
PHYSICAL REVIEW MATERIALS 2, 104001 (2018)

Excess electron screening of remote donors and mobility in modern GaAs/AlGaAs heterostructures
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In modern GaAs/AlxGa1−xAs heterostructures with record high mobilities, a two-dimensional electron gas
(2DEG) in a quantum well is provided by two remote donor δ layers placed on both sides of the well. Each
δ layer is located within a narrow GaAs layer, flanked by narrow AlAs layers which capture excess electrons
from donors but leave each of them localized in a compact dipole atom with a donor. Still excess electrons can
hop between host donors to minimize their Coulomb energy. As a result they screen the random potential of
donors dramatically. We numerically model the pseudoground state of excess electrons at a fraction f of filled
donors and find both the mobility and the quantum mobility limited by scattering on remote donors as universal
functions of f . We repeat our simulations for devices with additional disorder such as interface roughness of the
doping layers, and find the quantum mobility is consistent with measured values. Thus, in order to increase the
quantum mobility this additional disorder should be minimized.
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I. INTRODUCTION

Modern GaAs/AlxGa1−xAs heterostructures with an ul-
trahigh mobility two-dimensional electron gas (2DEG) are
the result of spectacular progress in molecular beam epitaxy
[1–9]. An increase of the electron mobility by nearly four or-
ders of magnitude over the last several decades lead to impor-
tant discoveries, including odd- [10] and even-denominator
[11] fractional quantum Hall effects and stripe and bubble
phases [12–14].

A typical modern GaAs/AlxGa1−xAs heterostructure,
schematically shown in Fig. 1(a), consists of a GaAs quantum
well of width w = 30 nm. A 2DEG with a concentration ne �
3 × 1011 cm−2 is provided to this well by two remote donor
layers symmetrically positioned at distances d � 70–85 nm
from the edge of the well.

These devices have a sophisticated design which substan-
tially reduces electron scattering [6,7]. As shown in Fig. 1(b),
each remote donor layer consists of a narrow 3 nm GaAs
quantum well, which is doped in the middle by a δ layer of
Si donors with a typical concentration n ∼ 1012 cm−2. This
layer is surrounded by two AlAs layers of width of 2 nm. For
these widths of the AlAs and GaAs layers, electrons which
are not transferred to the 2DEG (excess electrons) are stored
in the AlAs side wells because the relevant effective mass
in AlAs is much larger than in GaAs. Each excess electron
pairs with a donor in a compact dipole atom and is localized,
so that its low-temperature parallel-to-2DEG conductance is
activated. Furthermore, excess electrons hop between donors,
minimizing their Coulomb energy; this leads to significant
correlations in the positions of charged donors [15–20] and
thus to a dramatic reduction of RD scattering. In our recent
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paper [21] we call this redistribution of electrons excess elec-
tron screening (EES). EES is different from the conventional
screening by the 2DEG which exists on top of the EES.

In Ref. [21] we presented analytical estimates for the ef-
fects of EES on the low temperature mobility μ and quantum
mobility μq [22]. Here we verify the estimates of Ref. [21]
by numerically modeling EES and calculating both mobilities
limited by a single remote donor layer containing donors with
concentration n and excess electrons with concentration f n.
Here f is what we call the donor filling fraction. In the device
shown in Fig. 1(a), neutrality requires that f = 1 − ne/2n and
f can be varied by changing n. In addition, some electrons can
be lost to the device surface (not shown) and f can be different
for two devices with the same n. Thus, for our analysis we
treat f as an independent variable. We show below that the
mobilities can be written as

μ(f ) = F (f )
e

h̄
k3
F d5

w = F (f )μ0, (1)

μq (f ) = Fq (f )
e

h̄
kF d3

w = Fq (f )μq,0, (2)

where kF = (2πne )1/2 is the Fermi wave number of the 2DEG
and dw ≡ d + w/2 is the distance between the midplanes of
the quantum well and the remote donor layers. For ne = 3 ×
1011 cm−2 and dw = 90 nm, we have

μ0 = 230 × 106 cm2

V s
, (3)

μq,0 = 1.5 × 106 cm2

V s
. (4)

The dimensionless mobilities F (f ) and Fq (f ) account for
the effects of EES. Their asymptotic expressions at f � 1 and
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FIG. 1. (a) A schematic view of a modern GaAs/AlxGa1−xAs
heterostructure. The 2DEG (shown in blue) resides in a GaAs well
of thickness w and is provided by two remote donor layers (shown
in red) separated by AlxGa1−xAs barriers of thickness d (shown
in gray). Here, − and + represent negative and positive charges
in the 2DEG and the remote donor layers, respectively. (b) An
enlarged view of a small section of the remote donor layer at a
filling fraction f � 0.6. Excess electrons (−) in AlAs form compact
dipoles (ellipses) with the nearest donors (+) in GaAs. Empty donors
(also shown by +) alternate with compact dipoles due to Coulomb
repulsion between the excess electrons. Only empty donors are
shown in Fig. 1(a).

