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First-principles-based strain and temperature-dependent ferroic phase diagram of SrMnO3
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Perovskite structure SrMnO3 is a rare example of a multiferroic material where strain tuning and/or cation
substitution could lead to coinciding magnetic and ferroelectric ordering temperatures, which would then
promise strong magnetoelectric coupling effects. Here, we establish the temperature- and strain-dependent
ferroic phase diagram of SrMnO3 using first-principles-based effective Hamiltonians. All parameters of these
Hamiltonians are calculated using density functional theory, i.e., no fitting to experimental data is required.
Temperature-dependent properties are then obtained from Monte Carlo and molecular dynamics simulations.
We observe a sequence of several magnetic transitions under increasing tensile strain, with a moderate variation
of the corresponding critical temperatures. In contrast, the ferroelectric Curie temperature increases strongly
after its onset around 2.5% strain, and indeed crosses the magnetic transition temperature just above 3% strain.
Our results indicate pronounced magnetoelectric coupling, manifested in dramatic changes of the magnetic
ordering temperatures and different magnetic ground states as function of the ferroelectric distortion. In
addition, coexisting ferroelectric and ferromagnetic order is obtained for strains above 4%. Our calculated
phase diagram suggests the possibility to control the magnetic properties of SrMnO3 through an applied electric
field, significantly altering the magnetic transition temperatures, or even inducing transitions between different
magnetic states.
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I. INTRODUCTION

Multiferroic materials, with coexisting magnetic and fer-
roelectric (FE) order, have attracted much attention over the
last decades, due to promises of important technological
applications, as well as fundamental scientific developments
[1,2]. In many cases, this coexistence is restricted to low
temperatures, or one of the two order parameters emerges only
as a byproduct of the other, i.e., as an improper or secondary
order parameter. Examples are so-called type-II multiferroics
[3], where the magnetic order breaks inversion symmetry, thus
allowing for a small electric polarization, typically induced
either through spin-orbit coupling or exchange-striction. Even
though in such cases an intimate coupling exists between the
primary and the secondary order parameters, the smallness of
the secondary order parameter makes potential applications of
these materials challenging.

On the other hand, in so-called type-I multiferroics [3],
both magnetic and ferroelectric order often coexist up to
room temperature or above. In this case, both magnetic and
ferroelectric order parameters are primary, and thus generally
not small. Since the two types of ferroic order typically arise
from different mechanisms, they are, in a first approxima-
tion, independent from each other. Nevertheless, the same
coupling mechanisms as in type-II multiferroics (e.g., spin
orbit coupling, exchange-striction), with the same character-
istic coupling strengths, are also at play in these systems.
Typically, this coupling strength is weak compared to the
energy scales governing the primary order parameters, and
thus, in most cases, no pronounced coupling effects can be
observed. However, close to the ferroic ordering temperatures,
the relevant response functions either diverge or attain large
values. In this case, even a moderate coupling can give rise

to drastic effects. In particular, if the two ferroic ordering
temperatures coincide, or are close to each other, a variety of
highly interesting and potentially useful coupling phenomena
are expected, such as temperature-mediated magnetoelectric
coupling [4] or multicaloric effects [5].

Generally, the ferroelectric and magnetic ordering tem-
peratures in type-I multiferroics do not coincide, due to the
different underlying mechanisms. Nevertheless, the consid-
erations outlined above suggest a promising route for de-
signing multiferroic materials with strongly coupled magnetic
and ferroelectric properties by tailoring their ferroic ordering
temperatures. A highly interesting material in that context is
SrMnO3.

Using first-principles calculations, Lee and Rabe [6] pre-
dicted that this otherwise paraelectric (PE) and G-type antifer-
romagnetic (AFM) material becomes FE under biaxial tensile
strain, which also leads to a series of magnetic transitions. In
particular, a ferromagnetic (FM) phase has been predicted to
occur under high tensile strain, thus also presenting the highly
appealing possibility to obtain the rare combination of both
FM and FE order. The appearance of strain-induced polar
order in SrMnO3 has been corroborated by recent experiments
[7–10], with very recent work achieving high-quality films
with strain as large as 3.8% [10]. Furthermore, several exper-
iments also indicated the appearance of FM order in strained
SrMnO3 [11,12], although the increased formation of oxygen
vacancies under tensile strain [13] is believed to play a crucial
role here.

It has also been suggested from first-principles cal-
culations, that the closely related hypothetical compound
BaMnO3, isoelectronic to SrMnO3 but with larger vol-
ume, would be ferroelectric [14]. This has stimulated both
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experimental [9,15] and computational [16] work showing
that a multiferroic phase can also be obtained through Ba
substitution in SrMnO3. Thus, the combination of strain engi-
neering and Ba substitution allows for a very rich ferroic phase
diagram to be explored. Since the FE critical temperature is
usually highly sensitive to epitaxial strain (see, e.g., Ref. [17]),
while the magnetic ordering temperature is expected to be
less sensitive, this allows for potentially coinciding magnetic
and FE ordering temperatures, resulting in pronounced mag-
netoelectric coupling phenomena. Enhanced magnetoelectric
coupling is also expected due to the fact that both magnetic
and FE order are related to the same B-site Mn cation, which
also manifests in strong spin-phonon coupling [15,18,19].

As described above, first-principles-based calculations
have been crucial in identifying SrMnO3 as a promising mul-
tiferroic material. Thereby, previous computational work has
been mostly limited to zero temperature [6,13,16]. However,
an understanding of the complete phase diagram, and of the
strong coupling phenomena expected in the regime where
magnetic and FE critical temperatures coincide, requires ac-
cess to finite temperatures. In the present work, we therefore
combine first-principles calculations using density functional
theory (DFT) with Monte Carlo (MC) and molecular dy-
namics (MD) simulations, and explore the temperature- and
strain-dependent ferroic phase diagram of SrMnO3, including
both magnetic and ferroelectric degrees of freedom.

We start from zero-temperature DFT calculations pre-
sented in Sec. III. We then construct a Heisenberg Hamil-
tonian with exchange parameters extracted from DFT, and
perform MC simulations to assess finite-temperature mag-
netism in Sec. IV. The calculated strain-dependent Heisen-
berg exchange interactions also shed new light on the strain-
induced sequence of magnetic transitions, while the effect of
FE structural distortions on the exchange interactions provide
a first step towards a unified description of the coupling
between magnetism and ferroelectricity in this system. MD
simulations based on an effective Hamiltonian describing the
polar soft-mode displacements [20–22], which is also con-
structed from DFT calculations, are then used to study the FE
finite-temperature properties in Sec. V. Finally, a discussion
of the complete ferroic strain-temperature phase diagram is
presented in Sec. VI, and conclusions are summarized in
Sec. VII.

