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Boosting material modeling using game tree search
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We demonstrate a heuristic optimization algorithm based on the game tree search for multicomponent
materials design. The algorithm searches for the largest spin polarization of seven-component Heusler alloys.
The algorithm can find the peaks quickly and is more robust against local optima than Bayesian optimization
approaches using the expected improvement or upper confidence bound approaches. We also investigate Heusler
alloys, including antisite disorder, and we show that [Fe0.9Co0.1]2Cr0.95Mn0.05Si0.3Ge0.7 has the potential to be a
high-spin-polarized material with robustness against antisite disorder.
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I. INTRODUCTION

The complexity of industrial materials is increasing as
a result of technological progress in materials processing.
However, optimization of materials is affected by the curse
of dimensionality; the difficulty increases exponentially with
the number of parameters (e.g., number of components and
heat treatment conditions) [1]. For this reason, efficient search
algorithms that find optimum parameters by operating on only
a few sampling points are in great demand to decrease costs.

A well-known search strategy is to determine the next
sampling point according to the previous results. One popu-
lar algorithm adopting this strategy is the genetic algorithm
(GA) [2–4]. Previous studies have shown that the GA can
optimize castings [5–8] and magnetic alloys [4,9]. However,
it is also reported that controlling the genes’ diversity is so
difficult that the algorithm usually converges prematurely and
induces wasteful duplication of sampling points [10,11]. To
decrease the number of redundant sampling points, not only
the expected result but also the expected uncertainty should
be considered prior to selecting the sampling points.

Figure 1(a) shows an example of Gaussian process re-
gression, which is a useful way to take into account both
the expected result and uncertainty. In this plot, the black
crosses are sampling points and the green dashed line shows
the exact value. The blue solid line and yellow-shaded area
are, respectively, the expected result and range of uncertainty
estimated from the previous results. The next sampling point
(indicated by the black arrow) is determined in accordance
with the priority P (x), e.g.,

P (x) =
∫ ∞

fmax

dy(y − fmax) exp{−[f (x) − y]2/σ (x)} (1)

or

P (x) = f (x) + Cσ (x), (2)

where f (x) is the expected value, σ is the expected error, fmax

is the best (maximum) result obtained by the previous results,
and C is a hyperparameter indicating the weight of ambiguity.
Equation (1) is referred to as the expected improvement (EI)
algorithm [12], and Eq. (2) is called the upper confidence

bound (UCB) strategy [13]. The EI algorithm and UCB strat-
egy are simple and have been used in materials modeling of
low-degree-of-freedom systems [14,15].

However, the EI algorithm and UCB strategy are hardly
applicable to multidimensional optimization for two reasons.
The first is that the cost of calculating the expected values
and errors in the entire search space exponentially increase
with the number of parameters and resolution. The second is
that these approaches are vulnerable to incorrect predictions.
This vulnerability can be seen in the example of Gaussian
process regression for the two-dimensional function shown
in Figs. 1(b)–1(d). Figure 1(b) is the exact value, Fig. 1(c)
is the expected error (the red crosses are sampling points),
and Fig. 1(d) is the expected value. One can see that Gaus-
sian process regression makes incorrect predictions around
(0, 4.5), (0, 2.5), and (4, 2.5) [Fig. 1(d)] and most of the
search space has a large error, unlike the one-dimensional case
[Fig. 1(c)]. Figures 1(e) and 1(f) show the priorities obtained
by Eq. (1) and Eq. (2), respectively. One can see that P (x)
around the overlooked peaks is too low for any of them to be
selected as the next sampling point. In this case, P (x) around
the overlooked peaks can be raised by tuning C; however, the
appropriate value of C depends strongly on the target function
and the previous results, and it varies during the optimization.
Therefore, it is difficult for the EI algorithm and UCB strategy
to avoid local optima.

We addressed these problems by using a game tree search.
The game tree search can manage the spatial resolution of the
expectation by varying the depth of the tree. It maintains a
balance between a dense search (optimization around a peak)
and a sparse search (exploration for unknown peaks), and we
found that it is about nine times faster than previous methods
at optimizing the spin polarization of multicomponent Heusler
alloys.

II. METHOD

Figure 2 shows a virtual sampling in which a game tree
search was used to optimize the composition of FexPt1−x

alloy with regard to a certain physical value, i.e., the magnetic
moment. The game tree search limits the candidates for the
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FIG. 1. Example of Gaussian process regression in one-
dimensional (a) and two-dimensional (b)–(f) cases. In (a), the green
dashed line is the exact value (sine function), the black crosses
are sampling points, the blue solid line is the expected result, and
the yellow area is the expected error. The next sampling point is
indicated by the black arrow. Panel (b) is the exact value, (c) is the
expected error, where the crosses are sampling points and the number
of the data is 30, (d) is the expected result, and (e) and (f) are the
priorities P (x ) obtained by Eqs. (1) and (2), respectively, at C = 1.0.

next sampling points such that they are only in the vicinity of
the current sampling point and sets the spatial resolution in
accordance with the depth of the tree. The distance between
the candidates and the sampling point takes two kinds of