1 − f � 1 are [21,23]

F (f ) =
{

24f 3, f � 1,

7.7(1 − f )−1, 1 − f � 1,
(5)

Fq (f ) =
{

24f 3, f � 1,

6.5(1 − f )−1, 1 − f � 1.
(6)

Equations (1) and (2) are valid only if they predict mobili-
ties larger than the standard values in the presence of n donors
and no excess electrons (f = 0) [24–26],

μ(0) = 8e

πh̄

(kF dw )3

n
, (7)

μq (0) = 2e

π h̄

kF dw

n
. (8)

For ne = 3 × 1011 cm−2, dw = 90 nm, and n = 1012 cm−2,
these mobilities are at least 10 times smaller than the values
shown in Fig. 2.

We evaluate F (f ) and Fq (f ) numerically at all f . Our
main results are shown by squares in Fig. 2. At dw > rs, k

−1
F ,

the functions F (f ) and Fq (f ) should be independent of dw

so that they are universal. Indeed we found that both F (f )
and Fq (f ) are indistinguishable for dw = 7, 9, and 10 in units
n−1/2. For f � 1 and 1 − f � 1 they agree with our Eqs. (5)
and (6). Best linear fits of the data are given by

log F (f ) = 3.3f − 0.9, (9)

log Fq (f ) = 3.6f − 1.1, (10)

and we see that F (f ) � Fq (f ) for all f .
We see in Fig. 2 that, at f � 1, Eq. (5) is significantly

smaller than the numerical results, while Eq. (6) is only
slightly smaller. This discrepancy originates from the approx-
imations used in Ref. [21], where the inverse mobility was

FIG. 2. The numerical results (squares) for the dimensionless
mobilities F (f ) (a) and Fq (f ) (b) defined in Eqs. (1) and (2) plotted
on a log-linear scale. Asymptotic estimates [21], Eqs. (5) and (6),
are shown at f � 1 (thin dashed lines) and at 1 − f � 1 (solid
curves). Improvements to Eqs. (5) and (6) at f � 1 for dw = 9n−1/2

are shown by the thick dashed lines [see discussion below Eq. (18)].
Best-fit equations (9) and (10) are shown by the solid straight lines.
Corresponding values of μ and μq are shown on the right vertical
axis for μ0 and μq,0 given in Eqs. (3) and (4).

calculated to the lowest order in rs/dw and made F (f ) and
Fq (f ) universal functions. Restoring the dependence on rs/dw

significantly improves the agreement at f � 1, as shown by
the thick dashed lines in Fig. 2, where μ and μq were cal-
culated for dw = 9n−1/2. For more details see the discussion
below Eq. (18).

II. NUMERICAL PROCEDURE

Let us now explain how we arrive to these results. First
we generate N = 104 randomly positioned donors in a square
with side L. Then we find the pseudoground state of the
system of f N electrons which occupy f N donors in the
presence of a neutralizing uniform background charge with
density −e(1 − f )n, where n = N/L2. All charged donors
have oppositely charged pointlike images in the 2DEG at the
distance dw. We minimize the energy of electrons following
the algorithm used in Refs. [15,16,27] and arrive at the set of
charged donor coordinates in a pseudoground state.

The spacial fluctuations of charge is then measured by
convolving the charge density of our square with a “Gaussian
envelope.” Namely, we calculate the weighted number of
charges in our Gaussian envelope centered in the middle of
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FIG. 3. Plots of (πR2n/2)/δN 2
R vs Rn1/2 on a log-linear scale

for 0.20 � f � 0.93. Values of f are given in the legend.

our square at (0,0) as

NR =
∑

i

exp

[
−

(
x2

i + y2
i

)
R2

]
, (11)

where the sum runs over all charged donors and R is the
envelope “radius.” We average NR and N2

R over 100 random
realizations of our squares for each f . Then we find the
mean square fluctuation of the number of charged donors in
a Gaussian envelope:

δN2
R = 〈

N2
R

〉 − 〈NR〉2, (12)

where 〈· · · 〉 denotes averaging over 100 realizations In
the absence of correlations (f = 0), 〈NR〉 = πR2n, 〈N2