II. COMPUTATIONAL METHODS

DFT calculations are performed with the Vienna ab ini-
tio simulation package (VASP) [23–25] and projector aug-
mented wave (PAW) pseudopotentials [26,27]. The exchange-
correlation functional is described with the PBEsol version
of the generalized gradient approximation [28] (GGA) and
an additional Coloumb repulsion [29] of Ueff = 3 eV on the
Mn d electrons, as has been motivated in previous studies
of SrMnO3 [7,13]. A recent study concluded that the version
of GGA employed here provides better agreement with avail-
able experimental data than other commonly used exchange-
correlation functionals [30]. The plane-wave energy cutoff is
set to 680 eV. A grid of at least 7 × 7 × 7 k points for the
basic perovskite unit cell, or correspondingly for supercell
calculations, is used with a Gaussian smearing method for

the Brillouin zone integration. Born effective charges and
dielectric constants were evaluated using density functional
perturbation theory [31].

Using the Heisenberg exchange interactions evaluated ac-
cording to the procedure described in Sec. IV A, classical
Metropolis [32] MC simulations are performed using the Up-
psala Atomistic Spin Dynamics code [33], for 20 × 20 × 20
unit cells (8000 magnetic Mn atoms) and periodic bound-
ary conditions, taking into account first- and second-nearest-
neighbor exchange interactions. A cooling process is simu-
lated with 5 K increments, 20 000 MC sweeps for thermalisa-
tion, and 150 000 measurement sweeps at each temperature.
A calculation for a 30 × 30 × 30 system is performed to
confirm that finite-size effects are negligible. Neither the type
of ordering nor the critical temperature, within the accuracy
of a few Kelvins considered here, is affected by the increase
in system size.

To go beyond the zero-temperature DFT results and access
also finite-temperature FE properties and phase transitions,
an effective Hamiltonian approach [20–22], describing low-
energy structural distortions in terms of strain and soft-mode
variables, is used. This Hamiltonian is studied using an MD
solver implemented in the FERAM code [34]. The parameters
required as input for the effective Hamiltonian are obtained
with DFT total energy calculations or density functional per-
turbation theory, largely following the scheme described in
Ref. [35], and discussed further in Sec V. The MD simulations
are performed on a 32 × 32 × 32 supercell. This is done in
the canonical ensemble, using a Nosé-Poincaré thermostat
[36]. A time step of 2 ps is used and 50 000 time steps are
performed in the thermalization phase and 200 000 in the
measurement phase. Strained bulk is simulated by fixing the
in-plane homogenous strain variables as has been done in
previous studies of strain effects on ferroelectricity [17,37].
This allows one to study the effect of, e.g., a film clamped to a
substrate, while focusing on bulk effects rather than finite-size
surface effects. Most results are presented for calculations
where the system is initialized in a homogenously polarized
FE phase at low temperature and then gradually heated,
although calculations are also been performed for a cooling
procedure starting from a random configuration above the
critical temperature.

III. ZERO-TEMPERATURE STRAIN-DEPENDENT
CALCULATIONS

Our DFT calculations for SrMnO3 as a cubic perovskite
G-type antiferromagnet result in a lattice parameter of a0 =
3.79 Å, which agrees with the experimental value of 3.805 Å
[38]. Neutron diffraction experiments have indicated that
SrMnO3 is G-type AFM with a Mn magnetic moment of
2.6 ± 0.2μB at liquid nitrogen temperature, in accord with
our calculated value of 2.8μB. Previous computational studies
[6,7,13] have also indicated small tilts of the oxygen octa-
hedra, which will be neglected here, as has been motivated
before [7] and is, furthermore, consistent with experimental
studies that report a cubic structure.

Following Ref. [6], we first address the emergence of
ferroelectricity under tensile epitaxial strain at zero temper-
ature within our computational setup. Biaxial tensile strain
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FIG. 1. Energy as a function of strain for different magnetic
orders, initialized with (dashed lines) or without (solid lines) polar
structural distortions. The red dashed curve with diamond shapes
shows the energy of the G-type AFM structure relaxed from the
initialized polar structure. The energies are presented relative to that
of a centrosymmetric G-type AFM structure, corresponding to zero
energy, at each strain.

(η = a/a0 − 1) is considered, where the strain indicates the
increase in the fixed in-plane lattice parameter relative to a0,
while the out-of-plane lattice parameter c is allowed to relax.
Figure 1 shows the total energy as function of strain, com-
puted with DFT, for different magnetic ordering (A-, C-, and
G-type AFM [39], as well as FM). For each magnetic order,
we consider two cases: one (indicated by solid lines in Fig. 1)
where we constrain the structure to remain centrosymmetric
(with space group P 4/mmm), and one (dashed lines in Fig. 1)
where we initialize small polar displacements along the (110)
direction (space group Amm2). If the solid and dashed lines
coincide, this indicates that the polar structure has relaxed
back to the centrosymmetric one, and that FE order is not
favored with the given magnetic structure and strain. The
energies are given relative to that of the centrosymmetric
structure with G-type AFM at each strain.

In the cubic structure, A-type and C-type AFM cor-
respond to q vectors (1, 0, 0)π

a
[equivalent to (0, 1, 0)π

a

and (0, 0, 1)π
a

] and (0, 1, 1)π
a

[equivalent to (1, 0, 1)π
a

and
(1, 1, 0)π

a
], respectively. However, in the strained structure,

(1, 0, 0)π
a

, is no longer equivalent to (0, 0, 1)π
c

, and similarly
for C-type, resulting in two inequivalent A-type and C-type
magnetic orders. Each of these are included in Fig. 1, with the
types of ordering labeled by the corresponding q vectors. Note
also that this symmetry breaking of the magnetic order results
in a slightly different value for the c-lattice parameter for
the different A-type orderings [3.79 Å and 3.82 for q vectors
(0, 0, 1)π

c
and (1, 0, 0)π

a
, respectively], and thus also slightly

different total energies at zero strain in Fig. 1 (we remind that
the in-plane lattice parameters are kept fixed at a strain relative
to the relaxed cubic lattice parameter with G-type AFM, while
the out-of-plane lattice parameter is allowed to relax).

