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Type-II Dirac line node in strained Na3N
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Dirac line node (DLN) semimetals are a class of topological semimetals that feature band-crossing lines in
momentum space. We study the type-I and type-II classification of DLN semimetals by developing a criterion that
determines the type using band velocities. Using first-principles calculations, we also predict that Na3N under
an epitaxial tensile strain realizes a type-II DLN semimetal with vanishing spin-orbit coupling, characterized by
the Berry phase, which is Z2 quantized in the presence of inversion and time-reversal symmetries. The surface
energy spectrum is calculated to demonstrate the topological phase and the type-II nature is demonstrated by
calculating the band velocities. We also develop a tight-binding model and a low-energy effective Hamiltonian
that describe the low-energy electronic structure of strained Na3N. The occurrence of a DLN in Na3N under
strain is captured in the optical conductivity, which we propose as a means to experimentally confirm the type-II
class of DLN semimetals.
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I. INTRODUCTION

During the past decade, topological semimetals have been
an active subject of condensed matter physics and quantum
materials, providing a unique venue for exotic phenomena
originating from band topology [1–4]. Since the discovery
of Weyl semimetals [5–17], various classes of topological
semimetals have been found theoretically and experimentally,
including Dirac semimetals [18–26], nodal line semimetals
[5,25–48], and their diverse variations such as multi-Weyl
semimetals and double-Dirac semimetals [49–53].

More recently, the classification of topological semimetals
is further specified into the type-I and type-II classes based
on the geometric structure of the Fermi surface [53–60]. The
type-I material features a closed Fermi surface enclosing the
nodes; in contrast, type-II material features an open Fermi
surface composed of electron and hole pockets that linearly
touch at the nodes. First proposed in Weyl semimetals, the
type-I/II classification has been extended to Dirac semimetals
[53,58,61–64] and nodal line semimetals [65–67]. In the case
of Weyl semimetals, this classification provides an important
insight for understanding unique phenomena present only in
type-II materials, such as the squeezing or collapse of Landau
levels, Klein tunneling, and magnetic breakdown in momen-
tum space when magnetic fields are applied to overtilted Weyl
nodes [68–71]. Some papers have already proposed type-
II Dirac line nodes (DLNs) and reported relevant materials
hosting such kinds of DLNs [65–67]. Contrasting features of
type-I and type-II DLNs have been identified in terms of their
dispersion and Fermi surface geometry [65].

In this paper we go beyond the well-known characteriza-
tion of type-II DLNs and identify a more fundamental way to

*youngkuk@skku.edu

understand and identify the type-II class of DLN semimetals.
Based on geometric argument, a concrete connection is estab-
lished between the sign inversion of band velocities around
a type-II DLN and the occurrence of open Fermi surface in
type-II DLN semimetals, which leads to a rigorous criterion
to determine the types of DLNs. We use this criterion and
first-principles calculations to predict that epitaxially strained
Na3N realizes a type-II DLN semimetal phase. The nontrivial
band topology and type-II nature of the DLN semimetal
are explored. We also construct a tight-binding model and
a low-energy effective theory and use them to rationalize
the low-energy electronic structure and to calculate the op-
tical conductivity of Na3N. The optical response significantly
changes upon straining due to the occurrence of a type-II DLN
semimetal, which can be experimental evidence of the type-II
DLN semimetal phase hosted in strained Na3N.

This paper is structured as follows. First, we begin with
the background in Sec. II, which provides simple and intuitive
ways to understand the type-I versus type-II nature of DLNs.
Following that, we contrast in Sec. III the electronic band
structures of pristine and strained Na3N. This clarifies the
electronic structure of Na3N, which is responsible for the oc-
currence of a DLN under strain. Next, in Sec. IV, topological
characterization of strained Na3N is discussed in terms of the
Z2 topological indices and surface energy spectrum. Also, the
type-II nature is demonstrated via the band velocities evalu-
ated in the vicinity of the DLN. Then, in Sec. V, we construct a
tight-binding model for Na3N, reproducing the main features
of the density functional theory (DFT) calculations. Physical
manifestations of the type-II DLN nature are predicted to
occur as unique features in the surface spectrum and the
optical conductivity, as demonstrated in Sec. VI. Finally,
we conclude the paper with a summary and perspective in
Sec. VII.
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FIG. 1. Typical energy band dispersions and Fermi surfaces of type-I (first row) and type-II (second row) DLNs. (a), (b) Electronic energy

bands of a type-I DLN on the kx-ky and kρ-kz planes, respectively. Here kρ =
√

k2
x + k2

y and the DLN lies on the kx-ky plane. (c) Changes in the

Fermi surface for a type-I DLN in 3D momentum space as the chemical potential is tuned from μ = EDLN, μ1 to μ2. The locations of EDLN,
μ1, and μ2 in energy are shown in (b). Blue circles in (c) indicate the position of the DLN. Green surfaces represent the Fermi surface at the
corresponding chemical potentials. q = k − kD is the relative momentum defined with respect to a point in the DLN at kD. The left panel in
(c) defines the in-plane qρ and out-of-plane qz components of the relative momentum q. (d), (e) Typical energy bands of a type-II DLN on the
kx-ky and kρ-kz planes. (f) Corresponding changes in the Fermi surface for a type-II DLN at μ = EDLN, μ1, and μ2. Blue circles in (f) indicate
the position of the DLN. Green (red) surfaces represent electron (hole) pockets. At μ = EDLN, the DLN coexists with the electron and hole
pockets that touch each other linearly at the DLN.