R〉 =
πR2n/2 + (πR2n)2, and δN2

R = πR2n/2.
The results of our simulation of δN2

R for 0.20 � f �
0.93 are shown in Fig. 3 as the ratio (πR2n/2)/δN2

R on
a logarithmic scale. EES reduces δN2

R relative to πR2n/2
dramatically with increasing f : δN2

R ∼ 1 at f = 0.20 and
δN2

R ∼ 0.02 at f = 0.92. The values of f shown in Fig. 3
are measured in the center of the square with the help of the
identity 〈NR〉 = πR2n(1 − f ) and are slightly larger than the
original f due to the fringe field at the edge of the square.

δN2
R can be related to the correlator of charge density fluc-

tuations D(r, r ′) = 〈n(r )n(r ′)〉 − 〈n(r )〉〈n(r ′)〉 [r = (x, y)
is a vector in the x-y plane], where n(r ) = ∑

i δ(r i − r ).
Treating the sum in Eq. (11) as an integral over n(r ), Eq. (12)
can be written as

δN2
R =

∫∫
D(r, r ′) exp

[
− (r2 + r ′2)

R2

]
d2r d2r ′. (13)

Far from the edges of our square, D(r, r ′) = D(r − r ′) and
we may relate it to its Fourier image D(q ) as

D(r ) = 1

(2π )2

∫
D(q ) exp(−iq · r )d2q. (14)

Combining Eqs. (13) and (14), we find

δN2
R = R4

4

∫
D(q ) exp

[
− (qR)2

2

]
d2q. (15)

Below we use

D(q ) = (1 − f )n(qrs )2

(1 + qrs )2(1 − exp[−2qdw])2
(16)

FIG. 4. The effective screening radius rs (f ) in units n−1/2 ob-
tained from fits of the numerical simulations for dw = 7, 9, and 10 in
units of n−1/2.

to fit Eq. (15) and find the screening radius of the excess
electrons rs (f ) as a single fitting parameter. Equation (16)
was used for f � 1 in Ref. [21] and led to Eqs. (5) and (6).
Here we have added the additional factor (1 − f ) because
the concentration of charged donors is (1 − f )n. For dw =
9n−1/2 the best fits of our data are shown by the solid lines
in Fig. 3. We repeated the simulations for dw = 7n−1/2 and
dw = 10n−1/2 and found the same rs (f ) as shown in Fig. 4.

Now the mobilities μ and μq can be calculated according
to

μ−1 = 2πh̄

ea2
B

∫ 2π

0

dθ (1 − cos θ )e−2qdw

(q + qTF)2
D(q ), (17)

μ−1
q = 2πh̄

ea2
B

∫ 2π

0

dθe−2qdw

(q + qTF)2
D(q ), (18)

where q = 2kF | sin(θ/2)| is the transferred momentum, θ is
the angle between the initial electron wave vector k and the
final wave vector k + q, qTF = 2a−1

B is the inverse Thomas-
Fermi screening radius of the 2DEG, aB = κh̄2/m�e2 �
10 nm is the effective Bohr radius in GaAs, and κ is the
dielectric constant. Using Eqs. (16)–(18) with our results for
rs (f ) shown in Fig. 4, we arrive at F (f ) and Fq (f ) shown in
Fig. 2.

In Ref. [21], we used the approximate screening radius
rs = 0.18f −3/2n−1/2 at f � 1 to calculate μ and μq using
Eqs. (16)–(18). In order to obtain the simple expressions
in Eqs. (5) and (6), we assumed rs � dw and set the de-
nominator (1 + qrs )−2 = 1 in Eq. (16). In order to improve
the agreement with the numerical results in Fig. 2, we have
calculated μ and μq using Eq. (16) without this approximation
for dw = 9n−1/2 and the approximate rs and obtained the thick
dashed lines in Fig. 2. For this calculation, we again assumed
k−1
F , aB � dw, so that the functions F (f ) and Fq (f ) depend

only on f and nd2
w.

III. DISCUSSION

We start this section by comparing our results with the
previous works of Refs. [15,16,20]. Although our work deals
with the same problem as Refs. [15] and [16], our results for
μ are different (Refs. [15] and [16] did not address μq). The
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difference with Ref. [15] is obvious for 1 − f � 1, where its
mobility is much larger than ours. This is because Ref. [15]
only allowed for large scale fluctuations of donor concentra-
tions, while at 1 − f � 1 the nearest neighbor disorder which
“melts” the hole Wigner crystal dominates [21]. On the other
hand, Ref. [16] deals only with a very small spacer d = 10 nm
where EES and 2DEG screening are strongly entangled.