In the interval 0–2 % strain, the centrosymmetric structure
with G-type AFM is lowest in energy, while from 2.5%
strain and up, the noncentrosymmetric structures become
lower in energy. Furthermore, C-type AFM, corresponding
to q = (1, 0, a/c)π

a
, becomes lowest in energy in the range

3.5–4 % strain. Here it should be mentioned that all relaxed
polar structures show atomic displacements along the (110)
direction, except in the case of C-type AFM order with q =
(1, 0, a/c)π

a
, for which they are along the (100) direction,

even though these calculations were initialized with small
symmetry-breaking displacements along (110). This can be
understood in terms of the symmetry breaking between the
(100) and (010)-directions by this specific type of magnetic
order, and it is essentially a manifestation of the magnetically
induced phonon anisotropy, which has been discussed in this
material by others [18]. The result that the atomic displace-
ments occur in a direction along which the Mn-atoms are an-
tiferromagnetically coupled, rather than that along which Mn
atoms are ferromagnetically coupled, is consistent with the
previous studies of magnetically induced phonon anisotropy
in SrMnO3 [18]. For large strain, in the range 4.5–5 %, FM
ordering becomes lowest in energy. It is interesting to note that
the FM state is only favored at large strain if the structure is
allowed to turn FE, whereas in the centrosymmetric structure
FM ordering remains high in energy for all strains considered.
This fact will be discussed further in terms of the Heisenberg
exchange interactions in the next section.

The results in Fig. 1 can be compared to the results
presented in Ref. [6], which, however, were obtained using a
different GGA functional (Ref. [6] uses the PBE [40] version
instead of PBEsol [28] used here). The main trend of going
from G-PE, to G-FE, and then via C-FE to FM-FE is very
similar. However, according to the calculations in Ref. [6],
FE order emerges at a lower strain of about 1%, and a FE
A-type AFM phase appears in a narrow strain range between
the C-FE and FM-FE regions. These differences can mostly be
ascribed to the larger equilibrium volume obtained using PBE,
effectively renormalizing the corresponding strain values. In
addition, a somewhat different Ueff = 1.7 eV (Ueff = U − J

with U = 2.7 eV and J = 1.0 eV) used in Ref. [6], compared
to the Ueff = 3.0 eV used here, can also lead to some differ-
ences. We note that a recent comparative study discussed the
choice of functional and its effect on the calculated properties
of Sr1−xBaxMnO3 and found that PBEsol yielded results in
better agreement with experiments than PBE [30].

IV. MAGNETISM

In order to assess temperature-dependent magnetic prop-
erties, we now discuss the magnetic ordering in terms of
exchange interactions and the Heisenberg Hamiltonian. First,
the evaluation of the Heisenberg exchange interactions from
DFT is discussed in Sec. IV A. Then, the results of MC
simulations, using these exchange interaction parameters as
input, are discussed in Sec. IV B.

A. Calculation of Heisenberg exchange parameters Ji j

For studying finite-temperature magnetism, including the
strain-induced transitions between different magnetic orders,
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the magnetic energy is mapped on a classical Heisenberg
Hamiltonian,

H = −
∑

i<j

Jij m̂i · m̂j , (1)

with exchange interactions Jij and unit vectors m̂i describing
the directions of the magnetic moments. Note that Eq. (1)
uses a sign convention such that positive Jij favors positive
spin alignment (ferromagnetism). The Heisenberg exchange
parameters are obtained from DFT calculations of the total
energy for different collinear spin configurations, according
to

Jij = E↑↑ + E↓↓ − E↑↓ − E↓↑
4n

, (2)

with the arrows indicating the directions (up or down) of a
given pair of magnetic moments (i and j ) in the corresponding
spin configuration, and n is equal to the number of equivalent
bonds between atoms i and j that appear due to the finite size
of the used supercell [41,42]. Calculations are performed for
a 2 × 2 × 2 supercell, allowing up to third-nearest-neighbor
interactions to be taken into account.

When computing the magnetic exchange interactions ac-
cording to Eq. (2), a magnetic reference state for the spins
other than the considered pair must be chosen. For an ideal
Heisenberg system, the exchange interactions are indepen-
dent of the chosen reference state, while in real materials
some differences are expected [42]. All exchange interactions
presented in this paper are computed with respect to a G-
type AFM reference state. For comparison, calculations of
the exchange interactions as functions of strain were also
performed for A- and C-type AFM and FM reference states
(in each case using identical lattice parameters). While this
leads to small shifts in the exchange interactions as functions
of strain, reflecting that SrMnO3 is not an ideal Heisenberg
system, the qualitative trends remain unchanged [43].

In the cubic structure the calculated first-, second-,
and third-nearest-neighbor exchange interactions are J1 =
−13.10 meV, J2 = −0.90 meV, and J3 = 0.22 meV. This
can be compared to previously reported calculated values
of J1 = −13.95 meV, J2 = −0.72 meV, and J3 = 0.01 meV
[18] (note that in Ref. [18] a different definition of the
Heisenberg Hamiltonian was used and therefore different
values are given there). The agreement between these values
and the ones reported here is rather good, and the small
disagreement can be attributed to different values for Ueff, dif-
ferent exchange-correlation functionals, and slightly different
computational schemes to evaluate the exchange interactions.

Figure 2(a) shows the calculated Heisenberg exchange
interactions for first (J1) and second (J2) nearest neighbors as
functions of strain. Third-nearest-neighbor interactions were
also computed, but are several times smaller than the second-
nearest-neighbor interactions, and, furthermore, they are rela-
tively insensitive to strain. Hence, they will be neglected in the
following. In the cubic structure there is only one first- and one
second-nearest-neighbor interaction, with sixfold and twelve-
fold coordination, respectively. In the strained structure, these
differ depending on whether they are in-plane (ip) or out-
of-plane (op). The solid lines indicate exchange interactions
computed for the tetragonal centrosymmetric structure lowest

FIG. 2. In-plane (ip) and out-of-plane (op) exchange interactions
as functions of (a) strain and (b) ferroelectric displacement u. The
latter is calculated at 5% strain and for lattice parameters fixed
to the corresponding centrosymmetric structure. In (a) solid lines
denote the exchange interactions calculated for the lowest-energy
centrosymmetric structure at a given strain, while the dashed lines
are computed for the lowest-energy polar structures, where these
are lower in energy than the nonpolar ones. In (b), the mean-field
estimate of the critical temperature is also shown for the given
exchange interactions.

