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While the microscopic structure of defected solid crystalline materials has significant impact on their
physical properties, efficient and accurate determination of a given polycrystalline microstructure remains
a challenge. In this paper, we present a highly generalizable and reliable variational method to achieve
this goal for two-dimensional crystalline and quasicrystalline materials. The method is benchmarked and
optimized successfully using a variety of large-scale systems of defected solids, including periodic structures
and quasicrystalline symmetries to quantify their microstructural characteristics, e.g., grain size and lattice
misorientation distributions. We find that many microstructural properties show universal features independent
of the underlying symmetries.
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I. INTRODUCTION

The properties of matter in its solid, crystalline state are
typically dictated not only by the elemental composition and
lattice structure but also the microstructure, i.e., the distribu-
tion of grains and lattice defects. The microstructure can have
a great influence on mechanical [1–3], thermal [4–6], electri-
cal [6,7], and other physical properties of the solid phase [8].
However, mapping the exact relationships between the atom-
istic details of the microstructure and the more macroscopic
material properties is a major challenge—realistic microstruc-
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tures are often very complicated and even isolated defects
such as grain boundaries or triple junctions have a large num-
ber of degrees of freedom to be investigated [2,9]. Regardless,
realistic model systems and detailed knowledge of the distri-
butions of grains and defects are paramount to this task.

Modeling the formation of realistic microstructures—
a prerequisite to investigate the connections between mi-
crostructure and material properties—is a formidable chal-
lenge due to the complex elastic interactions between defects
and the vast range of length and timescales involved. While
some progress has been made using traditional atomistic
modeling methods such as accelerated molecular dynamics
(MD) [10], the recently developed phase-field crystal (PFC)
approach is a strong contender. PFC models naturally incorpo-
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rate diffusion and elastoplasticity in defected crystalline mate-
rials and have been shown to produce realistic microstructures
for selected materials [11–13]. Their formulation allows mod-
eling the slow evolution of microstructures with atomic-level
resolution in systems of up to mesoscopic size.

Characterizing and analyzing microstructures remains a
very difficult task, however. While there exist several methods
including variational [14–17] and geometric [18] to detect
the lattice orientation in a polycrystalline material, there have
only been few attempts to further extract and measure the
network of grains as in Ref. [11]. Notably, fully atomistic ap-
proaches [13,19] have been developed to solve both problems
by first assigning an orientation to atoms based on their local
environment and then assigning them to appropriate grains in
an iterative fashion.

Another open issue concerns aperiodic crystalline struc-
tures. In particular, the microstructures of quasicrystals and
their impact on physical properties are not well known.
Quasicrystals are a group of materials that show no long-
range translational order but display long-range orientational
order, which makes structural analysis a major challenge with
traditional means. In particular, they can have, for example,
five, eight, ten or 12-fold rotational symmetries, which are
not possible in regular periodic crystals. First discovered in
1984, quasicrystals are today known to form a family of
hundreds of metallic alloys and soft-matter systems. Qua-
sicrystals have many potential applications due to their low
coefficient of friction, resistance to oxidation [20], and are
also attractive in catalytic [21] and epitaxial [22] applications.
Modeling quasicrystals and their evolution using the PFC
approach shows great promise. Recent works have considered
quasicrystal growth modes [23], interfaces between quasicrys-
talline grains from multiple separate seeds [24], monolayers
on quasicrystalline surfaces [25], and even three-dimensional
quasicrystalline systems [26]. On the other hand, where peri-
odic crystals display an endlessly repeating motif quasicrys-
tals do not obey this rule, which drastically complicates both
the detection of a lattice orientation and grain extraction
with the current methods [11,13,19]. To our knowledge, no
attempts toward grain extraction in quasicrystals have been
reported.

In this paper, we present and benchmark a power-
ful variational method for extracting individual grains
and analyzing the microstructure in two-dimensional (2D)
poly(quasi)crystalline systems from large-scale PFC grain
coarsening simulations. We consider both regular square and
hexagonal lattice types, as well as quasicrystals with ten and
12-fold rotational symmetries. We study the sizes, aspect
ratios, circularities, and neighbor counts of individual grains,
as well as the size ratios, misorientations, and misalignments
between neighboring grains. We demonstrate that the method
can be reliably used to quantify the microstructure of 2D
crystals and quasicrystals.

The remainder of this work is organized as follows: Sec-
tion II A introduces the grain extraction method and Sec. II B
describes the present model systems and the PFC model used
to characterize them. In Sec. III A, the performance of the
grain extraction method is evaluated and in Sec. III B results
of microstructural analysis of different (quasi)lattice types
are given. Section IV concludes and summarizes our results.

Supplemental Material [27] gives more details of our methods
and additional results.

II. METHODS

A. Grain extraction method

The grain extraction method proposed here consists of four
steps. In the first step, a density field describing a crystalline or
quasicrystalline 2D system is transformed into an “orientation
field” indicating the crystallographic or, more simply, the
lattice orientation and crystalline order at each point. In this
paper, for the sake of concreteness and ease of implementation
we consider mainly PFC generated density fields, but virtually
any data containing the spatially distributed atomic density is
acceptable; see Supplemental Sec. S1 [27] for examples. Next,
a “deformation field” is constructed from the orientation field,
highlighting the grain boundaries and isolated dislocations.
Then, the system is segmented into “subdomains” via level-
fill growth in the deformation field. As the final step, some
subdomains need to be merged to recover a structure closer
to the true network of grains. This subsection describes these
steps in detail.