Our results are also different from those of Ref. [20].
Most of this paper is devoted to Monte Carlo modeling of
correlations of charged donors when electrons must overcome
an energy barrier in order to hop to a donor downhill in energy
(such as Si donors in AlGaAs forming DX centers). As a
result the electron distribution freezes at some temperature
which determines the strength of charged donors correlations.
However, in the modern structures discussed in this paper,
electrons see no such barrier for hops between donors that
are downhill in energy, and therefore manage to reach their
ground state arrangement on donors which we use to describe
correlations [21].

So far we have dealt only with ideal devices in which the
only disorder is the random position of the donors within
the δ layer. In real devices, there are additional types of
disorder such as the spreading of the donors throughout
the GaAs layer shown in Fig. 1(b), and roughness of the
AlGaAs/AlAs/GaAs interfaces of the remote donor layers
[21]. This additional disorder can be quite substantial, for
instance the roughness of the AlGaAs/AlAs/GaAs interfaces
can shift the quantization energy of the excess electrons by
several e2n1/2/κ , where e2n1/2/κ is the scale of the Coulomb
interaction. Such large disorder increases rs , weakens EES,
and reduces the mobilities. To model this disorder, we added
to each donor site a random energy E chosen from a Gaus-
sian distribution (2π )−1/2�−1 exp[−E2/(2�2)]. The resulting
F (f ) and Fq (f ) obtained from simulations with � = 2 and
� = 4 in units of e2n1/2/κ are shown in Fig. 5 along with
the best fit results for � = 0. Due to increased fluctuations of
the results for � = 2, 4, we averaged over 400 realizations
of a 100 × 100 square for both �. We see that at small
f the difference between the mobilities for � = 2, 4 and
� = 0 is small. However at f � 0.4 the growth of mobil-
ities with increasing f slows and eventually saturates. For
� = 4, and for ne = 3 × 1011 cm−2 and dw = 90 nm, we
find that μq saturates at a level comparable to the highest
measured values of 1–2 × 106 cm2V−1s−1 [5,28], while μ

is still ten times larger than the largest experimental values.
On the other hand, background impurities may limit μq at
the same level [21]. This suggests that the improvement
of μq in record samples requires the minimization of this
additional disorder together with the reduction of background
impurities.

Finally, let us mention a possible experiment to verify these
results. When the distance dw between the doping layers and
the 2DEG is varied, the 2DEG concentration changes as ne ∝
1/dw [7]. This simultaneously changes the filling fraction in
a doping layer according to f = f0 − ne/2n, where 1 − f0

is the fraction of electrons that the top doping layer has lost
to the surface. In Fig. 6 we have plotted μ and μq using
Eqs. (9) and (10) as functions of the electron concentration ne

for a fixed donor concentration n = 1012 cm−2 and f0 = 0.4.
Power law fits show that μ decreases with increasing den-

FIG. 5. The universal functions F (f ) and Fq (f ) obtained from
numerical simulations in the presence of additional Gaussian dis-
order of width � are shown for � = 2 and � = 4 in units of
e2n1/2/κ . The best fit lines for � = 0 are given by the solid lines.
Corresponding values of μ and μq are shown on the right vertical
axis for μ0 and μq,0 given in Eqs. (3) and (4).

sity as n−4.6
e , while μq decreases somewhat slower as n−3.7

e .
Conversely, in the absence of EES and for n = ne, Eqs. (7)
and (8) predict much weaker dependencies of μ ∝ n−2.5

e and
μq ∝ n−1.5

e .
In conclusion, we have demonstrated the dramatic effects

of EES numerically, and have shown that in an ideal device
shown in Fig. 1 both the mobility μ and the quantum mobility
μq increase by orders of magnitude with the filling fraction
f in agreement with Ref. [21]. In realistic devices, additional

FIG. 6. Mobility μ and quantum mobility μq as functions of ne

plotted on a log-linear scale. Here we assume the mobilities are
limited by a single donor layer with n = 1012 cm−2 donors, where
0.6n excess electrons have been lost to the surface.
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disorder in the doping layers may limit μq at values consistent
with experimental data. Furthermore, background impurities
are known to limit μ and maybe even μq . This means that
while the cleaning of the Ga and Al sources should result in
an increase in μ [8,29], an increase in μq may also require
better implementation of the doping layers.
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