in energy at each strain, i.e., using the structural parameters
corresponding to the lowest solid line in Fig. 1 at each strain
(but keeping the magnetic reference state as G-type AFM).
The dashed lines show the exchange interactions computed
for the lowest-energy FE structures at each strain. The rea-
son for the splitting of the FE J

ip
1 at 4% strain is that the

polarization along the (100) direction (which occurs due to the
C-type magnetic ordering) causes inequivalent bonds parallel
or perpendicular to this direction. In this case, the positive J

ip
1

corresponds to the (010) direction, for which there is a change
in the relevant Mn-O-Mn bond angle, while the negative J

ip
1

corresponds to the (100) direction, for which the bond angle
remains 180◦. A similar albeit smaller splitting occurs also for
J

ip
2 at 3% and 5% strain.
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The first-nearest-neighbor exchange interactions are domi-
nant at most strains, and one can understand the changes in
magnetic ordering with strain mainly in terms of these. In
the cubic structure, J

ip
1 = J

op
1 are strongly negative, resulting

in G-type AFM, with all nearest-neighbor spins aligned an-
tiparallel to each other. Considering first the centrosymmetric
structures, there is a nearly linear decrease (increase in magni-
tude) in J

op
1 . This increase in the strength of the out-of-plane

interaction can be expected, as the out-of-plane bond distance
shrinks under tensile strain. J

ip
1 , on the other hand, decreases

in magnitude and eventually changes sign. At large strain one
thus expects the Mn spins in the centrosymmetric structures to
be aligned parallel along the in-plane direction and antiparal-
lel along the out-of-plane direction, corresponding to A-type
AFM, in agreement with the solid lines in Fig. 1. The region
around 3% strain, where C-type AFM order emerges in Fig. 1
[with q = (1, 0, a/c)π

a
], corresponds to the region where J

ip
1

changes sign and thus has a magnitude comparable to, or even
smaller than, the AFM second-nearest-neighbor coupling,
J

ip
2 < 0. This is indeed consistent with the q = (1, 0, a/c)π

a

C-type order with antiparallel alignment of all out-of-plane
nearest and in-plane second-nearest-neighbor spins.

SrMnO3 is an insulating transition-metal oxide. As such,
the magnetic coupling is expected to be mediated by a
superexchange mechanism [44], with antiferromagnetic ex-
change for 180◦ Mn-O-Mn bond angles. It is thus surprising
to see the change in sign of J

ip
1 with strain in Fig. 2, as the

bond angle remains 180◦. However, the idea of superexchange
is based on an idealized model that is not expected to hold
perfectly for real materials. Furthermore, it should be noted
that the magnetic interactions here also show some degree of
non-Heisenberg behavior (see Supplemental Material [43]).
Recent work has also suggested that the Heisenberg or non-
Heisenberg behavior of exchange interactions can be heavily
influenced by symmetries of the orbitals involved [45]. Addi-
tionally, previous studies [45,46] have discussed how different
competing exchange mechanisms can have different distance
dependencies, which can potentially lead to a sign change
such as that seen in J

ip
1 in Fig. 2. Future investigation into

the precise mechanism of the sign change in J
ip
1 is therefore

of great interest.
As can be seen from the dashed lines in Fig. 2(a), the

FE structural distortion alters the exchange interactions in
addition to the strain. In particular, at 5% strain there is a
drastic change in J

op
1 , including a change in sign. Thus, taking

into account the FE distortion results in both of the dominating
nearest-neighbor interactions to be positive, favoring FM over
AFM order. In the FE structure, the atoms are shifted from
their high symmetry positions, but also the out-of-plane lattice
parameter changes slightly. Figure 2(b) shows how J1 varies
as the atomic positions are gradually changed from their
high symmetry positions (u = 0) to the equilibrium FE po-
sitions (characterized by a displacement amplitude u, defined
such that u = 0 corresponds to the centrosymmetric structure
and u = ueq corresponds to the relaxed noncentrosymmetric
structure), while keeping the lattice parameters fixed to the
equilibrium values for the FE structure with 5% strain (c =
3.70 Å). At u = 0, the J1 are very similar to those seen for
the centrosymmetric structure at 5% strain in Fig. 2(a). This

implies that the effect of the change in lattice parameter is
very small, as might be expected since the out-of-plane lattice
parameter c changes less than 0.01 Å. Instead, it appears
that the change in the Mn-O-Mn bond angle causes the
considerable change in J

op
1 . As u varies from zero to ueq, this

bond angle changes by 16◦, from 180◦ to 164◦. Considering a
superexchange mechanism, one would expect that going from
a 180◦ towards a 90◦ bond angle favors ferromagnetism over
antiferromagnetism. However, although the change in J

op
1

follows the expected trend for a superexchange mechanism,
considering the relatively small variation in bond angle, the
change in the exchange interaction is surprisingly drastic here.
Again, it appears that further investigations into the details
of the exchange mechanisms for this material are of great
interest.

Figure 2(b) also shows the mean-field estimate [44,47,48]
of the critical temperature calculated from the first-nearest-
neighbor interactions as function of u. The critical tempera-
ture initially decreases with u, since the magnitude of both
J

ip
1 and J

op
1 decrease in magnitude. It then reaches a minimum

near where J
ip
1 changes sign, after which it increases slightly

again. Nevertheless, both J1 are decreased in magnitude at
u = ueq compared to u = 0, resulting, in total, in a decrease
in the critical temperature. The transition from A-AFM to FM
order occurs in the range 0.6 � u/ueq � 0.8 according to the
mean-field model with first-nearest-neighbor interactions, i.e.,
in the range where J

ip
1 changes sign.

B. Monte Carlo simulations of the Heisenberg Hamiltonian

Figures 3(a)–3(f) contain results of MC simulations for the
Heisenberg Hamiltonian, Eq. (1), using the first- and second-
nearest-neighbor exchange interactions computed from the
centrosymmetric tetragonal structures (solid lines in Fig. 2)
at different strains. Order parameters for different magnetic
orders are plotted as function of temperature. Thereby, the
(collinear) magnetic order parameter Mq, corresponding to
reciprocal space vector q, is defined as:

Mq = 1

N

∑

i

eiq·Ri mi, (3)

where Ri is the position of the ith magnetic moment out of N ,
and mi is its projection on the spin quantization axis. Typically
eiq·Ri = ±1 for q on the Brillouin zone boundary.

