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Multifunctionality of particulate composites via cross-property maps
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Closed-form analytical expressions for the effective electrical (thermal) conductivity and elastic moduli of a
wide class of three-dimensional isotropic particulate composites (dispersions) for all phase contrasts and volume
fractions have been previously formulated. These property estimates were extracted from exact strong-contrast
expansions that incorporate complete microstructural information. In this paper, we employ these analytical
expressions to derive and apply “cross-property maps” that connect combinations of pairs of the aforementioned
effective transport and elastic properties to one another for a wide class of dispersions in which the inclusions can
have different shapes and sizes and are spatially distributed in a matrix with varying degrees of order/disorder.
We illustrate cross-property maps for a variety of cases (e.g., incompressible or compressible composites with
conducting/insulating inclusions that may be rigid or compliant or auxetic) for high inclusion volume fractions.
All of the cross-property maps that involve the effective conductivity translate immediately into equivalent
results for the effective dielectric constant, magnetic permeability, or diffusion coefficient because they are
mathematically analogous. We discuss an example that enables us to design a disordered dispersion with
desired values of the effective dielectric constant and effective Young’s modulus. Cross-property maps and
their extensions will facilitate the rational design of particulate media with different desirable multifunctional
characteristics. Moreover, our investigation has implications for the application of machine-learning and other
data-driven approaches for multifunctional materials discovery.
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I. INTRODUCTION

It is desirable to design materials with useful multifunc-
tional characteristics, including transport, mechanical, elec-
tromagnetic, chemical, and flow properties. However, it is
difficult to find homogeneous materials that possess these
multifunctional characteristics. On the other hand, composite
materials (mixtures of two or more materials) are ideally
suited to achieve multifunctionality, since the best features of
different materials can be combined to form a new material
that has a broad spectrum of desired properties [1,2].

It is generally desired to design a composite ma-
terial with N effective properties, which we denote
K (1)

e , K (2)
e , . . . , K (N )

e , given the individual properties of the
phases. In principle, one would like to know the region (set)
in the multidimensional space of effective properties in which
all composites must lie; see Fig. 1 for a schematic of the
allowable region. The size and shape of this region depend on
how much information about the microstructure is specified
and on the prescribed phase properties. For example, the set
over all volume fractions is clearly larger than the one in
which the volume fractions are specified. Including even more
information about the microstructure in the form of higher-
order correlation functions [3] will reduce the set of possible
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composites even further. The determination of the allowable
region is generally a highly complex problem. However, the
identification of the allowable region can be greatly facilitated
if cross-property bounds on the effective properties can be
found. Cross-property bounds are inequalities that rigorously
link different effective properties to one another [3]. For
example, links between different transport properties [3–10]
and between the conductivity and the elastic moduli [3,10–16]
have been established. Cross-property bounds are especially
useful in identifying the boundary of the allowable region
(see Fig. 1) and hence the set of optimal multifunctional
composites [1,17–20]. A technologically important subset of
composite materials with desirable multifunctional character-
istics is particulate media [3,21–28].

The main objective of this paper is to determine cross-
property maps that connect combinations of pairs of effective
electrical (or thermal) conductivity σe and elastic moduli,
such as the effective Young’s modulus Ee and Poisson’s ratio
νe, to one another for a wide class of isotropic particulate
composites (dispersions). One could attempt to accomplish
this goal via numerical methods (e.g., finite-element tech-
niques) that solve the governing differential equations and
then average the relevant fields to get the effective properties
[3], but this is unwieldy due to fact that one must search
an infinite parameter space (possible phase properties and
microstructures). A far better solution is to derive analytical
cross-property formulas, but this too is extremely challenging.
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FIG. 1. Schematic illustrating the allowable region in which all
composites with specified phase properties must lie for the case
of two different effective properties. The locus of points on the
boundary of the allowable region corresponds to the set of optimal
multifunctional composites.

For this purpose, one might consider employing effective-
medium or mean-field approximations that are based on exact
single-inclusion boundary-value problems [29–32]. However,
these approximations necessarily can account only for simple
microstructural information, such as the volume fraction and
inclusion shape. In fact, it is known that the effective proper-
ties generally depend on an infinite set of n-point correlation
functions [33–39]. Thus, although mean-field approximations
may sometimes provide qualitative trends on the behavior of
the effective properties of some dispersions, they cannot be
quantitatively predictive for general situations because they do
not account for higher-order microstructural information [3].