We start with a 2D density field ψ ≡ ψ (x, y), describing
a crystalline system as a periodic lattice of density peaks,
which can be transformed into a smooth, complex-valued
orientation field φ whose argument arg φ represents the local
orientation and whose norm |φ| indicates the local crystalline
order, or lack thereof; namely, defects. The orientation field φ

is given by

φ = {[(ψ − min ψ ) ∗ K][ψ − min ψ]} ∗ G, (1)

and Fig. 1 visualizes some of its different components for a
hexagonal crystal and a ten-fold quasicrystal. In Eq. (1), ψ

is first shifted so that its global minimum becomes zero. The
shifted field is then convolved with a complex-valued kernel
K [Figs. 1(a), 1(b), 1(d), and 1(e)], which is described in more
detail in the next paragraph. This convolution results in a field
whose maxima commensurate with those in ψ display a com-
plex phase corresponding to the local orientation [Figs. 1(c)
and 1(f)]. As an aside, it seems φ can be constructed equally
well by using ψ ∗ K here, but we used (ψ − min ψ ) ∗ K

in our numerical implementation. Next, this convolution is
multiplied by ψ − min ψ to mask out the incommensurate
maxima and to pick out only the commensurate maxima
with the correct orientation [Figs. 1(c) and 1(f)]. Finally, a
convolution with a Gaussian kernel just wide enough to filter
out the atomic-level structure is applied. More specifically, for
our PFC systems, we found the kernel widths σG = 0.15 and
σG = 0.05 in Fourier space (k = 1 corresponds to the first set
of peaks in their Fourier spectra) sufficient for the periodic and
quasilattices, respectively. The method is not very sensitive to
σG as long as the resulting φ is smooth on atomic length scales
(a prerequisite for the subsequent steps of the algorithm).
Excessive smoothing leads to loss of resolution, of course.

The complex-valued, annular kernel K is given in Fourier
space [Figs. 1(b) and 1(e)] by

K (k) = exp
[−(|k| − q )2/

(
2σ 2

K

) + i m arg (k)
]
, (2)

where k = (kx, ky ), q and σK are the major and minor radii,
respectively, i is the imaginary unit and m is the order of
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FIG. 1. Different components of Eq. (1). Amplitude is mapped
to brightness and phase to hue (real-valued fields are shown in gray
scale). The left column is for a hexagonal crystal and the right
column for a ten-fold quasicrystal. Panels (a) and (d) juxtapose
the density field ψ (x, y ) (left half) with the kernel K (x, y ) (right
half) in direct space, whereas panels (b) and (e) show them in
Fourier space. Some image processing has been applied to the left
half of (b) and (e) to make the spectral peaks stand out better.
Panels (c) and (f) contrast the convolution (ψ − min ψ ) ∗ K (left
half) with the product [(ψ − min ψ ) ∗ K][ψ − min ψ] (right half)
which masks out the incommensurate maxima and picks out only the
commensurate maxima with the correct orientation.

rotational symmetry. The kernel’s major radius q is chosen
to match a characteristic length scale in ψ (we used q = 1
to match the lattice constant) and its phase must have the
same order of rotational symmetry m as ψ , e.g., m = 6 for
a hexagonal system. The minor radius σK should be narrow
enough to avoid significant contribution from other, poten-
tially interfering modes (σK = 0.2 appears to work in all the
cases here). The method is not very sensitive to q and σK

as long as the desired length scale is selected predominantly.
This is due to the Gaussian convolution applied that washes
out the fine details. In direct space, the kernel overlaps with
the m neighbors of the m-fold symmetric maxima in ψ

and has the same m-fold symmetry [Figs. 1(a) and 1(d)].
Due to these two properties and the fact that (quasi)crystals
have long-range orientational order, all m neighbors of all
m-fold symmetric maxima contribute the same complex phase
in the convolution (ψ − min ψ ) ∗ K within a single grain.
The commensurate maxima in (ψ − min ψ ) ∗ K display this
complex phase which indicates the neighbor orientations in

ψ [Figs. 1(c) and 1(f)]. Note that this phase 0 � arg φ � 2π

and has to be scaled by 1/m to recover the actual lattice
orientation.

As an aside, it appears possible to form φ for various
even-fold (2, 4, 6, 8,...) symmetric (quasi)lattices. Odd-fold (5,
7,...) quasilattices display double-, i.e., even-fold, symmetry
centers whose degeneracy leads to an ill-defined complex
phase where φ = 0. As a second aside, as with other similar
methods, it is not trivial to extend φ to 3D. The complex-
valued, annular kernel could perhaps be replaced with a spher-
ical three-vector shell. However, while in 2D there is a unique
rotation axis about which the spectrum of ψ is symmetric, in
3D there are several—possibly more than the three sufficient
to rotate a 3D (quasi)crystal—and, depending on the lattice
type, they might not share the same m. Constructing the kernel
then becomes a very unintuitive task in general, but could be
possible for specific simpler lattices such as cubic ones. All in
all, addressing these extended problems goes well beyond the
scope of this work.

Grains are regions of uniform lattice orientation. Due to
the discrete nature of (quasi)lattices, where two grains meet
continuous deformation and structural defects accommodate
the orientational mismatch. We exploit the fact that grains
are enclosed by such imperfections in extracting grains. The
orientation field retains such features which can be mapped by
the magnitude of its gradient

|∇φ| =
√

�(φx )2 + �(φx )2 + �(φy )2 + �(φy )2, (3)

where � and � give the real and imaginary parts, respectively,
while φx and φy denote the partial derivatives of φ with
respect to the x and y directions. From |∇φ|, one can
construct a filtered, smooth deformation field χ that is more
compatible (explained in the next paragraph) with the two
final steps of the grain extraction algorithm. The deformation
field is given by

χ =
2na<min(W,H )/2∑

n=0

|∇φ|p ∗ exp[−|r|2/(2 · 22na2)]

max{|∇φ|p ∗ exp[−|r|2/(2 · 22na2)]} ,

(4)

where a is the lattice constant, W and H are the dimensions
of the system, and p is a tunable exponent. Equation (4) gives
a sum of normalized convolutions between a power of the
gradient and Gaussian kernels of width 2n lattice constants.
The sum is truncated before the kernel width reaches the
smaller of the system dimensions. Figure 2 demonstrates φ

and χ for polycrystalline systems of hexagonal and 12-fold
quasicrystalline lattice types. Grain boundaries and individual
defects appear in |∇φ| as regions of higher values and
exponent p can be used either to boost (p > 1) or to attenuate
(p < 1) them. The effect of p on the final segmented grain
structure and its values found suitable for the lattice types
considered here are discussed in Sec. III A 2.