According to the results in Fig. 3, centrosymmetric tetrag-
onal SrMnO3 is a G-type AFM from 0 to 2% strain, C-type
AFM at 3% strain and A-type AFM at larger strain. This
sequence of transitions agrees with the zero-temperature DFT
results presented as solid lines in Fig. 1. However, the critical
strain for the transition from C- to A-type AFM differs, as
C-type AFM is lowest in energy at 4–4.5 % strain according
to Fig. 1 while A-type AFM is favored already at 4% strain in
Fig. 3(e). This is likely due to some degree of non-Heisenberg
behavior in the system. The MC simulations also confirm that
no other magnetic structures, more complicated than the FM
and AFM structures discussed so far, appear in any of the
cases considered. This is also consistent with the adiabatic
magnon spectra having minima only at the Brillouin zone
boundary (see Supplemental Material [43]). In the cubic case
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FIG. 3. Different magnetic order parameters as functions of tem-
perature for tensile strains of 0, 1%, 2%, 3%, 4%, and 5% in
(a)–(f), respectively. The critical temperatures, determined from the
corresponding peak in the specific heat, are indicated in the plots.
Note that each order parameter is included in every subfigure, but in
each case only one is nonzero and clearly visible.

it is known that a Heisenberg Hamiltonian with second-
nearest-neighbor interactions does not show any noncollinear
magnetic phases [49].

The critical temperatures, determined from peaks in the
specific heat, are indicated in the plots and also plotted sepa-
rately as function of strain in Fig. 4(b). The Néel temperature
of 175 K for the unstrained structure can be compared to
experimental values ranging from 227 K [50] to 233 K [38],
indicating that the magnitude of the exchange interactions are
somewhat underestimated in our calculations (even though
further neighbor interactions or effects beyond the Heisen-
berg Hamiltonian can also contribute to these deviations).
Calculations of the exchange interactions as functions of
U (see Supplemental Material [43]) reveal that the nearest-
neighbor interaction decreases in magnitude with increasing
U . Thus, a somewhat smaller U would result in a TN in better
agreement with experimental data and in the Supplemental
Material it is estimated that U = 1.5 eV would yield a TN in
agreement with experiment. However, to ensure comparability
with previous studies [7,13], we did not adjust the U value
accordingly.

Figure 4(a), shows similar data as in Fig. 3 but using the ex-
change interactions of the noncentrosymmetric FE structures,
i.e., corresponding to the dashed lines in Fig. 2(a), for 3%,
4%, and 5% strain. The data indicates a transition from G-
to C-type AFM, and then to FM order, again in agreement
with the results from Fig. 1. The critical temperatures are
indicated and also plotted (dashed line, crosses), together with

FIG. 4. (a) Magnetic order parameters as functions of temper-
ature for tensile strains of 3%, 4%, and 5% with the exchange
interactions evaluated in the relaxed FE structures at each strain. The
critical temperatures, determined from the peaks in the specific heat,
are also indicated in the plots. (b) Magnetic critical temperatures as
function of strain, obtained from MC simulations using exchange
interactions from the centrosymmetric (solid lines and circles) and
FE structures (dashed lines and crosses). Additionally, the mean-field
theory (MFT) results for the critical temperatures are shown in blue,
with solid lines with triangles and dashed lines with squares for
the centrosymmetric and FE structures, respectively. Experimental
data from Maurel et al. [50] and Nakao et al. [51] are shown for
comparison.

the data from Fig. 3 (solid line, circles) in Fig. 4(b). In the
range from 0–2 % strain the system exhibits G-AFM order
and the critical temperature decreases with strain. Keeping
the centrosymmetric structure, the ordering temperature then
increases again with strain, while the system makes the tran-
sition to C-AFM and then A-AFM order. On the other hand,
considering the noncentrosymmetric FE structure, the critical
temperature is enhanced, compared to the centrosymmetric
case, at 3% strain, and the G-AFM order is reinstated. Further
increasing the strain decreases the critical temperature while
the system switches to C-AFM and then FM order. This
exemplifies the strong influence of the FE displacements on
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the magnetic properties of SrMnO3. Not only does the FE
order change the magnetic ground state, it also strongly affects
the critical temperatures and thus the temperature dependence
of the corresponding magnetic order parameters.

For comparison, mean-field theory estimates of the critical
temperatures are also included in Fig. 4 (blue triangles and
squares for the centrosymmetric and FE structures, respec-
tively). One can see that the mean-field estimates follow
exactly the same trend as the corresponding MC data, but,
as expected, overestimate the MC data. Furthermore, exper-
imental data [50,51] obtained for strained SrMnO3 films is
also included. As already discussed, the MC results under-
estimate the experimental critical temperatures. Nevertheless,
the qualitative trend, with critical temperatures that initially
decrease, and then increase with strain, agrees very well with
the available experimental data. Coincidentally, the mean-
field estimates agree very well with the experimental values
and allow for a nice comparison of the strain dependence.

V. FERROELECTRICITY

So far, we have fixed the polar FE distortion either to zero
or to its relaxed zero-temperature value, and studied the result-
ing differences in the temperature-dependent magnetic prop-
erties. In order to move towards a more comprehensive picture
where FE and magnetic degrees of freedom are treated on
equal footing, we now address the temperature dependence of
the (strain-dependent) FE order (while keeping the magnetic
order fixed). To this end, we employ an effective Hamiltonian
approach [20–22], which incorporates only the most impor-
tant low-energy structural distortions of the system, relative
to an ideal, unstrained and centrosymmetric, cubic perovskite
structure. Thereby, the energy landscape is expressed in terms
of global and local strain variables (long wavelength acoustic
phonons) as well as local soft-mode amplitudes (related to the
polar phonon instability), while other structural distortions are
not explicitly taken into account.

The required parameters for this effective Hamiltonian
include parameters describing the soft-mode self-energy (the
energy landscape for an isolated polar displacement), short-
range interaction parameters between the soft-mode displace-
ments in neighboring unit cells, the electronic part of the
static dielectric constant and Born effective charges (which
determine the long range dipole-dipole interactions), coupling
parameters between the soft mode and strain, as well as the
elastic constants. A proper definition of these parameters also
requires specification of the corresponding local soft-mode
displacement vector. For a given material, all these parameters
can be obtained from DFT calculations, as has been described
in detail before [20,22,35]. Thus, the effective Hamiltonian
approach enables a first-principles-based quantitative descrip-
tion of temperature-dependent FE properties that does not
involve any empirical parameters.