For the problem at hand, we employ accurate
microstructure-sensitive rational-function formulas for the
effective conductivity [35] and effective elastic moduli [40] to
derive cross-property maps that are applicable to a wide class
of three-dimensional macroscopically isotropic particulate
composites for all phase contrasts and volume fractions.
These approximate relations for the effective properties of
isotropic dispersions in any space dimension d were obtained
by truncating corresponding exact strong-contrast series
expansions after third-order terms but approximately account
for complete microstructural information [35,38]; see Sec.
II for the relevant formulas and ramifications for the present
paper. They are given in terms of the phase properties, phase
volume fractions, and functionals involving the three-point
correlation function as embodied in two different three-point
parameters: ζ2 and η2, as defined below. Since the exact series
expressions perturb about the optimal Hashin-Shtrikman
structures [41–44], these formulas have been shown to
provide excellent estimates of the effective properties for a
wide range of phase contrasts and volume fractions for a wide
class of dispersions in which the inclusions are prevented
from forming large clusters [35,40]. Moreover, they always
lie within rigorous three-point or cross-property bounds
and are superior to popular mean-field approximations.
While these accurate approximations have been widely
used to estimate individual effective transport or elastic
properties for a diverse class of dispersions [45–51], they

have heretofore not been applied to derive cross-property
maps.

For reasons of mathematical analogy, the determination
of the effective conductivity translates immediately into
equivalent results for the effective dielectric constant, mag-
netic permeability, or diffusion coefficient [3]. Thus, any
cross-property relations involving the dimensionless effec-
tive conductivity apply as well to these other mathemati-
cally analogous effective properties when made appropriately
dimensionless.

We explicitly state the rational-function approximations
for the effective conductivity and effective elastic moduli
for three-dimensional dispersions in Sec. II. Since it is cru-
cial to understand the class of dispersions for which these
expressions are highly predictive, we provide the necessary
theoretical background to elucidate their validity. In Sec. III,
we determine cross-property maps between the effective con-
ductivity and the effective moduli as well as between different
independent effective elastic moduli for particulate media
using combinations of these accurate approximation formulas.
When the cross-property relations are sufficiently functionally
simple, they are explicitly stated. Cross-property maps are
graphically represented for a number of select examples. In
Sec. IV, we describe how cross-property maps can aid in the
rational design of multifunctional particulate composites with
specified material components and volume fractions. Finally,
we make concluding remarks, including implications for the
use of machine-learning and other data-driven approaches to
ascertain cross-property maps for general composites.

II. THEORETICAL BACKGROUND

Exact strong-contrast perturbation expansions for the ef-
fective conductivity tensor and stiffness tensor of macro-
scopically anisotropic composite media [52] in d-dimensional
Euclidean space Rd consisting of two isotropic phases have
been derived [37,38]. The nth-order tensor coefficients are
given explicitly in terms of integrals over products of certain
tensor fields and a determinant involving the set of n-point
correlation functions S

(p)
1 , S

(p)
2 , . . . , S

(p)
n for phase p that

systematically render the integrals absolutely convergent in
the infinite-volume limit. The quantity S

(p)
n (x1, . . . , xn) gives

the probability of finding n points with positions x1, . . . , xn

in phase p (where p = 1 or 2). In the special case of macro-
scopically isotropic media, this d-dimensional strong-contrast
expansion for the effective conductivity tensor reduces to the
one originally derived by Torquato [35].

Another useful feature of these expansions (expressible in
powers of the phase “polarizabilities”) is that they converge
rapidly for a class of dispersions for all volume fractions,
even when the phase properties differ significantly. The reason
for this is that the exact series expression can be regarded
to be expansions that perturb about certain dispersions that
realize the optimal two-point bounds [53] for macroscopi-
cally anisotropic media [3,54]. For macroscopically isotropic
media, these optimal dispersions correspond to the Hashin-
Shtrikman structures for the effective conductivity [41], ef-
fective bulk modulus Ke [42], and effective shear modulus Ge

[43,44]. The structures that realize all of the optimal two-point
bounds have the important topological/geometrical features
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FIG. 2. Schematics of the coated-spheres model (as adapted from
Ref. [3]) consisting of composite spheres that are composed of a
spherical core of one phase (dispersed phase) that is surrounded by a
concentric spherical shell of the other phase such that the fraction of
space occupied by the core phase is equal to its overall phase volume
fraction. The composite spheres fill all space, implying that there is a
distribution in their sizes ranging to the infinitesimally small. Thus,
the matrix (blue region) is a fully connected (continuous) phase and
the inclusions (red regions) are well separated from one another.

that one phase is disconnected or dispersed in a special way
(described below) and the other is a fully connected (continu-
ous) matrix phase.