With the help of χ , a polycrystalline system can be seg-
mented into subdomains. Each local minimum in χ is treated
as a seed and the subdomains are grown from these seeds by
climbing the χ value landscape. All growth fronts climb χ

at the same rate and stop when the subdomains collide. The
lattice orientation of a subdomain is given by the average of
φ over it. This procedure is illustrated by the time series in
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FIG. 2. Polycrystalline hexagonal (top panels) and 12-fold quasicrystal (bottom panels) from the PFC model. In (a) and (d), we show the
density field ψ , in (b) and (e), the orientation field φ, and in (c) and (f), the deformation field χ . The scale bars have lengths 40ahex and 20ahex

for the hexagonal and the 12-fold systems, respectively.

Fig. 3. We considered using |�φ|p directly as the deformation
field in lieu of χ , but the former has a large number of local
minima each corresponding to a subdomain whose number
exceeds greatly the number of real grains. This additional
complexity is likely to lead to a failure in recovering the
grain structure in the fourth and final step of the algorithm.
Filtering |�φ|p further using a single Gaussian kernel is

also not ideal, as there is a trade-off between getting rid of
the aforementioned excess local minima and smoothing out
small-scale features of the microstructure. The formulation
given by Eq. (4) filters out most unnecessary local minima
without sacrificing much of the small-scale features such as
isolated dislocations and kinks of grain boundaries.

FIG. 3. Time series of subdomain growth in χ . The panels (a)–(f) show snapshots of the growth procedure. The scale bars have
length 40ahex.
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As mentioned above, some grains may host multiple local
minima of χ and are consequently subdivided into multiple
subdomains. As a final step of the grain extraction algorithm,
some neighboring subdomains are merged to recover the true
grain structure. Various criteria for merging were considered,
but because the subdomains to be merged typically have
very similar lattice orientations, a simple misorientation-based
criterion was found to be sufficient: merge neighboring subdo-
mains if the relative difference between the two lattice orien-
tations θ < θ∗. The optimal choice of θ∗ for each lattice type
is discussed in Sec. III A 2. An additional condition was intro-
duced for very small grains below a certain linear size: such
grains are merged with the neighbor that is closest in lattice
orientation. As the limit, a linear size of five times the lattice
constant was used. Such grains are just barely larger than the
dislocations enclosing them. All lattice types considered in
this work display roughly similar length scales whereby the
approximate dimensionless lattice constant for the hexagonal
lattice ahex = 4π/

√
3 ≈ 7.3 was used for all of them.

Regarding the computational cost of the method, its two
bottlenecks are computing the deformation field χ and the
subdomain growth step. We implemented the several convolu-
tions in the former using parallelized fast Fourier transforms.
The latter was realized as a serial iterative algorithm due to
its complexity. We expect that the latter step can be sped up
significantly by using an improved, parallelized algorithm. It
takes on the order of a few minutes for a quad-core desktop
PC to fully process a system of 8192 × 8192 grid points.
The computational performance of the method is discussed
in more detail in Supplemental Sec. S2 [27].

B. Model systems

We applied the grain extraction method to study the mi-
crostructure and its evolution in polycrystalline systems of
different lattice types. We considered regular square and
hexagonal lattices, as well as ten and 12-fold quasicrystalline
ones. Random polycrystalline 2D systems were obtained from
large-scale grain coarsening simulations carried out using a
phase field crystal (PFC) model. While conventional atom-
istic methods such as quantum-mechanical density functional
theory and MD have limitations related to the length and
timescales available to them, PFC models display multiscale
characteristics that render them ideal for modeling realistic
microstructures and their formation. The main advantage of
PFC models is the access to long, diffusive timescales over
which microstructure evolution takes place. Furthermore, due
to their numerically convenient nature, mesoscopic systems
can be handled readily with atomic-level resolution.

PFC models are a family of continuum methods for struc-
tural and elastoplastic modeling of crystalline matter at the
atomistic scale. Systems modeled using PFC are described
in terms of smooth, classical density fields ψ . Given an
initial guess ψ (t = 0), the system’s evolution is governed by
minimization of its free energy. The free energy is typically
given by a simple functional F (ψ ) incorporating a double-
well potential with gradient terms enabling periodic, i.e.,
crystalline, solutions for ψ . [28–30]. We chose the simplest
PFC model capable of producing the aforementioned four, six,
ten and 12-fold (quasi)crystal symmetries. The free-energy

TABLE I. Model parameters and average densities used for the
four different lattice types considered in this work. The first column,
titled m, indicates the lattice types by their rotational symmetry.

m R N q1 q2 ψ̄

4 −0.18 2 1
√

2 − 0.28
6 −0.18 1 1 – − 0.25
10 −0.07 2 1 2 cos (π/5) − 0.161060
12 −0.25 2 1 2 cos (π/12) − 0.314904

functional of this two-mode model is given by [23,31]

F =
∫

d r

(
ψ

2

(
R +

N∏
n=1

(
q2

n + ∇2)2

)
ψ + ψ4

4

)
. (5)

Here, R is related to temperature: if R is positive (above
melting), the double-well potential Rψ2/2 + ψ4/4 favors
a uniform (liquid) state with ψ = 0, but, if it is nega-
tive (below melting), nonzero densities minimize it. To-
gether with the nonzero densities preferred, the term
ψ (