II. BACKGROUND

We start with a brief review of the mathematical foundation
for type-II DLN semimetals. Similarly to the Weyl semimetal
case [54], distinguishing aspects of type-II DLNs lie in their
dispersion and the Fermi surface geometry: the existence of
an overtilted Dirac cone and an open (or extended) Fermi
surface [65]. Figures 1(a) and 1(d) illustrate the contrasting
shape of energy bands of type-I and type-II DLNs on the
kx-ky plane where the line node lies. Also, Figs. 1(b) and
1(e) show contrasting energy bands of type-I and type-II
DLNs featured on the kρ-kz plane for a fixed value of in-

plane angle tan−1(ky/kx ), where kρ =
√

k2
x + k2

y is the radial

momentum. The kρ-kz plane intersects with the DLN at two
points on the DLN. The intersecting points of the DLN and
the kρ-kz plane are indicated by blue dots in Figs. 1(b) and
1(e). These intersecting points appear as Dirac points with
linear dispersions away from the points on this normal plane.
Hereafter, we refer to them as Dirac points.

While the energy dispersions are linear in both type-I and
type-II DLNs in the vicinity of the nodal line, the difference
between them is clear in the band velocities at the DLN. Recall
that two independent directions exist in moving away from a
given point on the DLN, which define a plane locally normal
to the tangent direction of the DLN. If the band velocities are
opposite for the conduction and the valence bands regardless
of the direction away from the Dirac point in this normal
plane, we refer to this as a conventional type-I DLN. In
contrast, if the band velocities of the conduction and valence
band have the same sign for some direction away from the
DLN in the normal plane, we refer to it as an unconventional
type-II DLN. These different types give rise to the second
distinguishing characteristic, manifested in the Fermi surface
geometry. As illustrated in Figs. 1(c) and 1(f), as one varies

the chemical potential μ [red lines in Figs. 1(b) and 1(e)],
the hole (electron) pocket appears as a green (red) surface.
Irrespective of the chemical potential μ, the Fermi surface
(equally, constant energy surface at E = μ) of a type-I (type-
II) DLN exists in a closed (open) surface, in line with the
previous study in [65].

Instead of inspecting the band velocities, the classification
is also possible by the Fermi surface geometry, similarly to the
case of Weyl points [54]. To specify this, we first introduce
two coordinate systems used in the discussion throughout the
paper. The first one is the k = (kx, ky, kz) coordinates in the
Brillouin zone (BZ) describing the global structure of a DLN.
The second set of coordinates is a relative coordinate system
q = (qx, qy, qz) with the origin at a Dirac point of the DLN kD

[Fig. 1(c)], which describes the local behavior of the energy
bands. The two coordinate systems are related by k = kD +
q, where kD refers to a point on the DLN.

In general, the nodal structure of two bands can be de-
scribed by the 2 × 2 Hamiltonian

H =
3∑

j=1

d(q )j σj , (1)

with the Pauli matrices σj ’s. When the Hamiltonian is linear in
q, one can find a linear map A : V → W from q to d, where
q ∈ V , d ∈ W , and

H =
3∑

j=1

djσj =
3∑

i,j=1

qiAijσj . (2)

Band-gap closing points generically occur at q points that
satisfy dj (q ) = 0 for all j ’s. Depending on the dimensions of
the null space (or kernel space) of the linear map A, which can
be either zero, one, or two, the gap closing points constitute
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points, lines, or planes, respectively. The kernel dimensions
determine the dimensions of the quotient space V/kerA and
also the dimensions of the image space of the linear mapping
imA as Dim(V ) − Dim(kerA). We can rewrite the low-energy
Hamiltonian using the new linear mapping Ã from V/kerA
to imA with reduced dimensions (Ã : V/kerA → imA, k ∈
V/kerA, and d ∈ imA). Now this new linear mapping de-
scribes only the linear dispersion in the two directions that
are locally orthogonal to the nodal line direction. As a result,
in the case of nodal line [Dim kerA = 1], the local behavior
of electrons is described by the low-energy Hamiltonian with
the reduced dimensions [Dim V/kerA = 2]:

H =
2∑

i,j=1

qiÃij σj +
2∑

i=1

wiqi. (3)

Here “local” means that the wave vector q is expanded from a
particular point on the nodal line [see Fig. 1(c)]. Representing
the position of a point constituting the DLN as kD , wave
vectors in the BZ are expanded up to the linear order q =
k − kD , leading to the low-energy Hamiltonian, Eq. (3), that
describes a Dirac cone in two dimensions. The second term
in the Hamiltonian is introduced to describe the tilting of the
Dirac cones, which plays a crucial role in enabling type-II
DLNs. As in the case of the Weyl point [54], the Fermi surface
equation, which is a conic section equation in the DLN case,
gives either an open or a closed solution, which defines the
type-I/type-II classifications.

In detail, two energy eigenvalues are obtained from Eq. (3)
as

E± =
2∑

i=1

wiqi ±
√√√√ 2∑

i,j=1

qi[ÃÃT ]ij qj . (4)

The Fermi surface equation that satisfies E± = μ is obtained
as

2∑
i=1

qi (wiwj − [ÃÃT ]ij )qj − 2μ

2∑
i=1

wiqi + μ2 = 0. (5)

When det(w ⊗ w − [ÃÃT ]) > 0 [det(w ⊗ w − [ÃÃT ]) <

0], Eq. (5) describes a conic section equation that gives an
elliptic [a hyperbolic] curve. Thus, DLNs are classified into
two types: type-I for the elliptic (closed) curve and type-II for
the parabolic (open) curve. It is noteworthy that, in general,
the tilting coefficient w can be a function of k, although it is
treated as a constant for simplicity in the above derivation.
When the tilting coefficient varies, such that det(w ⊗ w −
[ÃÃT ]) changes the sign along the DLN, which can happen
in highly anisotropic systems that reside near the transition
between this type-I and type-II, the sign change of the de-
terminant identifies a novel-type hybrid DLN [72]. While this
case shares the characteristic features of type-II DLNs hosting
the electron and hole pockets that coexist with the DLN, it also
allows for diverse possibilities in the Fermi surface geometry,
which could be of particular interest with respect to quantum
oscillations and transport phenomena.