The parametrization employed here for SrMnO3 roughly
follows previously used schemes [20,22,35] (note that the
methods used to obtain the parameters differ somewhat
in Refs. [20,22,35]). The biggest difference to previous
parametrization schemes stems from the fact that SrMnO3

is not FE unless epitaxial strain is applied. In addition, we
apply the effective Hamiltonian over a rather wide range of

strain values. In the following, we first discuss the neces-
sary modifications to the parametrization scheme (Sec. V A),
before the effective Hamiltonian, with the computed pa-
rameters, is used to study the FE properties of SrMnO3

(Sec. V B). More details about how the various parameters
are obtained using DFT calculations are contained in the
Supplemental Material [43].

A. Determination of parameters

Usually, the local soft-mode displacement vector can be
determined, e.g., from the atomic displacements in the re-
laxed FE structure, or by identifying the dynamically unstable
�-point phonon mode in the cubic structure. However, in
the case of SrMnO3 there is no structural instability in the
unstrained cubic structure. We therefore consider the unstable
phonon mode that develops under 3% tensile strain. We find
that this mode cannot directly be related to a particular phonon
eigenmode of the cubic structure. Furthermore, due to the
symmetry reduction in the strained tetragonal structure, the
unstable phonon mode is a superposition of all five (threefold
degenerate) phonon modes of the cubic structure, not only
of the four polar modes with �15 symmetry [52]. In order
to obtain a mode with the proper symmetry with respect to
the cubic reference structure, we therefore project out the
contribution corresponding to the nonpolar cubic �25 mode.
This is discussed in more detail in the Supplemental Material
[43]. The resulting soft-mode displacements, ξSr, ξMn, ξO|| ,
and ξO⊥ are listed in Table I, with O|| and O⊥, respectively,
denoting O atoms located parallel or perpendicular to the
displacement direction, relative to the Mn atoms.

With a choice for the FE soft mode, the remainder of the
parametrization can, in principle, be obtained according to the
established schemes [20,22,35]. All parameters calculated in
this work were determined by considering deviations around
the unstrained cubic structure with G-type AFM order. Further
details can be found in the Supplemental Material [43]. The
resulting parameters are listed in Table I, with a comparison
to corresponding parameters for the prototypical FE BaTiO3

[35]. The parameters include the cubic elastic constants
B11, B12, and B44, the strain/soft-mode coupling parameters
B1xx, B1yy, and B4yz, fourth- and higher-order self-energy
parameters α, γ , and ki , the mode effective mass m∗, Born
effective charges Z∗ for each atom and the corresponding
mode effective charge, the dielectric constant ε∞, and the
short-range mode interaction parameters jk , together with the
second order self energy parameter κ2. Here, j5 and j7 are set
to zero, as has been motivated before [22] (they are expected
to be small and require larger supercell calculations to be
determined).

Most parameters are of comparable size and have the
same sign as those for BaTiO3. One notable exception is
the short-range coupling constant j2 and some of the higher-
order self-energy parameters ki . It can also be noted that the
strain-mode coupling parameters are somewhat stronger in
SrMnO3, as is favorable for the strain-induced ferroelectricity.
In agreement with previous work on CaMnO3 and SrMnO3

[14,53,54], the Born effective charge of the Mn cation, as
well as O||, are highly anomalous, in the sense that they are
significantly larger then the corresponding formal charges.
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TABLE I. All parameters of the effective Hamiltonian for
SrMnO3. For comparison, an analogous parametrization for BaTiO3

[35] is also given.

Parameter SrMnO3 BaTiO3 [35]

ξA 0.039 0.166
ξB 0.390 0.770
ξO|| − 0.666 − 0.55
ξO⊥ − 0.449 − 0.20
a0 (Å) 3.79 3.99
B11 (eV) 114.485 126.73
B12 (eV) 35.436 41.76
B44 (eV) 42.519 49.24

B1xx (eV/Å
2
) − 214.736 − 185.35

B1yy (eV/Å
2
) − 10.540 − 3.2809

B4yz (eV/Å
2
) − 10.000 − 14.550

α (eV/Å
4
) 103.640 78.99

γ (eV/Å
4
) − 224.286 − 115.48

k1 (eV/Å
6
) − 928.579 − 267.98

k2 (eV/Å
6
) 1506.586 − 197.50

k3 (eV/Å
6
) 7712.958 − 830.20

k4 (eV/Å
8
) 4480.123 641.97

m∗ 22.042 38.24
Z∗

A (e) 2.576 2.741
Z∗

B (e) 7.673 7.492
Z∗

O⊥ (e) − 1.717 − 2.150
Z∗

O|| (e) − 6.813 − 5.933
Z∗ (e) 9.17 10.33
ε∞ 10.68 6.87

κ2 (eV/Å
2
) 3.981 8.534

j1 (eV/Å
2
) − 1.296 − 2.084

j2 (eV/Å
2
) 4.347 − 1.129

j3 (eV/Å
2
) 0.272 0.689

j4 (eV/Å
2
) − 0.226 − 0.611

j5 (eV/Å
2
) – –

j6 (eV/Å
2
) 0.100 0.277

j7 (eV/Å
2
) – –

Accordingly, the soft-mode displacement vector indicates a
strong off-centering of the Mn cation with respect to the
surrounding oxygen ligands, consistent with a B-site-driven
FE distortion.

Using the parameters as listed in Table I, results in an or-
dering of local dipoles emerging at around 3% strain, consis-
tent with the DFT calculations. However, the emerging order
is antiferroelectric rather than FE, in disagreement with ex-
pectations. Subsequent DFT supercell calculations confirmed
that the expected FE arrangement of dipoles is indeed lower
in energy than a potential antiferroelectric configuration at the
given strain of 3%, indicating a problem with the parametriza-
tion, which, at low temperatures, should reproduce the DFT
results.

Within the effective Hamiltonian, the orientation of the
dipoles relative to each other is determined by the short-range
couplings and the long-range dipole-dipole interaction. To get
further insight, we therefore calculate the dielectric tensor and

FIG. 5. (a) Dielectric tensor components and (b) short-range
interactions, jk , together with the quadratic self-energy parameter,
κ2, as functions of strain. The inset in (b) illustrates the different
nearest-neighbor dipole couplings j1 and j2, respectively.

the Born effective charges, which together determine the long-
range dipole-dipole interactions (proportional to Z∗2/ε∞), as
functions of strain. Note that in the cubic structure, the dielec-
tric tensor has only one component, while under strain there
is an in-plane component εxx = εyy , differing from the out-of-
plane component εzz. We also calculate the strain dependence
of the short-range interactions, jk , and of the second-order
self-energy parameter κ2, which are all evaluated from the
same system of equations [see Eq. (15) in Ref. [35] or the
Supplemental Material [43]). The results are shown in Fig. 5
(the Born effective charges were found to be insensitive to
strain and are therefore not shown).