Figure 2 depicts a schematic of the coated-spheres model,
which is optimal for the effective conductivity σe and effective
bulk modulus Ke because they realize the corresponding two-
point Hashin-Shtrikman bounds [3,41,42]. One can view the
continuous matrix phase (blue region) as the most topolog-
ically connected phase with respect to the effective conduc-
tivity or effective bulk modulus. Moreover, the inclusions
are geometrically restricted in that any pair of inclusions
must be “well separated” from one another (except at the
trivial volume fraction in which they fill all of space) due to
the impenetrable concentric shells, whose thickness depends
on the volume fraction. When the inclusions (red regions)
constitute the more conducting or stiffer phase, the coated-
spheres model exactly achieves the Hashin-Shtrikman lower
bound on the effective conductivity or effective bulk modulus.
When the inclusions constitute the more insulating or com-
pliant phase, the coated-spheres model exactly achieves the
Hashin-Shtrikman upper bound on the effective conductivity
or effective bulk modulus.

A. Accurate approximations for the effective
conductivity of particulate media

Henceforth, we focus on macroscopically isotropic two-
phase media. Let us assume that phases 1 and 2 are the matrix
and dispersed phases, respectively, of a dispersion. Trunca-
tion of the d-dimensional strong-contrast series expansion in
Ref. [35] after third-order terms yields the expression

σe

σ1
= 1 + (d − 1)φ2β − (d − 1)φ1ζ2β

2

1 − φ2β − (d − 1)φ1ζ2β
2 , (1)

where

β = σ2 − σ1

σ2 + (d − 1)σ1
(2)

and ζ2 is a three-point parameter that depends on the space
dimension d and must lie in the closed interval [0,1]. For d =
3, it is defined by the following threefold integral:

ζ2 = 9

2φ1φ2

∫ ∞

0

dr

r

∫ ∞

0

ds

s

∫ 1

−1
d(cos θ )P2(cos θ )

×
[
S

(2)
3 (r, s, t ) − S

(2)
2 (r )S (2)

2 (s)

φ2

]
, (3)

where P2 is the Legendre polynomials of order 2 and θ is the
angle opposite the side of the triangle of length t .

Formula (1) was shown by Torquato [35] to give an ac-
curate approximation of the effective conductivity of a wide
class of d-dimensional dispersions for all volume fractions
and all phase conductivities. This class of dispersions includes
those in which the particles (“polarized” phase), generally,
do not form large clusters. However, for the special case
of bicontinuous porous media in which the void (polarized)
phase is perfectly insulating (σ2 = 0), approximation (1) may
still provide a good estimate of σe. The reason for this is that
the flux is carried by the connected solid (i.e., nonpolarized)
phase, regardless of whether the void phase is connected or
disconnected.

It is noteworthy that when ζ2 = 0, formula (1) is identical
to the Hashin-Shtrikman lower bound on σe when σ2 � σ1 or
the Hashin-Shtrikman upper bound σe when σ2 � σ1 [41] and
hence to dispersions that realize them, such as the coated-
spheres model depicted in Fig. 2. Therefore, dispersions for
which ζ2 deviates from 0 are those whose microstructures
deviate from these optimal dispersions in which the inclusions
are well separated from one another in a fully connected
matrix. The three-point parameter ζ2(φ2) is a monotonically
increasing function of the inclusion volume fraction φ2. For
spherical inclusions of identical size or not, it is known that
ζ2 = 0 in the limit φ2 → 0 [55–57] and hence formula (1) is
exact through first order in φ2 [3]. For nonspherical inclusions,
ζ2 > 0 in the limit φ2 → 0 [3]. Deviations of ζ2 from 0 at pos-
itive values of φ2 can be induced by allowing the inclusions
to get arbitrarily close to one another or have a nonspherical
shape. Moreover, polydispersity in the size of the inclusions
can still lead to values of ζ2 that can deviate appreciably from
0 if the inclusions can get arbitrarily close to one another. To
get a qualitative sense of how ζ2 can vary across different mi-
crostructures, consider the four dispersions of nonoverlapping
inclusions schematically illustrated in Fig. 3: ordered iden-
tical spheres (disks) [Fig. 3(a)], disordered identical spheres
(disks) [Fig. 3(b)], disordered polydispersed spheres (disks)
[Fig. 3(c)], and disordered identical ellipsoids (ellipses) with
random orientations [Fig. 3(d)]. Based on the aforementioned
considerations, at a fixed volume fraction and away from
close-packed states, ζ2 is smallest in Fig. 3(a) because the
inclusions are spherical and well separated and is largest in
Fig. 3(d) because the inclusions are nonspherical and are not
well separated. The case in Fig. 3(b) shows a ζ2 value that is
generally larger than that for the case in Fig. 3(a) because the
inclusions can get arbitrarily close to one another and yet is
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FIG. 3. Select representative examples of the wide class of dis-
persions of nonoverlapping inclusions in a matrix for which for-
mulas (1), (5), and (6) and resulting cross-property relations apply.
(a) Ordered dispersion of identical spheres (disks). (b) Disordered
dispersion of identical spheres (disks). (c) Disordered dispersion
of spheres (disks) of different sizes. (d) Disordered dispersion of
identical ellipsoids (ellipses) with random orientations. At a fixed
volume fraction and away from close-packed states, ζ2 is generally
smallest for (a), next smallest for (b), larger for (c), and largest for
(d). Qualitatively, the same trends apply to the three-point parameter
η2 [3], which arises in rigorous three-point bounds on the effective
shear modulus Ge as well as formula (6).