Another way of sorting out the types of DLNs is by looking
at the sign inversion of band velocities. Since the matrix

ÃÃT is Hermitian with nonnegative eigenvalues λ2
1, λ

2
2 > 0

(we assume the generic situation of nonzero eigenvalues),
the energy dispersion after the rotation to the principal axis
becomes

E± = w1q1 + w2q2 ±
√

(λ1q1)2 + (λ2q2)2. (6)

After rescaling the variables q1 → q1/λ1, q2 → q2/λ2

and introducing the polar coordinates q = (q1, q2) =
q(cos θq, sin θq ), one can further simplify the energy equation
[Eq. (6)] to

E± = ±v±q,

v± = 1 ±
√

w2
1

λ2
1

+ w2
2

λ2
2

cos[θq]. (7)

Here, θq measures the angle from one of the principal axes.
The conventional type-I Dirac cone shown in Fig. 1(b) is
realized if the radial velocity satisfies v+v− > 0 for all ori-
entations θq or, equivalently, when

1 −
√

w2
1

λ2
1

+ w2
2

λ2
2

> 0. (8)

Otherwise, the unconventional type-II Dirac cone shown in
Fig. 1(e) is realized with v+v− < 0 over some range of θq .
After some unraveling of the algebra, one can prove that
Eq. (8) is equivalent to the condition det(w ⊗ w − [ÃÃT ]) >

0. This proves that the classification scheme in terms of the
conic section is equivalent to the scheme in terms of the sign
inversion of the band velocity.

The difference in the type-I and type-II band structures
can be understood in the language of differential geometry
as well. The band velocities along the principal axes are the
well-known principal curvatures in differential geometry, and
their product is the Gaussian curvature that indicates the shape
of the surface. For either the conduction band or the valence
band [E± in Eq. (7)], coordinates along the principal axes
are (q1, q2) and the corresponding velocities (or principal
curvatures) are given by v±,1(2) = ∂E±/∂q1(2), respectively.
The Gaussian curvatures for each band follow from K± =
v±,1v±,2. In type-I (type-II) DLNs, the product of Gaussian
curvatures

K+K− = v+,1v+,2v−,1v−,2 = 1 −
(

ω2
1

λ1
+ ω2

λ2
2

)
(9)

is positive (negative). The final expression on the right follows
from Eq. (8). As a result, all three methods, i.e., conic section
classification, sign inversion of the band velocity, and band
curvature analysis, yield the same conclusion with regard to
the type-I/II classification of DLNs. In the type-II DLN, either
the conduction band or the valence band has a saddle-shaped
band structure in the (q1, q2) space.

III. METHODS AND ELECTRONIC BAND STRUCTURE

A. Calculation methods

Having identified the physical and mathematical conditions
to distinguish type-I and type-II DLNs, we now show that
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Na3N under strain realizes a type-II DLN. Before showing
the first-principles results, we list the details of computa-
tional methods. Our first-principles calculations are based on
density functional theory in the Perdew-Zunger-type local
density approximation (LDA) [73]. The norm-conserving,
optimized, designed nonlocal pseudopotentials are generated
using OPIUM [74]. The wave functions are expanded in the
plane-wave basis as implemented in the QUANTUM ESPRESSO

package [75]. The energy cutoff for the basis is set to 680 eV.
The atomic structure is fully relaxed within the force threshold
of 0.005 eV/Å and the 8 × 8 × 8 Monkhorst-Pack grid [76]
is used for k-point sampling. The surface spectra are obtained
by calculating the surface Green’s function for a semi-infinite
geometry [77,78], using the Wannier Hamiltonian, generated
using WANNIER90 [79–82]. For Wannierization, the conduc-
tion and valence states are initially projected to the s orbitals
of K and Na and the p orbitals of N. The lattice constant
of Na3N is calculated as a = 4.67 Å. The lattice constant of
strained Na3N is calculated by fixing a and relaxing the other
lattice parameter. In the case of 5% tensile strain, we fixed a to
4.91 Å and relaxed c, resulting in 4.63 Å. The Poisson ratio for
the epitaxial strain is calculated as 0.2. In order to show the ro-
bustness of our LDA results, the hybrid functional calculation
for the electronic band structure is performed using VASP [83],
employing the Heyd-Scuseria-Ernzerhof (HSE06) scheme for
the exchange-correlation potential [84]. Although spin-orbit
coupling (SOC) is negligibly weak in Na3N, the effect of SOC
is considered in Appendix B for the sake of completeness of
the study by using full-relativistic pseudopotentials based on
noncollinear spin calculations.

B. Crystal structure and symmetries

Figure 2(a) illustrates the primitive unit cell of Na3N in
the anti-ReO3 structure, which comprises one N atom at the
corner and three Na atoms at the center of each edge. The
crystalline symmetries belong to the cubic space group Pm3m

(No. 221), generated by inversion and three rotations. Under
the epitaxial strain shown in Fig. 2(b), the cubic crystalline
symmetry is broken into the P4/mmm (No. 123) tetragonal
space-group symmetry. The P4/mmm space group is gen-
erated by inversion P , reflection Mx , and fourold rotation
C4z. Together with these crystalline symmetries, time-reversal
symmetry T = K plays the important role of providing topo-
logical protection of the DLN. Here K is the complex conju-
gation operator. Figures 2(c) and 2(d) show the BZ of pristine
Na3N and strained Na3N, respectively. We find that the �

point in pristine Na3N hosts a triply degenerate state (not
counting the spin degeneracy), which evolves into a DLN
encircling � lying on the kz = 0 plane under the strain. The
evolution of the triply degenerate point to a DLN is detailed
in Sec. IV A.

