1.26 at 380.7 K, and 1.61 at 385.7 K. If we take the variation of
the bulk modulus with temperature into account, we still need
a correction factor μ ≈ 1.3. These values are very close to 1
and the trend is in qualitative agreement with the temperature
variation of the modulus. This correction may be due to yet
unknown mechanisms which would appear as corrections to
the main picture presented here which capture the right order
of magnitude of the effects.

The measured variation of the relaxation time τα is per-
fectly reproduced over the entire stress range, without any
additional adjustable parameter other than ξ . The value ξ ≈ 5
nm is fully consistent with other estimates (Fig. 2). Different
values of ξ 3 would lead to strong discrepancies in the variation
of τα as compared to the data in Fig. 2. This validates further
our estimate of the size ξ 3 (or equivalently Nc) of dynamical
heterogeneities, which can thus be determined in a quite
precise way from experimental data.
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Other so-called free energy landscape approaches similar
to our approach have been proposed in the literature. Accord-
ing to Maloney and Lacks, the change of free energy barrier
should be given by an expression of the type (Fc − F )3/2,
where F is a quantity proportional to the applied stress [48].
The resulting change in free energy barrier was plotted in
Fig. 5 of Ref. [48] as a function of the stress. This function can
certainly not account for the experimental data by the Ediger
group in Ref. [7]. While measurement results give a concave
curve, i.e., with a positive second derivative, and zero slope
at the origin, the model by Maloney and Lacks predicted a
negative slope at origin and a positive second derivative. Fan
and Egami as well considered a free energy landscape model
[44,45]. They proposed that the change in free energy barrier
is quadratic for the β-relaxation, in a way similar to what we
propose for the α-relaxation. However, for the α-relaxation,
they assumed that the change is proportional to −σ 3/2 (which
is different from the model by Maloney and Lacks). It is not
possible either to reproduce the data by the Ediger group in a
satisfactory way with this variation, which does not provide a
better fit than the Eyring model used in Ref. [7]. In addition,
the model by Fan and Egami does not provide any physical
insight for the prefactor, which our model does.

VI. CONCLUSION

Finally, to describe relaxation mechanisms in glassy poly-
mers under strain, we proposed an alternative way to con-
sidering the coupling between the stress and the dynamics.
We propose that local free energy barriers for α-relaxation
are lowered as a consequence of the elastic energy stored on
the scale ξ of dynamical heterogeneities. When this process is
combined with facilitation and local ageing dynamics, the full
evolution of the relaxation time distribution can be computed
as a function of temperature, strain, and strain rate, or more
generally during a complex thermomechanical history, using

as the only adjustable parameter the scale ξ 3. In fact, due to
similar local relaxation (melting) mechanisms, the evolutions
of the dynamics upon stretching or upon heating a glassy
polymer are very similar [30,37].

The power of the model has been demonstrated by the fact
that a number of apparently distinct phenomena occurring
in glassy polymers are explained in a unified way, with
essentially only one adjustable parameter, namely the size ξ

of dynamical heterogeneities. In contrast with the Eyring’s
activation volume, the volume ξ 3 is estimated from physical
arguments. It is effectively at the core of dominant relaxation
mechanisms in glassy polymers [24,31]. The scale ξ plays a
double key role in the model, first, for calculating the decrease
of free-energy barriers and, second, for calculating the dy-
namical coupling between neighboring subunits. The present
paper shows that experiments on the dynamics under stress by
Ediger and coworkers [7] effectively provide a measurement
of the scale of dynamical heterogeneities, which is found to
be 5 nm in their experiments.

That a small applied stress results in an acceleration of the
dynamics is an experimental fact observed in all mechanical
experiments on the yield of glassy polymers. This effect was
quantitatively measured in the experiments by Ediger et al.
[7]. This is that very experimental fact that needed to be
explained. The explanation we give is that the α-relaxation
involves free energy changes which are small on the monomer
scale, but are associated to the coherent motion of a large
number Nc of monomers. Both the low yield stress values
observed in glassy polymers and the experimental results by
the Ediger group are indeed consistent with the fact that the α-
relaxation involves a large number of monomers. Typical yield
stress values correspond to a free energy change per monomer
of order 0.01T at yield, which corresponds to typically 10T

at yield on the scale relevant for the α-relaxation. On the
contrary, the β-relaxation in polymers, which is essentially
insensitive to the applied stress [49] involves motion on a very
small scale.
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