∏N
n=1 (q2

n + ∇2)2)ψ/2 gives rise to periodic solutions and
to elastic behavior by penalizing deviations from the N = 1
or 2 length scales controlled by the wave numbers qn. We
minimized the free energy and evolved ψ forward in time
assuming diffusive dynamics as

∂ψ

∂t
= ∇2 δF

δψ
, (6)

where δ/δψ indicates a functional derivative with respect to
ψ . Diffusive dynamics strictly conserve the average density ψ̄

which, together with R and qn, controls the symmetries in the
periodic ψ , or in other words, the lattice type of the system.
Related phase diagrams indicating the equilibrium phase as
a function of ψ̄, R and qn can be found in Refs. [11,23].
We adopted ψ̄, R and qn for the hexagonal lattice and the
quasicrystals from these works, whereas for the square lattice
they were found by trial and error. The parameters ψ̄, R, and
qn used for the four different lattice types considered in this
work are given in Table I. We used the semi-implicit spectral
method given in Ref. [30] although similar spectral methods
have been used elsewhere in the literature, for example Ref.
[32] used by Refs. [11,13]. The specific numerical method and
parameters do not appreciably influence the grain extraction
algorithm since the precise atomic behavior is washed out in
computing the orientation field. Note that periodic boundary
conditions ensue from the use of a spectral method.

For the original PFC model with N = 1, for parameters
where the hexagonal phase has the lowest energy, the liq-
uid phase is always linearly unstable with respect to small
deformations [33]. Consequently, to grow a polycrystalline
configuration from a liquid initial state, for most parameter
choices it is sufficient to start with a random density field.
However, for the quasicrystal systems modeled using Eq. (5)
with N = 2 and the parameters given in Table I, the liquid
is linearly stable to small perturbations. The critical size of
initial seeds for stable growth is relatively large for the present
quasilattices with the model parameters and the average den-
sities chosen [23,24]. Stability of the quasicrystalline phases
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FIG. 4. (a) A comparison between the grains determined by
a visual inspection (red) and the subdomains produced by the
present method (blue) for a hexagonal system. The green, cyan,
and orange circles indicate subdomain borders, minor differences in
grain boundary delineation, and inconsistencies, respectively. (b) The
corresponding orientation field φ. The scale bars have length 40ahex.
See text for details.

was ensured by exploiting initial states with moderate-sized
square tiles of the lattice type desired in random orientations.
Tilings of 128 × 128 and 64 × 64 tiles were used for the
periodic and the quasilattices, respectively. All initial lattice
structures were obtained with one-mode approximations, i.e.,
by summing plane waves [25].

The method was also tested on MD-generated data of free-
standing polycrystalline monolayer graphene to investigate
the impact of thermal fluctuations—giving rise to displace-
ments of atoms and to out-of-plane buckling of the sheet—on
the performance of the method. First, relaxed PFC density
fields for polycrystalline graphene were converted into sets
of atomic coordinates. The approx. 48 × 48 nm2 systems
were thermalized at both 1 K and 300 K using a GPUMD
code [34,35] with the Tersoff potential [36,37]. Here, we
reused systems from our previous work on thermal transport
in polycrystalline graphene [4] and the details of the PFC and
MD simulations can be found there in full. The relaxed MD
coordinates were converted back into 2D density fields suit-
able for the present grain extraction code by first projecting
them onto the xy plane and smoothing atoms with Gaussian
peaks.

III. RESULTS

A. Assessment of the grain extraction method

This subsection is dedicated to the assessment of the per-
formance of the grain extraction method and to its optimiza-
tion to reproduce the hand segmentations of the authors of the
patched network of grains in a polycrystalline system. The
preliminary networks of subdomains are first investigated,
before optimizing subdomain merging step to match human
judgment. Lastly, the method’s applicability to MD data is
demonstrated.

1. Assessment of the subdomain network

A prerequisite for capturing the correct grain structure is
a patchwork of subdomains that captures the outlines of the
grains. Figure 4 demonstrates in red color the grain boundaries
in a polycrystalline system as determined by one of the

authors here (K.R.E.) by a simple visual examination of the
atomic number density map. The blue lines are the corre-
sponding subdomain boundaries determined by the present
method. The most typical difference between the two are
the subdomain borders inside the grains due to excess local
minima; a few examples have been highlighted in green.
These are not a major issue as long as the subdomains are
merged appropriately. Minor differences in grain boundary
delineation, highlighted in cyan, are another fairly typical
and rather unimportant feature. Our numerical method misses
some boundaries proposed by K.R.E., highlighted in orange,
but these most often correspond to grain boundaries whose
existence is somewhat ambiguous.

We compared the method to a previous atom-based method
from Ref. [13]. The previous method is applicable to hexag-
onal lattices and has been shown to be robust and highly
accurate. Figure 5 offers a comparison between the grains and
the subdomains given respectively by the previous (red) and
the present method (blue). The overall agreement between the
two methods is very good and most deviations involve minor
differences in grain delineation and small potential artifacts
due to ambiguous grain boundaries and individual disloca-
tions creeping close to grain boundaries; some examples are
highlighted within the green circle. There is a handful of more
complicated structures, circled in orange, where the present
method may misplace or miss ambiguous grain boundaries.
As discussed in Ref. [13], such boundaries are very difficult
to recover in a robust fashion, either with manual or numerical
segmentations. Ultimately, such problems concern only about
1% of all the grains in the system.

2. Assessment and optimization of subdomain merging

The final grain structures obtained from the subdomain
merging step were benchmarked and optimized against hand
segmentations of grain network images. The hand segmenta-
tions were generated by first plotting the subdomains given
by the method. Authors P.H., K.R.E., and G.M.L.B. then
used image manipulation software to recolor the subdomains,
using (non)identical colors for two neighboring subdomains
to indicate that they should (not) be merged. The manipulated
images were loaded into the grain extraction program and the
code merged the subdomains accordingly for further analysis.