C. Electronic band structure

Figures 3(a) and 3(b) show the electronic band structures
of pristine and 5% epitaxially tensile strained Na3N obtained
from our first-principles calculations without SOC. It is clear
that the band structures of both cases are semimetallic, with
the electron and hole pockets forming near the � and M

 (a)  (b)

)d()c(

Na

N

FIG. 2. Atomic structures of (a) pristine and (b) strained Na3N.
Blue arrows illustrate the direction of strain, which lowers the
cubic Pm3̄m space-group symmetry to the tetragonal P 4/mmm

space-group symmetry. Brillouin zones of (c) pristine Na3N and (d)
strained Na3N. A nodal point in pristine Na3N and a DLN of strained
Na3N are shown in red.

points, respectively. The electronic energy states in the energy
range presented in Figs. 3(a) and 3(b) are mainly composed of
the Na s and N p orbitals, and the contribution from the N s

orbital is negligible. In the pristine case, at �, we find that the
valence-band top and the conduction-band bottom are fused
to form a triply degenerate T1u state right below the Fermi
energy, comprising the N px , py , and pz orbitals, indicated
by the red circle in the inset in Fig. 3(a). In addition, a single
A1g state resides 0.67 eV below the T1u state at �, which is
built out of the Na s orbitals. An epitaxial strain gives rise
to a tetragonal crystal field, which splits the triply degenerate
T1u state into a doubly degenerate Eu state and a single A2u

state. Tensile (compressive) strain raises (lowers) the energy
of the A2u state with respect to the doubly degenerate Eu state
at �. As the strain increases, the energy splitting between the
Eu and the A2u states becomes larger. The energy raising of
A2u under a tensile strain enables crossing between A2u and
A1g bands. Notably, crossing does not happen when applying
a compressive strain that lowers the energy of the A2u state.
The inversion of the A1g and A2u states is responsible for
the occurrence of a DLN in strained Na3N, which occurs
along the high-symmetry line �-M or �-X. This results in
band-crossing points indicated by the red circles in Figs. 3(b)
and 3(c).

As it is well known that the LDA tends to underestimate
the band gap (or, equally, overestimate the band inversion),
we also calculated the HSE06 band structure and found that
the semimetallic feature is reproduced [85]. Nonetheless, it is
worth mentioning that, depending on the exchange-correlation
functionals, the band structure of Na3N could be semicon-
ducting. Indeed, some literature [86,87] claims that Na3N is a
semiconductor when a different exchange-correlation energy
functional is used. We discuss this further in Sec. VII. We
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FIG. 3. Electronic band structures of (a) pristine and (b) 5%
strained Na3N. Band structures are drawn along high-symmetry
lines in the BZs of cubic and tetragonal unit cells, respectively.
Conduction (valence) bands are represented by blue (red) lines. The
triply degenerate point in Na3N and doubly degenerate points in
strained Na3N are indicated by red circles. (c) Diagram showing
the evolution of energy ordering from � to X for pristine Na3N and
strained Na3N. Lifting of triple degeneracy leads to the formation of
a DLN.

point out that the remainder of the discussion is based on our
LDA and HSE06 results.

IV. TYPE-II DLN IN STRAINED Na3N

As illustrated in Fig. 2(d), an epitaxial tensile strain ap-
plied to Na3N engenders a DLN of the type-II class. In this
section, we first show that strained Na3N hosts a DLN in
momentum space. The crossing points that we found off the
high-symmetry � point in the band structure indicate the
presence of a DLN. From this indication, we identify the states
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FIG. 4. (a) A DNL (red) in energy-momentum space. A DLN
is placed on the kz = 0 plane, encircling the � point. The energy
bands disperse along the DLN (green line) in the energy range
�EDLN ≈ 0.002 eV. (b) Energy dispersions at a point (at kD) in the
type-II DLN drawn along the qρ (left panel) and qz (right panel)
directions. (c) Radial band velocities of the valence and conduction
bands calculated as a function of the azimuthal angle θ on the qρ-qz

plane [see Fig. 1(c)]. The pink (blue) curve represents the velocity
of the valence (conduction) band. The valence (conduction) band
undergoes sign change outside (inside) of the DLN across the critical
angle θ ≈ ±13.0◦ (θ ≈ 180◦ ± 16.0◦).

forming the DLN and clarify the geometry of the DLN in the
BZ. Next, we discuss the topological protection by calculating
Z2 topological invariants that dictate the presence of DLNs
[25]. Finally, we show the type-II nature of the DLN. For
this purpose, we construct a k · p Hamiltonian and an explicit
tight-binding model that reproduce the DFT band structure,
and apply the type-I/type-II criterion derived in Sec. II, which
confirms the type-II class. For further demonstration of the
type-II nature, we present the unconventional linear dispersion
occurring along principal axes from our DFT calculations. We
also calculate the numerical value of the principal curvatures,
resulting in Gaussian curvatures with opposite sign, which
reaffirms the type-II nature.

A. DLN

Careful inspection of the band structure in the entire BZ
allows us to find a single DLN encircling � that lies on the
kz = 0 plane as shown in Fig. 4(a). The DLN is located at
EDLN ≈ −0.15 eV below the Fermi energy, with dispersion in
the energy range of �EDLN ≈ 0.002. The protection of the
DLN is twofold. First, lying on the kz = 0 mirror-invariant
plane, the DLN is protected by Mz with the conduction
and valence bands having different mirror eigenvalues ±1. In
addition, the DLN is also topologically protected by inversion
P and time-reversal T symmetries [25,26]. Judging from the
group representation of the Bloch states forming the DLN,

104203-5



KIM, AHN, JUNG, MIN, IHM, HAN, AND KIM PHYSICAL REVIEW MATERIALS 2, 104203 (2018)

TABLE I. Parameters of the k · p Hamiltonian that best match
the DFT band structures of pristine and 5% strained Na3N. Here, kρ

and kz are in units of 2π/a and 2π/c, respectively, and the parameters
are in units of eV.