smaller than that for the case in Fig. 3(c) because in Fig. 3(c)
they have a size distribution and also are not well separated.
These trends are quantitatively supported by previous studies
on the determination of ζ2 for various dispersions [3]; see also
a summary of some of these results for d = 3 in the Appendix.

For d � 3, formula (1) always lies between the best avail-
able rigorous upper and lower three-point bounds on σe [3],
provided that

ζ2 � 1/(d − 1). (4)

Thus, formula (1) should be applied for d = 3 only when
ζ2 � 0.5. It is noteworthy that for a wide class of models
of random media, some of which are summarized in the
Appendix, the parameter ζ2 always meets this condition, and
hence estimates based on (1) always lie between the tightest
three-point bounds.

B. Accurate approximations for the effective
elastic moduli of particulate media

Again, here we specialize to macroscopically isotropic
elastic two-phase media, which are characterized by two
independent effective elastic moduli, say the effective bulk

modulus Ke and effective shear modulus Ge. Let phases 1 and
2 denote the matrix and dispersed phases, respectively. Trun-
cation of the d-dimensional strong-contrast series expansions
for Ke and Ge [38,39] after third-order terms for the special
case d = 3 yields the following expressions:

Ke

K1
=

1 + 4G1
3K1

κφ2 − 10G1
3(K1+2G1 )κμφ1ζ2

1 − κφ2 − 10G1
3(K1+2G1 )κμφ1ζ2

, (5)

Ge

G1
=

1 + 9K1+8G1
6(K1+2G1 )μφ2 − 2κμG1

3(K1+2G1 )φ1ζ2 − μ2

6 γ

1 − μφ2 − 2κμG1

3(K1+2G1 )φ1ζ2 − μ2

6 γ
, (6)

where

κ = K2 − K1

K2 + 4G1
3

, (7)

μ = G2 − G1

G2 + G1
[ 9K1+8G1

6(K1+2G1 )

] , (8)

γ =
[

3K1 + G1

K1 + 2G1

]2

φ1η2 + 5G1

[
2K1 + 3G1

(K1 + 2G1)2

]
φ1ζ2. (9)

While the same three-point parameter ζ2 defined by (3) arises
in the expression for the effective bulk modulus, another three-
point parameter, η2 ∈ [0, 1], is involved in the effective shear
modulus, which is defined by the threefold integral

η2 = 5ζ2

21
+ 150

7φ1φ2

∫ ∞

0

dr

r

∫ ∞

0

ds

s

∫ 1

−1
d(cos θ )P4(cos θ )

×
[
S

(2)
3 (r, s, t ) − S

(2)
2 (r )S (2)

2 (s)

φ2

]
, (10)

where P4 is the Legendre polynomials of order 4 and θ is the
angle opposite the side of the triangle of length t . The pa-
rameters ζ2 and η2 have also arisen in rigorous bounds on the
effective moduli of three-dimensional composites [3,58–62]
and have been computed for a variety of model dispersions;
see Refs. [3] and [62].

When ζ2 = 0, formula (5) is identical to the Hashin-
Shtrikman lower bound on Ke when G2 � G1 or to the
Hashin-Shtrikman upper bound Ke when G2 � G1 [42] and
hence to the optimal dispersions that realize them, such as
the coated-spheres model depicted in Fig. 2. When ζ2 = 0
and η2 = 0, formula (6) is identical to the Hashin-Shtrikman
lower bound on Ge when G2 � G1 and K2 � K1 or the
Hashin-Shtrikman upper bound Ke when G2 � G1 and
K2 � K1 and hence to the optimal dispersions that real-
ize them [43,44]. While the coated-spheres model does not
achieve these bounds on Ge, they are still achieved by a
class of microstructures in which one phase is a disconnected,
dispersed phase in a fully connected (continuous) matrix.
Qualitatively, the same trends described above for the values
that ζ2 can take for the wide class of dispersions considered
here (see Fig. 3) apply as well to the three-point parameter η2,
as evidenced by results reported in previous investigations; see
Ref. [3] and references therein as well as the Appendix here.