It can be seen that, while εzz is quite insensitive to strain,
the in-plane dielectric constant εxx varies by nearly 50% in
the strain regime considered. Since, under tensile strain, the
dipoles are expected to form in the x-y plane, the strain-
dependent value of εxx is used as dielectric constant within
the effective Hamiltonian and is also used to obtain the strain-
dependent jk and κ2. In addition, the short-range interaction
parameter j2, which favors antiparallel head-to-head arrange-
ments of nearest-neighbor dipoles when large and positive,
strongly decreases in magnitude with strain. Furthermore, also
κ2 shows a pronounced variation with strain.

104409-8



FIRST-PRINCIPLES-BASED STRAIN AND … PHYSICAL REVIEW MATERIALS 2, 104409 (2018)

FIG. 6. Equilibrium FE soft mode amplitude, ueq, and out-of-
plane strain component, η3, obtained from the effective Hamiltonian
and from DFT structural relaxations.

In the pioneering work by Zhong, Vanderbilt, and Rabe
[20,22], a coupling between strain- and soft-mode variables
was only considered locally, i.e., corresponding to a modifi-
cation of the quadratic part of the soft-mode self-energy that
is linear in the strain variables, whereas the quadratic intersite
couplings remain strain independent. Our calculations clearly
show that in the present case this is not a good approximation.
We note that the local soft-mode-strain coupling that is al-
ready explicitly included in the effective Hamiltonian (result-
ing in an effective linear strain dependence of κ2 described
by the parameters B1xx, B1yy , and B4yz), has already been
subtracted from the energies used to determine the parameters
in Fig. 5(b). Thus, in principle κ2 should not exhibit any strain
dependence except for potential higher-order contributions
(at least quadratic in the strain). The apparently linear strain
dependence of κ2 in Fig. 5(b) is due to the fact that we
do not consider any strain dependence of the long-range
dipole-dipole interaction (except for the strain dependence of
the dielectric constant), leading to an effective rescaling of
the strain dependence of the other coefficients. A complete
strain-dependent description of dipole-dipole interactions is
computationally challenging. However, as a simple way to
consider the dependence of the intersite couplings on the
global strain, the short-range interaction parameters, including
κ2, are treated as strain-dependent input parameters within our
calculations. This is easily possible, since we always perform
calculations at fixed global in-plane strain.

To double check that the resulting parametrization of
the effective Hamiltonian with strain-dependent parameters
jk, κ2, and εxx , is consistent with the DFT results over the
whole considered strain range, Fig. 6 shows the equilibrium
soft-mode displacement amplitude, ueq, and the out-of-plane
strain, η3, obtained by minimizing the total energy described
by the effective Hamiltonian, compared to the results of DFT
structural relaxations. The energy of the effective Hamiltonian
was minimized assuming a homogenous polarization in the
(110) direction (the energy expression with further analysis
is given in the Supplemental Material [43]). The agreement
between the effective Hamiltonian and the DFT results is

FIG. 7. (a) Polarization as function of temperature, simulated
upon heating, for various tensile strains in SrMnO3. Snapshots from
MD simulations, with arrows indicating u in the xy plane, averaged
along the z direction, for (b) η = 0.04, T = 270 K and (c) η =
0.025, T = 5 K. The color wheel illustrates the directions of the
color coded arrows in (b)–(c). (d) Susceptibility χ as function of
temperature for 2.5% strain.

excellent for small strains, while the magnitude of ueq and
η3 are slightly overestimated for larger strains. Nevertheless,
the overall good agreement between the effective Hamiltonian
and DFT results in Fig. 6 corroborates that the effective
Hamiltonian, with the given set of parameters, provides a
consistent description of the strain-induced ferroelectricity in
SrMnO3.

B. MD simulations of the effective Hamiltonian

Using the parametrization discussed in the previous sec-
tion, we perform MD simulations for various strains in
the range of 0–5 %. In each case, a simulated heating is
performed, where a homogeneously polarized FE state is
initialized, and the simulation is first performed at a low
temperature, which is then increased, in increments of 5 K,
using the final configuration of the previous simulation as
initialization for the next one. The resulting polarizations as
function of temperature, for different strains, are shown in
Fig. 7(a). For small strains, η < 3%, the initialized FE state is
unstable, i.e., it vanishes during the thermalization phase, and
no spontaneous polarization occurs at finite temperature. For
η � 3% the polarization remains stable at low temperatures
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and then drops to zero at the strain-dependent FE Curie tem-
perature. Both the saturation polarization as well as the Curie
temperature increase strongly with strain. Around 4% strain,
the Curie temperature exceeds room temperature, and the
saturation polarization is ∼50 μC/cm2, which corresponds to
about twice that of bulk BaTiO3. Very recent experiments on
highly strained SrMnO3 films showed a remnant polarization
of 55 μC/cm2 at 3.8% strain [10], which is of similar size as
the polarizations found here.

In the large strain regime of η � 4%, an additional feature
appears, corresponding to a sharp drop in P (T ), indicating
a transition between different polar phases. As illustrated in
Fig. 7(b) for T = 270 K and η = 0.04, a domain structure
appears below TC, with local polarization along either [100]
or [010], separated by 90◦ domain walls, and resulting in an
effective global polarization along [110]. At lower tempera-
tures, between around 200 K and 300 K, the system then trans-
forms into the uniform FE state with polarization along the
[110] direction, leading to the observed sharp change in total
polarization. Similar behavior has been observed previously
in simulations for epitaxially strained BaTiO3 [17] under
tensile strain. The 90◦ domain state also occurs in cooling
simulations starting from temperatures above TC, and for the
largest strain of 5% seems to persist even down to the lowest
temperatures. This indicates a rather rich phase diagram with
potentially coexisting phases and different competing domain
configurations. Here we want to focus only on the main
features, in particular on the onset of polar order under tensile
strain, and we thus leave a more detailed investigation of this
phase diagram for future work.