Parameter Pristine 5% strained

a1 5.00 5.00
b1 4.60 4.60
a2 5.00 4.00
b2 4.60 3.80
v 0.00 1.05
kD 0.00 0.14

we find the band inversion at � between the A2u and the
A1g states, which are odd- and even-parity eigenstates of
inversion P , respectively. These two states are also mirror
eigenstates having opposite parities, leading to the mirror-
protected band crossing on the mirror-invariant plane kz = 0.
The presence and geometric shape of a DLN in momentum
space are dictated by the Z2 topological indices (ν0; ν1ν2ν3)
as discussed in Ref. [25]. We find (ν0; ν1ν2ν3) = (1; 000)
for strained Na3N from parity analysis at the time-reversal
invariant momenta (TRIMs) (�, 2X,M, 2R,A,Z), which
agree with the existence and shape of the DLN. In detail,
(ν0; ν1ν2ν3) = (1; 000) enforces an odd number of DLNs to
thread the half T -invariant plane containing �. This is fulfilled
by the DLN encircling the � lying on the kz = 0 plane.

B. k · p analysis and type-II nature

In this section, we construct the k · p Hamiltonian that
describes the DLN and confirm its type-II nature. The k · p
Hamiltonian near � can be constructed such that it respects
the O1

h little group symmetries of � on the basis ( 1
0 ) = A2u

and ( 0
1 ) = A1g:

H = [
a1

(
k2
ρ − k2

D

) + a2k
2
z

] + vkzσy

+ [
b1

(
k2
ρ − k2

D

) + b2k
2
z

]
σz. (10)

Here kρ =
√

k2
x + k2

y , σj ’s are the Pauli matrices in the (A2u,

A1g) basis, and a1, a2, b1, and b2 are constants. The DLN
forms along a circle kρ = kD on the kz = 0 plane. The first
term in Eq. (10) induces tilting that enables the type-II nature
of the DLN. The a1k

2
D term sets the energy of the DLN to 0

by convention within the k · p model. The best match to the
DFT band structure in the vicinity of the � point for pristine
and 5% strained Na3N is found when using the parameters
listed in Table I [88]. In the pristine case, where a1 = a2,
b1 = b2, v = 0, and kD = 0, the energy states are degenerate
at � [(kρ, kz = (0, 0)], exhibiting an isotropic band structure
originating from the cubic symmetry. The tensile strain re-
duces the cubic symmetry to tetragonal symmetry, described
by nonzero values for the velocity v and the radius of the DLN
kD , as well as the difference between the values of a1(b1) and
a2(b2).

As previously pointed out in Sec. II, the k · p Hamiltonian
can be expanded in q = k − kD in the vicinity of a point on

the DLN kD

H = 2a1kDqρ + vqzσy + 2b1kDqρσz, (11)

which is of the same form as Eq. (3) with the principal axes qρ

and qz. The type-II criterion previously worked out in Sec. II
is simplified as

a2
1 > b2

1, (12)

which is consistent with the previously proposed type-I/type-
II classification of DLNs [65]. As shown in Table I, 5%
strained Na3N indeed satisfies Eq. (12), thus confirming the
type-II DLN semimetal phase.

The type-II nature is further illustrated from the shape of
Dirac cones. Figure 4(b) illustrates the band structures drawn
along the qρ (θ = 0◦) and qz (θ = 90◦) directions, which
are the principal axes of the k · p Hamiltonian. We find that
the unconventional (left panel) and conventional (right panel)
linear dispersions coexist in the vicinity of the Dirac point,
which is a characteristic of the unconventional type-II DLN.
Figure 4(c) shows the radial band velocities v± around the
DLN as a function of θ = [0, 2π ] calculated from the DFT
band structures. A conventional (an unconventional) linear
dispersion resides in the gray (yellow and green) region,
resulting in v+v− > 0 (v+v− < 0), which proves the sign
change in the band velocities. Additionally, it is manifested
that either the conduction or the valence band is a saddle-
shaped band undergoing the sign flip of the radial-band ve-
locity, resulting in K+K− < 0. This is a characteristic of the
radial-band velocities present only in type-II DLN semimet-
als. In a type-I DLN semimetal, v± should be positive for the
entire range of θ = [0, 2π ], resulting in K+K− > 0.

V. TIGHT-BINDING MODEL ANALYSIS

The tight-binding model is a useful way to develop the low-
energy effective theory for the DLN. We construct it using the
basis of p orbitals of the N atom and the s orbital of Na. The
basis orbitals are thus (N px , N py , N pz, Na-x s, Na-y s,
Na-z s), where Na-x is the Na atom at (a/2, 0, 0), Na-y at
(0, a/2, 0), and Na-z at (0, 0, c/2), respectively. We arrive at
the tight-binding Hamiltonian written in block form:

H =
( HN HN-Na

H
†
N-Na HNa

)
. (13)

The 3 × 3 submatrices HN and HNa concern the three p

orbitals of N and the three inequivalent s orbitals of Na,
respectively. HNa-N is their hybridization. In detail,

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EN,p

−2t3ppσ‖cx

+2t3ppπ‖cy

+2t3ppπ⊥cz

0 0

0

EN,p

+2t3ppπ‖cx

−2t3ppσ‖cy

+2t3ppπ⊥cz

0

0 0

EN,p

+2t3ppπ‖cx

+2t3ppπ‖cy

−2t3ppσ⊥cz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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TABLE II. On-site energies and hopping integrals for pristine
Na3N.

On-site energy Value (eV)

EN,p −2.45

ENa,s +0.85

Hopping integral

tspσ −1.00
t2ss −0.47
t3ppσ −0.13
t3ppπ −0.015

HNa =
⎛
⎝ ENa,s‖ 4t2ss‖cx2cy2 4t2ss⊥cx2cz2

4t2ss‖cx2cy2 ENa,s‖ 4t2ss⊥cy2cz2

4t2ss⊥cx2cz2 4t2ss⊥cy2cz2 ENa,s⊥

⎞
⎠,

HN-Na =
⎛
⎝2itspσ‖sx2 0 0

0 2itspσ‖sy2 0
0 0 2itspσ⊥sz2

⎞
⎠. (14)

Here, abbreviations are used for cx(y) = cos kx(y), cz = cos kz,
cx(y)2 = cos(kx(y)/2), cz2 = cos(kz/2), sx(y)2 = sin(kx(y)/2),
and sz2 = sin(kz/2). The on-site energy of the N p orbitals is
denoted EN,p. Similarly, the on-site energies for the Na-x(y)
and Na-z orbitals are denoted ENa,s‖ and ENa,s⊥, respectively.
Note that ENa,s‖ and ENa,s⊥ are inequivalent under the strain
due to a different Coulomb potential felt by the Na s orbitals.