For each lattice type, multiple systems at different time
steps and with different average grain sizes were consid-
ered. A more comprehensive assessment was carried out for
hexagonal systems for which P.H., K.R.E., and G.M.L.B.
all prepared their own hand segmentations. The agreement
between the segmentations of the code and those of the au-
thors was measured by calculating the fraction of neighboring
subdomain pairs that were treated, i.e., merged or not merged,
similarly. The misorientation limit θ∗ for the merging criterion
was varied to find the optimal value for each lattice type.
For the norm of the gradient |∇φ|p in Eq. (4), p = 2 for the
periodic lattices and p = 1 for the quasilattices appeared to in-
crease the extraction accuracy. The exponent p influences the
shape of the deformation field χ , hence also the distribution
of its local minima and ultimately the subdomains grown, all
in a nontrivial fashion. The values reported were discovered
by trial and error.
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FIG. 5. (a) A comparison between the grains and subdomains produced by the previous [13] (red) and the present (blue) methods,
respectively. (b)–(i) Blow-ups of the orientation field φ around certain structures [indicated by their respective labels in (a)]. The scale bar
has length 150ahex. The blow-ups are not to scale; compare with (a). See text for details.

Figure 6(a) compares the level of agreement of the present
method with the manual segmentations and with the previous
atom-based method, for hexagonal systems as a function of
θ∗. Note that the limit θ∗ = 0◦ corresponds to omitting the
subdomain merging step and treating each subdomain as a
separate grain. The five hexagonal systems hand segmented
had 622 pairs of neighboring subdomains in total and their
average linear grain sizes varied from approx. 180 to approx.
590 (in dimensionless units where the approximate lattice
constant is ahex = 4π/

√
3 ≈ 7.3). The average linear grain

size is given by

〈d〉 =
√

S/N, (7)

where S is the total area of a system and N is the number
of grains in it. Comparison to the previous method was
carried out similarly to the hand segmentations by comparing
the colors in the image files representing the numerical
segmentation. The segmentations of the previous method
were prepared using the fixed set of parameters found
optimal in Ref. [13]. The five much larger hexagonal systems
segmented in an automated fashion by the previous method
had a total of 13 673 pairs of neighboring subdomains and the
average linear grain sizes varied from approx. 170 to approx.
660. The values and the error bars shown are the average
and standard error, respectively, of the agreements for the
individual systems segmented.

Figure 6(a) shows that although the error margins are rel-
atively large at the scale shown, the present method performs
very well as compared to the hand segmentations of both
P.H. and K.R.E., peaking around θ∗ ≈ 2.5◦. The agreement
with G.M.L.B.’s hand segmentations appears slightly higher
for θ∗ > 3◦ and peaks around θ∗ ≈ 3.75◦. The agreement

with the previous method’s segmentation is a bit lower for
θ∗ > 4◦, a bit higher for θ∗ < 0.5◦ and peaks around θ∗ ≈
2.75◦. Despite these minor differences, the present method’s
agreement with all segmentations is high and consistent for
the wide, approximate range of 1◦ � θ∗ � 4◦. While the grain
boundaries with such low misorientation are often somewhat
ambiguous, all manual and the two numerical segmentations
are mutually consistent. This shows that the two grain extrac-
tion methods could be substituted for the extremely tedious
manual segmentation with little or no loss in accuracy. Table II
summarizes the maximal agreement and the corresponding θ∗
for each author.

As mentioned above, the hand segmentations have minor
differences between them. The cases where there are differ-
ences in merging the subdomains are generally somewhat
ambiguous and involve corners or appendages of grains where
there is some change in orientation and individual dislocations
are also often involved. Supplemental Fig. S3 [27] showcases
some common examples.

TABLE II. Maximal level of agreement and the corresponding θ∗

of the present method with the hand segmentations of P.H., K.R.E.,
and G.M.L.B., and with the segmentations of the previous method
[13], all for hexagonal systems.

Segmentation Agreement θ∗ (degrees)

P.H. 0.980 ± 0.006 2.5
K.R.E. 0.977 ± 0.007 2.5
G.M.L.B. 0.983 ± 0.006 3.75
Previous method 0.988 ± 0.003 2.75
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FIG. 6. (a) Level of agreement (normalized to a maximum level of unity) of the present method with the hand segmentations of the
authors P.H., K.R.E., and G.M.L.B., and with the segmentations of the previous method (PM) [13] for hexagonal systems, as a function of the
misorientation limit θ∗. (b) Level of agreement of the present method with the hand segmentations of P.H. for square and hexagonal, as well
as for ten and 12-fold quasicrystalline lattices, as a function of θ∗.

Figure 6(b) demonstrates the present method’s agreement
with the hand segmentations of P.H. for all four lattice types
considered in this work as a function of θ∗. For the hexagonal
lattice, the same data set as in Fig. 6(a) is shown, but to
reiterate, the maximal level of agreement for the hexagonal
lattice is 0.980 ± 0.006 at θ∗ ≈ 2.5◦. For the square lattice,
the agreement is maximized at θ∗ ≈ 1.25◦ and is 0.974 ±
0.007. For the ten and 12-fold quasicrystals, the agreement
is maximized at θ∗ ≈ 0.75◦ and 0.5◦, and is 0.978 ± 0.007
and 0.975 ± 0.005, respectively. Compared to the periodic
lattices, the respective agreements are much more sensitive to
θ∗, as the agreement falls below 0.9 already where θ∗ � 2.5◦.
Table III summarizes the maximal levels of agreement and the
corresponding θ∗ for each of the three other lattice types.

We would like to point out that the optimal value for
θ∗ need not be proportional to the order of the rotational
symmetry m. The present method shows a varying tendency to
produce excess subdomains for the different lattice types and,
the more subdomains there are, the smaller the misorientation
between them, and vice versa. The tendency to subdivide
grains into subdomains depends on the spread of the Gaussian
smoothing kernel G in Eq. (1), required to filter out the
atomic-level structure, and on the exponent p in Eq. (4),
which influence together the distribution of local minima in
the deformation field χ .