FIG. 2. Schematic image of game tree search.

value, d0 and 2−Dd0, where d0 is the initial spatial resolution
and D is the depth of the point. In the upper panel of Fig. 2,
Fe0.3Pt0.7, Fe0.7Pt0.3, Fe0.6Pt0.4, and Fe0.4Pt0.6 are generated
from Fe0.5Pt0.5, where d0 is set to be 0.2. The next sampling
point is determined by comparing the priorities of the can-
didates by using Eq. (1) or (2) (Fe0.4Pt0.6 is selected in the
example). After the measurement, the game tree generates the
candidates from the current set of measurement points (lower
panel of Fig. 2). If the estimated uncertainty is lower than
emin or the estimated result is lower than rminvbest, we can
exclude this point from the set of candidates (error pruning);
emin and rmin are parameters set by the user, while vbest is the
best value among the previous measurements. Error pruning
helps to avoid redundant measurements and accelerates con-
vergence. The pseudo code of the game tree search is shown
in Listing 1.

Listing 1. Pseudo code of the game tree search.

1 class Leaf :
2 depth /∗ depth of leaf ∗/

3 comp /∗ composition ∗/

4
5 Function Mutation(parent, add_depth):
6 if add_depth == true:
7 leaf.depth = parent.depth + 1
8 else:
9 leaf.depth = 0
10 /∗ norm of random_vector is set to be 1 ∗/

11 leaf.comp = parent.comp + d0 ∗ (0.5^leaf.depth) ∗
random_vector

12 return leaf
13
14 Function GameTree :
15 Table <Leaf> gametree
16 ucbtree.add(startpoint)
17 best = −INF
18 do loop:
19 maxp = −INF
20 for each leaf in leafs:
21 v = Priority(leaf) /∗ UCB or EI ∗/

22 if maxp < v:
23 maxleaf = leaf
24 maxp = v
25 result = Measurement(maxleaf)
26 gametree.delete(maxleaf)
27 if result > best :
28 best = result
29 rb = result / best
30 leaf1 = Mutation(maxleaf, false)
31 leaf2 = Mutation(maxleaf, true)
32 /∗ error pruning ∗/

33 if result/best > rmin and Error(leaf1) > emin:
34 gametree.add(leaf1)
35 if result/best > rmin and Error(leaf2) > emin:
36 gametree.add(leaf2)

III. RESULT

Now we demonstrate a four-dimensional case of com-
position optimization of Heulser alloys, materials that are
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FIG. 3. Results of optimization of spin polarization of
Co2CrxMnyFe1−x−yAlaSibGe1−a−b. The x axis shows the number of
sampling points, thin lines show the spin ratio of the xth sampling
point, and the bold lines show the maximum spin ratio of the first to
xth sampling points. (a) Results of game tree search. (b) Results of
EI (green solid line) algorithm and UCB strategy (red solid line).

potentially useful in random access memories and spin
transfer devices [16,17]. To find promising compositions,
first-principles simulations have been used because of their
low cost [18–23]. However, Heusler alloys have too many
combinations to examine them all. Here, we optimized the
spin polarization p of Co2CrxMnyFe1−x−yAlaSibGe1−a−b by
using a game tree search, the EI algorithm, and the UCB
strategy. The spin polarization was defined as (n ↑ −n ↓
)/(n ↑ +n ↓), where n ↑ and n ↓ are the respective density-
of-state values of up- and down-spin electrons at the Fermi
energy. The density of states was calculated using the Ko-
rringa Kohn Rostoker (KKR) band structure and coherent
potential approximation (KKR-CPA method) [24,25] with the
AKAI-KKR package [24]. The crystal structure was assumed
to be full-Heusler (inset of Fig. 3), and the lattice constant
was made to minimize the total energy in every iteration.
The priority of the candidates in the game tree search was
evaluated using Eq. (2). The importance of the ambiguity C

was set to be the same as in [13] for the UCB strategy and
1.0 for the game tree search. The parameters of the game tree
were d0 = 0.8, rmin = 0.1, and emin = 0.1. The first sampling
composition was x = y = a = b = 0.33. We regarded the
distance between components D(x, y, a, b; x ′, y ′, a′, b′) as

FIG. 4. Comparison of spin polarizations determined in Ref. [35]
(x axis) and from a KKR-CPA calculation (y axis), where
0(blue)/10(red) percent of Y atoms are swapped with X atoms for
X2YZ Heusler alloys.

the Euclidean distance of the normalized components,

D(x, y, a, b; x ′, y ′, a′, b′)2

= (x − x ′)2 + (y − y ′)2 + (x + y − x ′ − y ′)2

+ (a − a′)2 + (b − b′)2 + (a + b − a′ − b′)2. (3)