We consider the hopping between the basis orbitals up
to third-nearest neighbors in the pristine and strained crystal
structure. For nearest-neighbor hopping, the hopping integral
between the px(y,z) orbital at the origin and the s orbital
of the Na-x(y, z) atom is denoted tspσ,x(y,z). In the pristine
case, the cubic symmetry enforces tspσ,x = tspσ,y = tspσ,z =
tspσ . In the strained case, the lowered symmetry differentiates
tspσ,z from tspσ,x = tspσ,y . We denote tspσ,x(y) as tspσ‖ and
tspσ,z as tspσ⊥, respectively. Second-nearest-neighbor hopping
takes place between Na-x and Na-y or between equivalent
Na atoms. The corresponding hopping integrals are denoted
as t2ss‖ for Na-x s to Na-y s and as t2ss,⊥ for Na-x s to
Na-z s or Na-y s to Na-z s. One can expect t2ss‖ = t2ss⊥
only for the pristine cubic crystal of Na3N. Third-nearest-
neighbor hopping takes place between the p orbitals of N
atoms in adjacent unit cells [distanced by ±Rx(y,z)], param-
eterized by the hopping integrals t3pp,x(y,z). Considering π

and σ symmetry between p orbitals, we obtain the con-
straints for the pristine and strained cases. In the pristine
case, there is no difference among the x, y, and z direc-
tions. Therefore, there are only two types of distinct hop-
ping integrals, t3ppσ and t3ppπ . In contrast, there are four
third-neighbor hopping integrals, t3ppσ‖, t3ppσ⊥, t3ppπ‖, and
t3ppπ⊥, in the strained case. In the tetragonal-symmetric case,
t3ppσ (π )‖ represents t3ppσ (π ),x and t3ppσ (π ),y . On the other
hand, t3ppσ (π ),⊥ represents t3ppσ (π ),z The on-site energies and
hopping integrals for pristine (strained) cases are listed in
Table II (Table III). A negative value of the hopping parameter
t3ppπ‖ is responsible for the DLN belonging to the type-II
class. A type-I DLN occurs for positive t3ppπ‖.

TABLE III. On-site energies and hopping integrals for 5%
strained Na3N.

On-site energy Value (eV)

EN,p −2.45
ENa,s‖ +0.85

ENa,s⊥ +0.92

Hopping integral

tspσ‖ −0.95
tspσ⊥ −0.95
t2ss‖ −0.46
t2ss⊥ −0.47
t3ppσ‖ −0.13
t3ppσ⊥ −0.205
t3ppπ‖ −0.014
t3ppπ‖ −0.025

Close fits to both pristine and strained DFT bands are
achieved in Fig. 5 using the tight-binding parameters in
Table II. Near the � point, the DLN occurs. The tight-binding
model corroborates the following DFT results. The line node
is formed via the band inversion between the odd-parity
eigenstate composed of the N pz orbital and the even-parity
eigenstate composed of the three s orbitals from Na-x, Na-y,
and Na-z. In both cases, the even parity state is below the
odd-parity eigenstate at �, while the even-parity state is above
the odd-parity eigenstates at the other seven TRIM points.
The strain opens the band gap between nocc = 3 and nocc = 4
states at the eight TRIM points, resulting in a nontrivial Z2

topological invariant. Based on the tight-binding parameters
in Table III we also reproduced the same Z2 topological
invariants as the DFT results.

VI. PHYSICAL MANIFESTATIONS

In this section, we discuss feasible ways to detect the
type-II DNL character of strained Na3N. Two physical mani-
festations are suggested: topological surface states and optical
conductivity, which we discuss in the following subsections.
We suggest that the two can help clarify the topological and
type-II nature of the DLN hosted in strained Na3N, respec-
tively.

A. Topological surface states

A topologically protected DLN features drumheadlike sur-
face states [5,25,26,37]. We confirm this topological char-
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FIG. 5. Tight-binding and DFT band structures for (a) pristine
and (b) 5% strained Na3N.
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FIG. 6. Surface band structure of 5% strained Na3N calculated
from the maximally localized Wannier Hamiltonian. Topological
surface states appear inside the bulk gap near the � point as a bright
branch inside a green circle. The color scheme shows the density of
states at a given energy and k points. Red (blue) indicates a high
(low) density of the surface projected states.

acteristic of the surface energy spectra using the surface
Green’s function. Figure 6 shows the resultant surface band
structure of the (001) surface for a semi-infinite slab of Na3N,
drawn along projected high-symmetry lines following the
M̄-�̄-X̄-M̄ path of the square lattice. As the bulk DLN is
parallel to the (001) surface, the interior region of the DLN is
projected to a finite area of the surface BZ near �. The region
shaded a bluish color in Fig. 6 shows the projected bulk states.
The type-II nature is revealed in the unconventional (tilted)
linear dispersion appearing on M̄-�̄ and �̄-X̄, as shown in
Fig. 6.