TABLE III. Maximal level of agreement and corresponding θ∗

of the present method with the hand segmentations of P.H. for
square, and ten and 12-fold quasicrystalline systems. The number of
neighboring subdomain pairs P and the ranges of the average linear
grain sizes 〈d〉 are also given.

Lattice type Agreement θ∗ (degrees) P 〈d〉
square 0.974 ± 0.007 1.25 1496 280 − 650
ten-fold 0.978 ± 0.007 0.75 1297 290 − 530
12-fold 0.975 ± 0.005 0.5 1031 270 − 580

3. Applicability to molecular dynamics data

Lastly, Fig. 7 demonstrates the applicability of the method
to MD atomic number density data for graphene. We observed
similar results for all samples and showcase here a single ex-
ample. The 1 K configuration displays faint long-wavelength
ripples, due to out-of-plane buckling of the monolayer, but
this causes no issues. The thermal fluctuations far greater in
the 300 K configuration lead to noticeable short-wavelength
ripples in the corresponding orientation field, which results in
a multitude of excessive subdomains. Despite this, the method
is ultimately able to recover most of the grain structure. Here,
θ∗ = 2◦ was used.

At 300 K, the method ends up merging—erroneously to
our opinion—the two grains at the top of the figure. At
1 K, the dumbbell-shaped composite of two subdomains at the
periodic corner of the figure is treated as two separate grains
as their misorientation θ > θ∗ = 2◦. At 300 K, the method
considers the corresponding set of subdomains a single grain.
Another noticeable difference between the high- and the
low-temperature configurations is the delineation between the
grains in lower right, but this case is a somewhat ambiguous
one.

B. Microstructural analysis of different lattice types

The present grain extraction method was used to analyze
the microstructure and evolution of four different lattice types.
Regular periodic square and hexagonal lattices as well as ten
and 12-fold quasilattices were studied to compare and to shed
light on the microstructure especially in quasicrystals. Various
microstructural properties were investigated, but to focus on
the most relevant results and to keep this section concise, part
of the results are given in detail in Supplemental Sec. S4 [27].
A brief summary of these results is given here.

All values and error bars plotted here are the mean and
the standard error, respectively, of parallel realizations of
model systems. Unless stated otherwise, results for the lattice
types will be listed in the order of increasing m: square,
hexagonal, ten-fold, and 12-fold. For the four lattice types, 16,
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FIG. 7. Demonstration of the grain extraction method for MD data on graphene. The top (bottom) row corresponds to a system thermalized
at 1 K (300 K). Panels (a) and (d) give the density field obtained by substituting small Gaussian peaks at the projected atom positions, (b) and
(e) give the orientation field φ, and (c) and (f) give the grain structure extracted. In (c) and (f), white borders indicate that the neighboring
subdomains have been merged as parts of the same grain, whereas black borders give the grain boundaries between true grains. The scale bars
have an approximate length of 40 graphene lattice constants.

16, 32, and 32 parallel realizations of PFC grain coarsening
simulations were conducted. All realizations had a size of
8192 × 8192 grid points and the spatial discretizations were
�x = �y = 0.55, 0.8, 0.5, and 0.4. The systems were evolved
for 5 × 106 time steps each and the time step sizes were
�t = 0.5, 0.4, 0.02, 0.01. We also compared our systems to
random Voronoi tessellations in some instances. A total of 100
random seed points was sampled into each periodic Voronoi
system of 4096 × 4096 grid points. A total of 1000 parallel
realizations were generated.

1. Evolution of average linear grain size

As an archetypal benchmark of microstructural analysis,
we first consider grain growth. Based on theoretical models
[38–40], power-law growth is expected for the average grain
size

〈d(t )〉 = α(t + t0)β, (8)

where α, t0 and β are fitting parameters, β known as the
growth exponent. While curvature [38,39] and long-range dif-
fusion [40]-driven growth correspond to well-defined univer-
sality classes of growth with β = 1/2 and 1/3, respectively,
PFC captures a more comprehensive picture of the microstruc-
ture, which incorporates numerous defect structures. We fitted
our data of average grain sizes as a function of time with
Eq. (8) to find β for the different lattice types. Note that the
relaxations were initialized with rather artificial tiled states,
corresponding to different nonzero grain sizes at simulation

time t = 0. Figure 8 gives the evolution of the average grain
size for the four lattice types as a function of shifted time
where the time offset t0 due to the nonzero initial grain size
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FIG. 8. Evolution of the average linear grain size averaged over
the individual realizations as a function of shifted time for the four
lattice types considered. See the main text for an explanation of the
shifted time. The markers are actual data and the straight lines are
power-law fits. The fainter ghost markers show the average linear
grain sizes of individual realizations.
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FIG. 9. Normalized grain size distributions for the four lattice types. Regular (a) square and (b) hexagonal, and (c) ten-fold and (d) 12-fold
quasicrystal lattices. Three distributions are given at roughly exponentially spaced time steps. The markers are actual data and the curves are
log-normal fits. The markers and error bars give the mean and the standard error, respectively, of the 16, 16, 32, and 32 parallel realizations of
square, hexagonal, ten-fold and 12-fold model systems; recall the beginning of Sec. III B.

has been eliminated. Perfect power-law growth is observed
for all lattice types with exponents β = 0.21, 0.21, 0.23, and
0.24. The hexagonal model used here is identical to that of
Backofen et al. [11], and we obtain essentially the same
growth exponent: our β = 0.21 vs their β = 0.2. Note that
they originally reported βA = 2/5 for grain area A, which
corresponds to β = 1/5 for the linear grain size. The linear
sizes of the model systems are approx. 4500, 6600, 4100,
and 3300 in dimensionless units, which are much larger
than the corresponding average linear grain sizes even at
t/�t = 5 × 106.