Formulas (5) and (6) were shown by Torquato [63] to yield
accurate estimates of the effective bulk and shear moduli,
respectively, of the aforementioned wide class of dispersions
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for all volume fractions and phase properties, provided the
particles generally do not form large clusters. When the
dispersed phase is stiffer than the matrix, the third-order
formulas mimic (to an excellent approximation) the behavior
of higher-order lower bounds on the effective moduli. On
the other hand, when the dispersed phase is more compli-
ant than the matrix, the third-order formulas mimic (to an
excellent approximation) the behavior of higher-order upper
bounds on the effective moduli. It was required that the three-
dimensional approximations (5) and (6) always lie within
the most restrictive three-point upper and lower bounds [63].
This generally implies that intervals in which the geomet-
rical parameters ζ2 and η2 lie will be more restrictive than
the interval [0,1]. For example, for the three-dimensional
effective bulk modulus formula, (5), it was shown that when
G1/K1 � 0.75, then

ζ2 � 0.6 + 8

15

G1

K1
, (11)

in order for (5) to lie between the Beran-Molyneux
bounds on the effective elastic moduli [58]. However, if
G1/K1 > 0.75, then there is no additional restriction on ζ2.
Thus, the constraints on ζ2 for (5) to obey the tightest three-
point bounds on Ke are less restrictive than that for (1) to
lie between the tightest three-point bounds on σe [cf. (4)].
Similarly, there are restrictions on the three-point parameter
η2 for (6) to lie between the tightest three-point bounds on
Ge [63], but these are not presented here, since they have
no bearing on the applications to dispersions that we focus
on here. Indeed, for a number of realistic models of three-
dimensional dispersions [3], the parameters ζ2 and η2 are such
that the estimates from relations (5) and (6) always lie within
the tightest three-point bounds.

III. CROSS-PROPERTY MAPS

In what follows, we ascertain cross-property maps between
the effective conductivity and effective moduli as well as
between different independent effective elastic moduli for
three-dimensional particulate media using combinations of
the accurate approximation formulas for the effective con-
ductivity, (1) (with d = 3), effective bulk modulus, (5), and
effective shear modulus, (6). We assume that the class of
particulate media are characterized by three-point parameters
under the relatively mild restriction that ζ2 � η2 � 1/2, for
reasons discussed in Sec. II. Under these assumptions, the
key idea to get the desired cross-property maps is to eliminate
both ζ2 and η2 from formulas (1), (5), and (6) to express one
effective property in terms of another effective property and
phase information (phase properties and volume fractions).
Often, we express our results for the elastic moduli in terms
of the effective Young’s modulus Ee and effective Poisson’s
ratio νe, which are straightforward to measure experimentally
and can be obtained from Ke and Ge via the following
interrelations:

9

Ee

= 1

Ke

+ 3

Ge

, (12)

νe = 3Ke − 2Ge

2(3Ke + Ge )
. (13)

In each case, we generally present three cross-property
maps—σe(Ee ), σe(νe ), and νe(Ee )—which are given in terms
of dimensionless units.

Because the parameter space is infinite, in much of the
ensuing discussion, we examine special cases of relations (5)
and (6) in which one or both of the phases have extreme
values, e.g., K1/G1 = ∞, K2/G2 = ∞, K2/K1 = G2/G1 =
0 or ∞, and/or σ2/σ1 = 0 or ∞. Other nonextreme cases are
examined as well. We focus on high inclusion volume frac-
tions, namely, φ2 = 0.4, 0.5, and 0.6, which are also the most
challenging cases to treat. The range of possible values of
the different effective properties for each φ2 spans realizable
particulate media, which is determined by the possible values
that the aforementioned microstructure-dependent parameter
ζ2 can take; the largest range occurs at the largest volume
fraction, φ2 = 0.6. Specifically, based on previous determina-
tions of the three-point parameters for a wide class of dis-
persions, we assume that 0 � ζ2 � 0.25, 0 � ζ2 � 0.29, and
0 � ζ2 � 0.33 for φ2 = 0.4, 0.5, and 0.6, respectively; see
Ref. [3] and the Appendix. The same restrictions apply to η2,
since we assume that ζ2 � η2, as discussed above.