The high-intensity branch connecting the two crossing
points is the topological surface states. They appear in the
interior region of the projected DLN enclosing �̄, indicated by
the green circle. This explicitly proves the topological nature
of strained Na3N. As discussed in Ref. [25], the curvature
of the surface states is in part determined by the harmonic
average of the curvatures of the conduction and valence bands.
Our DFT calculations also feature this, yet due to the same
sign of the curvature for the conduction and valence bands,
the topological surface states appear more dispersive than the
nearly flat surface bands of a type-I DLN. This is another
characteristic feature of a type-II DLN semimetal captured
in the surface energy spectrum. We also note that there is a
high-intensity contribution from the bulk states to the surface
energy spectrum, originating from nondispersive bulk bands
along the z direction, comprising mainly the N px and py

orbitals. We suggest that these nontopological states should be
well separated from the topological drumheadlike states when
the strain is applied beyond the 4% tensile strain, making a
clear distinction between the topological surface states and the
bulk trivial states.

B. Optical conductivity

The optical conductivity of DLN semimetals has been stud-
ied in the literature and is known to exhibit a flat behavior at
low frequencies, below the nodal ring energy scale [89,90]. In
this subsection, we investigate the optical responses of Na3N
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FIG. 7. Interband optical conductivities of Na3N as a function of
the epitaxial tensile strain. Both (a) σxx and (b) σzz show a sudden
jump, which occurs near the energy of the DLN. The optical conduc-
tivity vanishes in the pristine case because interband transitions are
forbidden.

in both the pristine and the strained cases. We demonstrate
that the strain results in a qualitative change in the optical
conductivity, suggesting that the optical signal of Na3N could
serve as an experimental footprint for the occurrence of the
DLN under strain.

To obtain the optical conductivity, we evaluate the Kubo
formula using the two-band effective model in Eq. (10). In
the linear response and clean limit, the Kubo formula for the
optical conductivity [91] is written as

σij (ω) = − ie2

h̄

∑
s,s ′

∫
d3k

(2π )3

fs,k − fs ′,k

εs,k − εs ′,k

× Mss ′
i (k)Ms ′s

j (k)

h̄ω + εs,k − εs ′,k + i0+ , (15)

where i, j = x, y, z, εs,k and fs,k = 1/[1 + e(εs,k−μ)/kBT ] are
the eigenenergy and the Fermi distribution function for
the band index s = ± and wave vector k, respectively,
μ is the chemical potential, and Mss ′

i (k) = 〈s, k|h̄v̂i |s ′, k〉
with the velocity operator v̂i = 1

h̄
∂Ĥ
∂ki

.
We first consider the pristine case. By applying the pristine

parameters in Table I to Eq. (10), we obtain the effective
Hamiltonian H = a1|k|2 + b1|k|2σz. The energy eigenstates
and the velocity operator can be represented as the eigenstates
of σz and v̂i = 2ki

h̄
(a1 + b1σz), respectively. Using these, it

is readily shown that the matrix element Mss ′
i (k) ∝ δss ′ and,

thus, interband transitions are forbidden in the pristine case.
In contrast, in the strained case, interband transitions are
allowed, thus resulting in the nonzero optical response. The
nonzero velocity term [vkzσy in Eq. (10)] makes the wave
functions k dependent, leading to the nonvanishing matrix el-
ement for the interband transitions. We have calculated the in-
terband optical conductivity as a function of the strain; results
for 1% to 5% are summarized in Fig. 7 [92]. Notably, both σxx

and σzz exhibit a sudden increase at around h̄ω = μ − EDLN

for a given strain, which corresponds to the size of the optical
gap arising from the Pauli blocking. In detail, the conduction
band is partially filled near the DLN as the chemical potential
is placed above the energy of the DLN (μ > EDLN). In order
for an optical transition to occur, an electron in an occupied
state of the valence band, whose energy is ∼EDLN as the
valence band is nearly flat on the kx-ky plane, as shown in
the inset in Fig. 3(b), should acquire the energy to overcome
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the chemical potential (the Pauli blocking) and transit to an
unoccupied state of the conduction band. The threshold for
the optical conductivity is decreased as the strain increases
since the energy of the nearly flat valence band is increased.
Thus, the energy of the DLN (EDLN) increases below the
chemical potential, leading to the decrease in the offset energy
μ − EDLN. Such a qualitative change upon straining of the
material, i.e., a sudden rise in the optical conductivity, is a
key signature of the emergence of the Dirac line node induced
by the strain. We note that other kinks in Fig. 7(b) appear
near h̄ω ∼ 0.25 eV, which originate from the topological
change in the phase space where interband transitions are
allowed [89].

VII. DISCUSSION AND SUMMARY

In summary, we have characterized a type-II topological
DLN semimetal and proposed strained Na3N as its material
realization. We have shown that type-I/type-II DLNs can
be classified in an equivalent manner by the mathematical
formalism governing any one of three features: the Fermi
surface geometry, the sign inversion of the band velocity, or
the band curvature. We believe that these connections provide
a fundamental and clear picture for the type-I/type-II classifi-
cation of DLNs. In addition, the type-II condition represented
in terms of the band velocity should provide a computationally
convenient way to determine the types of DLNs. Furthermore,
our extensive DFT calculations predict that a type-II DLN
semimetal should be realized in Na3N under epitaxial strain.
We propose the drumhead surface state spectrum and optical
conductivity as two key physical manifestations indicating
the existence of a type-II DLN in strained Na3N. In partic-
ular, the optical response is expected to undergo a sudden
jump under strain due to the creation of a DLN, while the
interband transition in pristine Na3N is suppressed by the
selection rule. This feature should serve as experimental ev-
idence of the type-II DLN semimetal phase hosted in strained
Na3N.

Encouragingly, the synthesis of pristine Na3N has been
reported in the literature [93–95]. However, to the best of
our knowledge, the literature disagrees with our DFT calcu-
lation. For example, the optical response of Na3N reported
in Ref. [86] for visible light and near-IR spectra results in
a sizable optical band gap, 1.6–2.0 eV. Also, first-principles
calculations based on self-interaction correction (SIC) and
G0W0 methods support the experiment [87]. Clearly, they
stand in contrast to our calculation based on the LDA and
HSE. On the other hand, the band-gap calculation based on
the HSE06 hybrid functional, which reproduces experimental
band gaps with a high degree of accuracy in some systems
[96–100], also shows metallic behavior in line with the LDA
and GGA calculations (see Appendix A).