2. Normalized grain size distributions

Figure 9 shows the normalized grain size distributions
d/〈d〉, where the size of an individual grain d = √

A, i.e.,
it is taken to be the square root of the grain’s area A. The
distributions appear log-normal as has been reported previ-
ously [11,13,41]. A sufficient but not necessary cause for

a log-normal distribution is a proportionate growth process
[42]. However, it has recently been shown that a failure to
detect low-angle grain boundaries can also result in detecting
a log-normal grain size distribution where the true distribution
is in fact different [43]. While either or both may be the case
here, the present grain extraction method was optimized to
reproduce the segmentations determined by visual inspection
by one of the authors (P.H.), wherein any error ultimately lies
with human judgment. On the other hand, the present data
cannot confirm the observation that, for a hexagonal lattice,
the distributions should become wider in time [13]. There, an
efficient numerical scheme [32] was used to push grain coars-
ening significantly further. Due to the greater computational
workload, brought about by the four lattice types considered
in this work, we limited ourselves to significantly shorter
simulation times and can therefore neither confirm nor refute
this observation. Regarding the different lattice types consid-
ered here, there are no obvious differences between them.
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FIG. 10. Distributions of lattice misorientation between neighboring subdomains of neighboring grains for the four lattice types. Periodic
(a) square and (b) hexagonal, and (c) ten-fold, and (d) 12-fold quasicrystalline lattices. Three distributions are given at roughly exponentially
spaced time steps.

The late time distributions display slightly more variance and
these impaired statistics are due to larger, but fewer grains in
the later systems. All the PFC distributions presented in this
subsection and in Supplemental Sect. S4 [27] are affected.
Furthermore, the left-hand side tails are missing a couple of
the leftmost data points in some cases, due to the size limit
for extracting very small grains; recall Sec. II A. All bins
overlapping with the limit have been omitted.

3. Grain misorientation distributions

Figure 10 shows the distributions of lattice misorientation
between neighboring subdomains of neighboring grains for
the four lattice types. Considering the misorientation between
subdomains instead of grains (composed of, and their orienta-
tion averaged over, one or multiple subdomains) yields more
accurate results. The frequencies of different misorientations
have been normalized with corresponding grain boundary
lengths. Note also that the maximal misorientations are θ =
45◦, 30◦, 18◦, and 15◦. All bins overlapping with the misori-
entation limits θ∗ = 3.0, 2.5, 0.75, and 0.5 have been omitted.

The distributions appear very dissimilar between the four
lattice types. The distributions for both the hexagonal lattice
and the ten-fold quasi-lattice are approximately linear, but,
surprisingly, the former gives more probability for larger and
the latter for smaller misorientations. On the other hand, the
distributions for the square lattice and the 12-fold quasilattice
are not as trivial to characterize, but both display wide excess
around θ ≈ 15◦ and θ ≈ 7◦, respectively.

Regarding hexagonal systems, a slight preference toward
smaller misorientations has previously been reported [13,41].
The present method was used to analyze different time steps
of a hexagonal model system used in Ref. [13]. We confirm
this conflicting preference toward smaller misorientations,
whereby it appears that the misorientation distributions are
dependent not only on the lattice type, but also on the model
used and its parameters. This stands to reason, because the
grain boundary energy—a prime driver of microstructure
evolution—depends strongly on the PFC model [12] and
parameters [44]. In addition, while Ref. [13] reported an
excess at θ ≈ 10◦, we do not see such a feature in our data,
but, with extended simulation times, it could be possible for
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TABLE IV. Summary of results of the microstructural analysis of different lattice types. Results are reported for the periodic square and
hexagonal lattices as well as for the ten and 12-fold quasilattices. Results for random Voronoi tessellations are also given where applicable.
Distribution types and corresponding average quantities are given where applicable. The averages are reported for t/�t = 5 × 106. The
asterisks indicate that at least some of the corresponding distributions display finite size or time effects.

Average grain size Growth exponent

square 0.21
hexagonal 0.21
ten-fold 0.23
12-fold 0.24

Normalized grain size distributions Type
square log-normal
hexagonal log-normal
ten-fold log-normal
12-fold log-normal

Grain misorientation distributions Description
square excess around θ ≈ 15◦

hexagonal linear, larger misorientations preferred
ten-fold linear, smaller misorientations preferred
12-fold excess around θ ≈ 7◦

Grain size ratio distributions Type Average
square nontrivial 0.62
hexagonal nontrivial 0.61
ten-fold nontrivial 0.64
12-fold nontrivial 0.64
Voronoi truncated normal 0.80

Grain aspect ratio distributions Type Average
square truncated normal 0.70
hexagonal truncated normal 0.66
ten-fold truncated normal 0.72
12-fold truncated normal 0.71

Voronoi truncated normal 0.63
Grain misalignment distributions Description
square smaller misalignments preferred
hexagonal smaller misalignments preferred
10-fold smaller misalignments preferred
12-fold smaller misalignments preferred
Voronoi intermediate misalignments disfavored

Grain circularity distributions Type Average
square reversed log-normal ∗ 0.76
hexagonal reversed log-normal 0.75
ten-fold reversed log-normal ∗ 0.78
12-fold reversed log-normal ∗ 0.77

Neighbor count distributions Type Average
square log-normal 5.99
hexagonal log-normal 6.00
ten-fold log-normal 5.99
12-fold log-normal 5.96

a corresponding bump to emerge. Lastly, qualitatively similar
PFC models have been shown to predict energetically favored
symmetrically tilted coincidence site lattice boundaries for
misorientations θ ≈ 18◦, 21◦, and 28◦ [12]. The present data
do display some excess for these misorientations, but, due
to the relatively large error bars, we cannot conclusively
distinguish these bumps from statistical fluctuations.