A. Incompressible composites with rigid, conducting inclusions

We first consider incompressible composites in which
ν1 = ν2 = 1/2 (or K1/G1 = K2/G2 = ∞) that contain rigid,
conducting inclusions. Materials that are effectively in-
compressible include elastomers and some metals, such as
gold. It noteworthy that conductive elastomeric composites
have been fabricated [64]. To begin, we consider superrigid
(G2/G1 = ∞) and superconducting (σ2/σ1 = ∞) inclusions.
For such incompressible particulate media, the cross-property
relation between the effective conductivity σe and the effective
Young’s modulus Ee can be written in the simple closed form

σe

σ1
= ψ + (

Ee

E1
− 1

)
6βμ2φ2

ψ − (
Ee

E1
− 1

)
3βμ2φ2

, (14)

where

μ → G2 − G1

G2 + 3
2G1

= E2 − E1

E2 + 3
2E1

, (15)

ψ = β2(4 + 6μφ2) − 3μ2 + Ee

E1
[3μ2 + β2(4μφ2 − 4)].

(16)

When the inclusions are superrigid (G2/G1 = ∞) and
superconducting (σ2/σ1 = ∞), the cross-property relation,
(14), becomes

σe

σ1
= 1 + Ee

E1
(10φ2 − 1)

1 + 9φ2 − Ee

E1
φ1

. (17)

The corresponding cross-property formula between the ef-
fective conductivity σe and the effective shear modulus Ge

simply involves replacing Ee/E1 in (17) with Ge/G1. It is
noteworthy that the determination of the effective shear mod-
ulus of such a dispersion is exactly equivalent to finding the
effective viscosity of the dispersion in the infinite-frequency
limit [3]
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FIG. 4. Cross-property map σe(Ee ) for incompressible compos-
ites that contain rigid, conducting inclusions at select high values of
the inclusion volume fraction φ2. For a fixed value of φ2, moving
along any curve from left to right, ζ2 increases from its minimum
value of 0.

The topmost plot in Fig. 4 shows the cross-property map
obtained from formula (17) for realizable dispersions for
inclusion volume fractions φ2 = 0.4, 0.5, and 0.6. While the
left end point for each of the three curves corresponds to
ζ2 = 0 (Hashin-Shtrikman lower bound for σe and Ee), the
right end point for each curve corresponds to the largest
value of ζ2 for the respective volume fraction. Thus, moving
along the curves from left to right spans the possible types

of microstructures, as schematically depicted in Fig. 3. As
expected, the effective conductivity σe(Ee ) is a monotonically
increasing function of Ee for fixed φ2. This is because the
particle phase is more conducting and stiffer than the matrix
phase; as particles become closer to each other, the system
deviates from the Hashin-Shtrikman lower bound and hence
both σe and Ee increase. Moreover, for similar reasons, as φ2

increases, both σe and Ee increase. To determine how sensitive
these results are to changes in the ratio G2/G1 or σ2/σ1, we
include cross-property maps in Fig. 4 for G2/G1 = 10 (all
other phase contrast ratios are the same) and for σ2/σ1 = 10
(all other phase contrast ratios are the same), as obtained
from the general incompressible formula, (14). We see that
for the case G2/G1 = 10, the possible values and range of
Ee/E1 drop appreciably for each volume fraction. Similarly,
for σ2/σ1 = 10, the possible values and range of σe/σ1 drop
appreciably for each volume fraction.

B. Incompressible composites with compliant,
insulating inclusions

For incompressible composites (ν1 = ν2 = 1/2) that con-
tain liquid inclusions (G2/G1 = 0) that are perfectly insulat-
ing (σ2/σ1 = 0), the cross-property relation, (14), becomes

σe

σ1
= φ1 + Ee

E1
(6φ2 − 1)

1 + 5φ2 − Ee

E1

. (18)

The cross-property map obtained from this formula is plotted
in the topmost panel in Fig. 5. While the left end point for
each of the three curves corresponds to the largest value of
ζ2, the right end point for each curve corresponds to ζ2 = 0
(Hashin-Shtrikman upper bound for σe and Ee). Clearly, the
effective conductivity σe(Ee ) is a monotonically increasing
function of Ee for fixed φ2. This is due to the fact that the
particle phase is less conducting and more compliant than
the matrix phase. As the particles become closer to each
other, the system deviates from the Hashin-Shtrikman upper
bound and hence both σe and Ee decrease. Moreover, for
similar reasons, as φ2 increases, both σe and Ee decrease,
which is exactly opposite to the trend shown in Fig. 4. All
other phase contrasts being equal, changing G2/G1 to 0.1
or changing σ2/σ1 to 0.1 results in cross-property maps that
are significantly different from the topmost curve shown in
Fig. 5, and these two cases are graphically represented in
the middle and bottommost panels in Fig. 5, respectively. We
see that for the case G2/G1 = 0.1, the possible values and
range of Ee/E1 increase appreciably for each volume fraction.
Similarly, for σ2/σ1 = 0.1, the possible values and range of
σe/σ1 increase appreciably for each volume fraction.