As described in Sec. IV, the inversion of the s and p

bands at the � point is a key ingredient for the formation
of a DLN as well as the band gap. The band inversion is
captured by the LDA or HSE06 calculation but, apparently,
not by the previous SIC or G0W0 calculations. To better
understand the origin of this discrepancy, we made tight-
binding fits to the band structures of HSE06, SIC, and G0W0

as shown in Appendix A. Compared to the estimation by the

LDA results, other calculations showed an increase in the
on-site energy of Na s orbitals, ENa,s : by +0.65, +1.10, and
2.25 eV, respectively. The dramatic increase in ENa,s in the
case of SIC and G0W0 is presumably responsible for the lack
of band inversion at the � point, as well as the consequent
absence of a DLN. Tight-binding models deduced from fits of
SIC and G0W0 bands gave the trivial topological number, as
expected.

We believe that the metallicity of Na3N yet requires further
confirmation via accurate band-gap measurements, such as
absorption spectra with low-energy photon energies or trans-
port experiments. The previous experiment was performed
using Na3N powders, which could potentially contain exces-
sive Na, as mentioned in Ref. [86]. Therefore, the existing
discrepancy regarding the metallicity of Na3N is a source for
pursuing careful experimental verification of the electronic
properties of this material, given our finding of topological
nodal semimetallic behavior with a novel velocity dispersion
under strain.
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APPENDIX A: BAND STRUCTURE CALCULATION WITH
OTHER TYPES OF EXCHANGE-CORRELATION

FUNCTIONALS

Figures 8(a) and 8(b), respectively, show the band struc-
tures of pristine Na3N obtained using the GGA and HSE06
exchange-correlation functionals. Both electronic band struc-
tures are calculated as metallic, similar to the LDA result. In
contrast, the literature reports band structures of Na3N calcu-
lated using the SIC and G0W0 [87] which are semiconducting.
These contrasting results reflect a well-known band-gap issue
of DFT functionals. We attribute this disagreement mainly
to the different description of the on-site energies of the Na
s orbital. We find five sets of tight-binding parameters that
reproduce the DFT results with each of the five schemes
(LDA, GGA, HSE06, SIC, and G0W0) (see Fig. 8 for the
GGA, HSE06, SIC, and G0W0 band structures). The on-site
energies of the Na s orbitals for the GGA, HSE06, SIC, and
G0W0 results are increased by 0.00, 0.65, 1.10, and 2.25 eV
with respect to the LDA result. The differences in on-site
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FIG. 8. (a) GGA band structure (dashed line) of pristine Na3N
and tight-binding band structure reproducing the GGA result (solid
line). (b) HSE06 band structure (dashed line) of pristine Na3N and
tight-binding band structure reproducing the HSE06 result (solid
line). (c) Tight-binding band structure reproducing the SIC and
G0W0 results in [87].

energies ENa,s lead to the semimetallic (semiconducting) band
structures of the LDA, GGA, and HSE06 (SIC, G0W0) EN,p.
Accordingly, we find a DLN in the LDA, GGA, and HSE06
results under strain, but not in the SIC and G0W0 calculations.

To resolve the discrepancy of different DFT methods, and
to confirm the type-II DLN semimetal phase in Na3N under
strain, we emphasize that a careful set of new experiments on
both pristine and strained Na3N is crucial. A previous optical
conductivity experiment on the powdered Na3N tentatively
reached a conclusion in favor of an energy gap at the �

point [86], but we feel that significant refinement of both the
sample preparation and the measurement are still in demand,
preferably on single-crystalline samples.

APPENDIX B: EFFECT OF SPIN-ORBIT COUPLING

For the sake of completeness of the study, we calculate
the electronic band structure of Na3N with SOC shown in
Fig. 9(a). Indeed the effect of SOC is negligibly weak. It
is found that SOC opens a tiny band gap along the entire
DLN. As shown in Figs. 9(b) and 9(c), a band gap opens by
∼5.6 and ∼5.7 meV on the high-symmetry �-M and �-X
lines, respectively. Considering SOC, strained Na3N can be
considered a strong topological insulator protected by time-
reversal symmetry. We confirm the nontrivial topological in-
sulator phase induced by SOC by calculating the Z2 invariants

FIG. 9. (a) Electronic band structure of strained Na3N with and
without SOC. The SOC band is represented by the solid line; the non-
SOC band, by the dashed line. Magnified views of the band structure
on (b) �-M and (c) �-X. The size of the SOC gap on �-X (�-M) is
calculated as ∼5.6 meV (∼5.7 meV).

using parity eigenvalues. This calculation results in (1;000),
indicating a strong topological insulator.

APPENDIX C: PARAMETERS OF THE k · p
HAMILTONIAN

In Table IV, we present the parameters of the k · p Hamil-
tonians for the pristine and the 1%, 2%, 3%, 4%, and 5%
strained Na3N which best reproduce the corresponding first-
principles band structures. These parameters were used to
calculate the optical conductivities presented in Sec. VI B.

TABLE IV. Parameters of the k · p Hamiltonians for pristine and
1%, 2%, 3%, 4%, and 5% strained Na3N.

Strained

Parameter (eV) Pristine 1% 2% 3% 4% 5%

a1 5.00 5.00 5.00 5.00 5.00 5.00
b1 4.60 4.60 4.60 4.60 4.60 4.60
a2 5.00 4.82 4.64 4.46 4.28 4.00
b2 4.60 4.46 4.32 4.18 4.04 3.80
v 0.00 0.65 0.78 0.92 1.02 1.05
kD 0.00 0.070 0.095 0.109 0.125 0.140
μ − EDLN 0.248 0.210 0.190 0.178 0.165 0.150
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