For the square lattice, we carried out grain boundary
energy calculations using symmetrically tilted bicrystals to

investigate the possibility of a connection between the fea-
tures of the grain boundary energy and the misorientation
distributions. However, the grain boundary energy measured
appears very smooth and virtually featureless as a function
of the tilt angle, and shows no kinks that could explain the
excess observed at θ ≈ 15◦. We also investigated the grain
boundary energies of symmetrically tilted grain boundaries
for 12-fold quasicrystals, but again the energies obtained show
no hints of particularly low-energy boundaries around θ ≈
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7◦. We must point out, however, that our analysis was not
exhaustive and may have failed to detect hypothetical narrow
kinks in grain boundary energy. In fact, unpublished results
of author CVA show evidence of a possibly related kink at
θ ≈ 5.5◦, which is in agreement with the interface dynamics
when growing quasi-crystals from two seeds of different size
[24]. Full details of the grain boundary energy calculations
are given in Supplemental Sec. S5 [27]. More comprehensive
investigation of quasicrystal grain boundary energies will be
left for a future work. Before concluding on grain boundary
energies, we would like to point out that the present grain
extraction method does not distinguish between symmetric
and asymmetric tilt boundaries of identical misorientation,
and that the former are a special case of grain boundaries
whereas the latter more general family of grain boundaries
is much more abundant in the present microstructures. Un-
fortunately, investigating grain boundary energies with the
additional degree of freedom brought about by asymmetric
boundaries goes well beyond the scope of this work.

4. Summary of additional results

The rest of the microstructural results are given in full
detail in Supplemental Sec. S4 [27]. Table IV lists all main
results from this section. The grain size ratios, the ratios of
linear sizes between neighboring grains, were observed to
have averages 0.62, 0.61, 0.64, and 0.64 (at t/�t = 5 × 106),
meaning that some disparity is preferred. This is in contrast
to random Voronoi tessellations with a different distribution
and an average of 0.80. However, the corresponding area
ratios were found to be in excellent agreement with the PFC
distributions of Ref. [13]. The grain aspect ratios, i.e., the ratio
of the shorter principal axis to the longer, were found to be
modest with averages 0.70, 0.66, 0.72, and 0.71 (at t/�t =
5 × 106), meaning that the most grains are slightly elongated.
This is in reasonable agreement with random Voronoi tessel-
lations with an average of 0.63. The aspect ratios are normally
distributed. The grain misalignment, or the angle between the
longer principal axes of two neighboring grains, shows ten-
dency toward mutual alignment. In contrast, random Voronoi
tessellations disfavor intermediate misalignments. We ascribe
this difference to PFC’s ability to capture the interactions and
anisotropy of grain boundaries [12,45]. We observed reversed
log-normal grain circularities

C = 4πA

P 2
, (9)

where A is grain area and P its perimeter, for all lattice
types. The average circularities are 0.76, 0.75, 0.78, and
0.77 (at t/�t = 5 × 106), all slightly less circular than a
square [46] due to grain elongation. All other lattice types
except hexagonal show some finite size effects or vestiges
of the artificial, tiled initial state as the distributions start
off as not quite log-normal. It is surprising that, while all
distributions for all other quantities at t/�t = 105 have con-
verged to their respective equilibrium shapes, the relaxation
timescale for circularities can be longer. Distributions for
the number of neighbors per grain are also log-normal with
averages 5.99, 6.00, 5.99, and 5.96. More or less similar val-
ues have been reported for random Voronoi tessellations (6)

[47], PFC systems (6.0) [13] and experimental systems (5.8)
[41].

IV. SUMMARY AND CONCLUSIONS

In this paper, we have introduced and comprehensively
benchmarked an efficient and accurate method for extract-
ing grains and analyzing the microstructure in 2D poly and
quasicrystalline solids. The present method was optimized for
different periodic and quasilattices based on manual segmen-
tations. A high level of agreement was achieved in all cases.
We expect that the accuracy of the method could be further
improved by utilizing machine learning techniques for the
final subdomain merging step of the method. We also showed
that the present method is applicable to MD-generated data of
free-standing graphene. It should also be possible to modify
the method to segment diffuse microstructures from phase
field simulations. Generalizing this method to 3D lattices and
quasilattices would be more complicated, but also extremely
valuable. The main obstacle is forming the orientation field
for a 3D system; the other steps of the algorithm would
remain essentially the same. Due to the large domains and
long timescales required in 3D, PFC is again an ideal choice
for modeling them.

We used the method to analyze the microstructures of
various lattice types. We considered both regular periodic
square and hexagonal lattices, as well as ten and 12-fold
symmetric quasicrystals. We studied the sizes, aspect ratios,
circularities, and neighbor counts of individual grains; also
the size ratios, misorientations and misalignments between all
pairs of neighboring grains. For the most part, we observed
good agreement with previous works for the hexagonal lattice,
and also very similar behavior between all four lattice types,
suggesting that many microstructural properties are universal
beyond lattice symmetry.

However, a particularly interesting case is that of lattice
misorientation between neighboring grains. A previous work
reported a slight preference toward smaller misorientations
for hexagonal lattices, but we observed a preference toward
larger misorientations. This issue was resolved by analyzing
model systems used in the previous work – we found the same
preference toward smaller misorientations. This suggests that
the distribution of misorientations is sensitive not only to the
lattice type, but also to the exact model and its parameters
being used. For square lattice and 12-fold quasicrystal, an
excess of boundaries is observed with a misorientation of
θ ≈ 15◦ and θ ≈ 7◦, respectively. We sought an explanation
from grain boundary energy calculations and ruled out wide
kinks in grain boundary energy as culprits of the excesses
observed.

We expect the present work to be valuable in the study
of both regular periodic crystals and quasicrystals. While
PFC has been used successfully in the past to study qua-
sicrystals, we have here demonstrated large-scale coarsen-
ing simulations of polyquasicrystalline microstructures. We
have also presented a powerful method for analyzing those
microstructures.
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