We used the spin ratio n ↑/n ↓ as the result of each mea-
surement instead of the spin polarization. The spin ratio
monotonically increases with respect to the spin polarization,
and it is useful for accelerating convergence around p ≈ 1.
Figures 3(a) and 3(b) show the calculated spin ratio (y axis)
and the measurement number (x axis) when using the game
tree search [Fig. 3(a)] and EI algorithm and UCB strategy
[Fig. 3(b)]. In this case, the game tree search reached the ex-
pectation that Co2Cr0.8Mn0.2Al has the largest spin ratio. This
expectation does not contradict previous theoretical studies
[26,27]. However, the EI algorithm and UCB strategy both
get trapped in local optima around Co2Cr0.5Mn0.5Al, despite
requiring nine times more sampling points than the game
tree search needed. In particular, the EI algorithm and UCB
strategy spent a lot of time escaping from local optima, e.g.,
Co2MnAl0.08Si0.9Ge0.02 and Co2Cr0.4Fe0.6Al. This problem
stems from that Gaussian process regression made incorrect
predictions during the first several steps because of the few
sampling points that were available to it. However, the game
tree search escaped from local optima quickly. It limited
the resolution of the sampling by using the tree depth. This
limitation forced it to measure compositions outside the local
maximums. Once a higher peak was found, the candidates
around the local optima were pruned.

We also examined a more practical case. Antisite disorder
is inevitable in actual Heusler alloys. Therefore, the effect
of anti-site disorder should be considered in order to predict
actual materials. It can be estimated by calculating the band
gap around the Fermi energy [28,29] and by calculating the
change in spin polarization as a result of swapping atoms
[30–34].

Figure 4 compares the spin polarizations of X2YZ Heusler
alloys determined by the method of Ref. [35] and a KKR-CPA
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FIG. 5. Results of optimizing the spin polarization of
[[FexCo1−x]0.975 [CryMn1−y]0.025]2 [[CryMn1−y]0.95 [FexCo1−x]0.05]
[AlaSibGe1−a−b] by using (a) game tree search where the priorities
of the candidates is defined by Eq. (2) (red solid line) and Eq. (1)
(green solid line), (b) EI (green solid line) algorithm and UCB
strategy (red solid line). The x axis shows the number of sampling
points, the thin line shows the spin ratio of the xth sampling point,
and the bold line shows the maximum spin ratio of the first to xth
sampling points.

calculation. One can see that swapping atoms can eliminate
the effect of antisite disorder.

We optimized the spin polarization of [[FexCo1−x]0.975

[CryMn1−y]0.025]2 [[CryMn1−y]1−α/2 [FexCo1−x]α] [AlaSib
Ge1−a−b], where α percent of the [CryMn1−y] was swapped
with [FexCo1−x]. We fixed the percentage of antisite disorder
(α = 0.05) and allowed the dopant to fill both the (0,0,0)
and (1/2, 1/2, 1/2) positions equally, because optimizing the
disorder conditions would have required a huge amount of
computational resources. The game tree search can also be
used to optimize the disorder; this issue will be addressed in
the future. Figure 5 shows the results. We found that x = 0.9,
y = 0.95, a = 0, and b = 0.3 had the largest spin ratio.

We examined the robustness of the spin polarization of
this composition by changing α to 0.4. The spin ratio was
6.6 (spin polarization of 0.74), which is higher than that of
Co2MnSi [31]. The origin of the reduction in spin polarization
is thought to be the minority energy gap arising from the
anti-site disorder [31,36]. Modulation of the energy gap by
doping is theoretically possible, but practically difficult, be-
cause how doping affects the energy gap is difficult to predict.
Our implementation will open the way to boosting practical
optimizations like this.

FIG. 6. Summary of statistics of the optimization of
Co2CrxMnyFe1−x−yAlaSibGe1−a−b and [[FexCo1−x]0.975

[CryMn1−y]0.025]2 [[CryMn1−y]0.95 [FexCo1−x]0.05] [AlaSibGe1−a−b]
(labeled “disorder”). The x axis shows the number of samplings
needed to reach the maximum spin ratio, and the y axis shows the
maximum spin ratio. The simulation conditions are the same as
those used to make the plots in Figs. 3 and 5.

In conclusion, we developed a game tree search algorithm
for multidimensional optimization. Unlike previous methods,
the game tree search is robust against local optima because
the resolution of the search can be controlled in accordance
with the depth of the tree and local optima can be pruned. We
demonstrated that it is about nine times faster at optimizing
the spin polarization of multicomponent Heusler alloys than
the EI algorithm or the UCB strategy. We also found that
[Fe0.9Co0.1]2Cr0.95Mn0.05Si0.3Ge0.7 has the potential to be a
high-spin-polarized material with robustness against anti-site
disorder. The algorithm is applicable not only to composition
optimization but also to a wide range of topics where regres-
sion usually fails due to unexpected characteristics inside real
materials. The present implementation will open the way to
boosting materials development with AI algorithms.
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APPENDIX

We repeated the simulations and summarized the results in
Fig. 6. The efficiency varied depending on the conditions, e.g.,
the shape of the function, initial sampling point, and hyper-
parameters, but overall, the game tree search performed better
than EI and UCB.
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