C. Compressible matrix with rigid,
conducting/insulating inclusions

Here we determine cross-property maps for compressible
matrices (ν1 < 1/2) and superrigid (G2/G1 = ∞) inclusions
that are either superconducting (σ2/σ1 = ∞) or perfectly
insulating (σ2/σ1 = 0). Figure 6 shows the cross-property
maps for compressible matrices with ν1 = 0.29 and supercon-
ducting inclusions for inclusion volume fractions φ2 = 0.4,
0.5, and 0.6. As expected, the effective conductivity σe(Ee )
is a monotonically increasing function of Ee, and σe(νe ) a
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FIG. 5. Cross-property maps for σe(Ee ) for incompressible com-
posites that contain compliant, insulating inclusions at select high
values of the inclusion volume fraction φ2. For a fixed value of
φ2, moving along a curve from right to left, ζ2 increases from its
minimum value of 0.

monotonically decreasing function of νe for fixed φ2. The
effective Poisson’s ratio νe(Ee ) is a monotonically decreasing
function of Ee. This is for reasons similar to those mentioned
in the cases above. The left end point of σe(Ee ) and νe(Ee )
corresponds to ζ2 = 0 (Hashin-Shtrikman lower bound for
Ee), and the right end point of σe(Ee ) and νe(Ee ) corresponds
to the largest value of ζ2 for the respective φ2. The left end
point of σe(νe ) corresponds to the largest value of ζ2, and
the right end point of σe(νe ) corresponds to ζ2 = 0 (Hashin-
Shtrikman lower bound for σe) for the respective φ2.
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FIG. 6. Cross-property maps for νe(Ee ) (top), σe(Ee ) (middle),
and σe(νe ) (bottom) for compressible matrices that contain rigid,
conducting inclusions at select high values of the inclusion volume
fraction φ2. For either νe(Ee ) or σe(Ee ) at fixed φ2, moving along a
curve from left to right, ζ2 increases from its minimum value of 0.
For σe(νe ) at fixed φ2, moving along a curve from right to left, ζ2

increases from its minimum value of 0.

Figure 7 shows the cross-property maps for compress-
ible matrices with ν1 = 0.29 and insulating inclusions for
inclusion volume fractions φ2 = 0.4, 0.5, and 0.6. The cross-
property map νe(Ee ) in this case is the same as the top curve
in Fig. 6 and, thus, is not shown in Fig. 7. The effective
conductivity σe(Ee ) is a monotonically decreasing function
of Ee for fixed φ2, and σe(νe ) a monotonically increasing
function of νe. The left end point of σe(Ee ) corresponds to
ζ2 = 0 (Hashin-Shtrikman upper bound for σe), and the right
end point of σe(Ee ) corresponds to the largest value of ζ2 for
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FIG. 7. Cross-property maps νe(Ee ) (top), σe(Ee ) (middle), and
σe(νe ) (bottom) for compressible matrices that contain compliant,
insulating inclusions at select high values of the inclusion volume
fraction φ2. For σe(Ee ) at fixed φ2, moving along a curve from left to
right, ζ2 increases from its minimum value of 0. For σe(νe ) at fixed
φ2, moving along a curve from right to left, ζ2 increases from its
minimum value of 0.

the respective φ2. The left end point of σe(νe ) corresponds
to the largest value of ζ2, and the right end point of σe(νe )
corresponds to ζ2 = 0 (Hashin-Shtrikman upper bound for σe)
for the respective φ2.

D. Compressible matrix with conducting/insulating cavities

Here we determine cross-property maps for compressible
matrices (ν1 < 1/2) and cavities (K2 = G2 = 0) that are
either superconducting (σ2/σ1 = ∞) or perfectly insulating
(σ2/σ1 = 0). We also examine how these results change when
the matrix is incompressible.