From Fig. 7(a) it can also be seen that no spontaneous
polarization appears at 2.5% strain, in contrast to the results
shown in Fig. 6. However, the temperature dependence of the
electric susceptibility χ = 〈P 2〉−〈P 〉2

T
at this strain, illustrated in

Fig. 7(d), reveals an anomaly with a clear maximum at 40 K,
indicating a phase transition. Figure 7(c) shows a snapshot
of the corresponding dipole configuration at 5 K in the x-y
plane, averaged over z. It can be seen that the dipoles form
antiparallel stripe domains, with zero net polarization. Such
an inhomogeneous configuration is obviously not captured
by the results shown in Fig. 6, where a homogeneous polar-
ization along the [110] direction is assumed. Thus, at 2.5%
strain, the 180◦ stripe domain state appears to be more stable
than the homogeneous FE state. We note that the results in
Figs. 7(c)–7(d) were obtained from a simulated cooling, rather
than heating, since extremely long equilibration times are
otherwise needed at low temperature for the system to turn
from the homogenously polarized initial state to the stripe
domain state. Again, the appearance of such domain states
indicates a more complex phase diagram, the full exploration
of which, however, is beyond the scope of the current work.
Furthermore, the existence of these domains still needs to
be established experimentally, and further DFT studies could
also be beneficial in future work.

VI. DISCUSSION OF THE STRAIN-TEMPERATURE
MULTIFERROIC PHASE DIAGRAM

The preceding sections presented the individually calcu-
lated magnetic and ferroelectric phase diagrams as function
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FIG. 8. Strain-temperature ferroic phase diagram of SrMnO3.
Black circles show magnetic critical temperatures calculated us-
ing exchange interactions obtained for the centrosymmetric (PE)
structures, while the black crosses are calculated using exchange
interactions obtained for the FE structures. Red plus signs indicate
the calculated FE critical temperatures and the red line is a linear
fit to these. The blue triangles show the temperatures above which
FE domains form at large strains. The positions of vertical lines
separating magnetic regions have been estimated from the data in
Fig. 1 and are mainly a guide to the eye.

of strain and temperature. By combining these results, a
complete multiferroic strain-temperature phase diagram of
SrMnO3 is obtained, which is summarized in Fig. 8. As
follows from the results presented in Sec. V B, the FE critical
temperature increases nearly linearly with strain after its onset
at around 3%. Note that the red line in Fig. 8 shows a linear
fit of T FE

C as function of strain, excluding the point at 2.5%
strain, which falls away from this trend and corresponds to
the appearance of the 180◦ stripe domain state [see Fig. 7(c)].
Compared to T FE

C , the previously discussed strain dependence
of the magnetic critical temperature is much more moderate.
Consequently, for strains slightly above 3%, the FE and mag-
netic critical temperatures cross. In the strain region around
this crossing, both critical temperature are close to each
other and pronounced magnetoelectric coupling effects can be
expected, such as, e.g., thermally mediated magnetoelectric
coupling [4] or multicaloric effects [5].

Furthermore, as already discussed in Sec. IV B, the mag-
netic critical temperatures obtained for the FE and the cen-
trosymmetric structures, respectively, are vastly different, and
also correspond to different magnetic orders. This suggests
that an applied electric field might significantly alter the
magnetic critical temperature and potentially even induce
transitions between different magnetic states.

Judging from the linear fit of T FE
C , a small C-AFM para-

magnetic region appears at approximately 3% strain and
temperatures above T FE

C , whereas in the corresponding FE
low-temperature phase, the magnetic ground state is G-AFM
(with a significantly higher hypothetical magnetic critical
temperature). Thus, one can expect a magnetic transition to
occur in that strain regime, related to the decrease in FE
spontaneous polarization with increasing temperature, poten-
tially also resulting in a strong electric-field dependence of
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the magnetic order. Apart from the region around 3% strain,
another very interesting feature of this rich phase diagram is
the multiferroic region with simultaneous FM and FE order
occurring for strains above ∼4% and temperatures below
∼100 K.

Of course, due to the systematic uncertainties involved in
the parametrization of both the magnetic Heisenberg Hamil-
tonian and the FE effective Hamiltonian, the exact phase
boundaries in this system remain to be experimentally ver-
ified. On the computational side, a more explicit treatment
of the coupling between the structural and magnetic degrees
of freedom, and allowing for simultaneous fluctuations in
both quantities, would be desirable. Nevertheless, the possible
existence of a region with strongly coupled magnetic and
FE order is highly promising, as it indicates to possibility to
control magnetic order using an electric field.

VII. SUMMARY AND CONCLUSIONS

In this work, DFT calculations have been used to construct
effective Hamiltonians for both the magnetic and FE structural
degrees of freedom. The resulting temperature- and strain-
dependent ferroic phase diagram has then been obtained from
MC and MD simulations. The coupling between magnetism
and FE order has been incorporated by considering the change
in the Heisenberg exchange interactions, and the correspond-
ing changes to the magnetic phase diagram, due to the FE
structural distortions. The resulting phase diagram (Fig. 8)
exhibits various regions of particular interest for further in-
vestigation of magnetoelectric coupling phenomena, such as
the regime around or just above 3% tensile strain, where the
magnetic and FE critical temperatures nearly coincide, or the
FM-FE region at higher strain. Both regions can be techno-
logically interesting, as they potentially allow for electric field
control of magnetic properties.

Compared to currently available experimental data [38],
the calculations presented here underestimate the magnetic
critical temperature of bulk SrMnO3 by about 60 K. This is
probably related to the strong sensitivity of the calculated

exchange interactions on the specific value of the Hubbard
U used in the DFT calculations (see Supplemental Material
[43]), but can also, at least partly, be caused by a non-
Heisenberg character of the magnetic interactions in this sys-
tem. Furthermore, experiments have indicated the appearance
of a polar phase at a tensile strain of 1.7% [7], somewhat lower
than the critical strain of about 2.5% found here. We note
that the use of a different exchange-correlation functional,
such as, e.g., the PBE functional used in Ref. [6], leads to
changes in the equilibrium lattice parameters of that order of
magnitude, which is within the typical limitations of current
DFT functionals. Despite these quantitative differences, the
qualitative trends as well as the main structure of the phase
diagram are expected to be well captured by the computational
methods applied here.

Although we have studied the effect of strain on SrMnO3,
it is known that similar effects can be achieved by Ba sub-
stitution [15]. Thus, for experimental realizations of some of
the effects discussed here, a combination of Ba substitution
and strain might be the most promising path. Furthermore,
it has been suggested that strain results in increased oxygen
vacancy concentrations, which suppress ferroelectricity [13].
Hence, it might also be relevant to take into consideration the
effects of oxygen vacancies in future studies. Finally, as the
perhaps most important continuation for future work, it would
be desirable to develop more refined models for the coupling
between the ferroic degrees of freedom, treating magnetism
and FE on equal footing.
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