Figure 8 shows the cross-property maps for compressible
matrices with ν1 = 0.29 and superconducting cavities for in-
clusion volume fractions φ2 = 0.4, 0.5, and 0.6. The effective
conductivity σe(Ee ) and σe(νe ) are monotonically decreasing
functions of Ee and νe for fixed φ2, respectively, and the
effective Poisson’s ratio νe(Ee ) a monotonically increasing
function of Ee. The left end point of σe(Ee ) and σe(νe ) cor-
responds to the largest value of ζ2, and the right end point of
σe(Ee ) and σe(νe ) corresponds to ζ2 = 0 (Hashin-Shtrikman
lower bound for σe) for the respective φ2. The left end point
of νe(Ee ) corresponds to the largest value of ζ2, and the right
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FIG. 8. Cross-property maps νe(Ee ) (top), σe(Ee ) (middle), and
σe(νe ) (bottom) for compressible matrices that contain conducting
cavities at select high values of the inclusion volume fraction φ2. For
fixed φ2, moving along any curve from right to left, ζ2 increases from
its minimum value of 0.

end point of νe(Ee ) corresponds to ζ2 = 0 (Hashin-Shtrikman
upper bound for Ee) for the respective φ2.

In the limit that the matrix becomes incompressible, i.e.,
K1/G1 = ∞ or ν1 = 1/2, the cross-property relations are
particularly simple functionally and given by the following
closed-form expressions:

σe

σ1
= 3 − 12φ2 + Ge

G1
(10φ2 − 3)

3φ1 + Ge

G1
(φ2 − 3)

, (19)

σe

σ1
= φ1(2 − 20φ2) − 9 Ke

G1
φ2

2φ1(1 + 5φ2) − 9 Ke

G1
φ2

, (20)

095603-8



MULTIFUNCTIONALITY OF PARTICULATE COMPOSITES … PHYSICAL REVIEW MATERIALS 2, 095603 (2018)

0.4 0.5 0.6 0.7 0.8
Ee/E1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ν e

K2/K1 = G2/G1 = 0,

φ2 = 0.4

φ2 = 0.5

φ2 = 0.6

ν1= 0.5

FIG. 9. Cross-property maps for νe(Ee ) (top) for incompressible
matrices that contain conducting cavities at select high values of the
inclusion volume fraction φ2. For fixed φ2, moving along any curve
from right to left, ζ2 increases from its minimum value of 0.

and

Ge

G1
= 12φ1(5φ2 − 2) − 27 Ke

G1
φ2

8φ1(5φ2 − 3) − 27 Ke

G1
φ2

. (21)

We note that we can also derive the cross-property maps
σe(Ee ), σe(νe ) and νe(Ee ) analytically for this incompressible
case; however, they are rather complicated functionally and
hence we do not explicitly give them here. The cross-property
map νe(Ee ) for an incompressible matrix changes dramati-
cally from the one shown in the topmost panel in Fig. 8 for
a compressible matrix, as shown in Fig. 9. Since the effective
conductivity σe does not change with ν1, we do not provide
plots of σe(Ee ) or σe(νe ).

Figure 10 shows the cross-property maps σe(Ee ) and
σe(νe ) for a compressible matrix with ν1 = 0.29 and insulat-
ing cavities for inclusion volume fractions φ2 = 0.4, 0.5, and
0.6. The cross-property map νe(Ee ) in this case is the same as
the top curve in Fig. 8 and, thus, is not shown in Fig. 10. The
effective conductivities σe(Ee ) and σe(νe ) are monotonically
increasing functions of Ee and νe for fixed φ2, respectively.
The left end point for each curve corresponds to the largest
value of ζ2, and the right end point corresponds to ζ2 = 0
(Hashin-Shtrikman upper bound for σe) for the respective φ2.

In the limit that the matrices become incompressible, i.e.,
K1/G1 = ∞ or ν1 = 1/2, the cross-property relations are
particularly simple functionally and given by the following
closed-form expressions;

σe

σ1
= 3φ1 + Ge

G1
(4φ2 − 3)

3 + 6φ2 − Ge

G1
(5φ2 + 3)

, (22)

σe

σ1
= φ1(28 − 40φ2) + 9 Ke

G1
φ2

φ1(28 + 20φ2) + 9 Ke

G1
φ2

. (23)

The cross-property maps σe(Ee ), σe(νe ), and νe(Ee ) can be
obtained analytically for this incompressible case; however,
they are rather complicated functionally and hence we do not
explicitly give them here. Also, the cross-property map νe(Ee )

0.1 0.2 0.3 0.4 0.5
Ee/E1

0.2

0.3

0.4

0.5

0.6

σ e/σ
1

K2/K1 = G2/G1 = 0,

φ2 = 0.4

φ2 = 0.5

φ2 = 0.6

ν1 = 0.29, σ2/σ1 = 0

0.22 0.23 0.24 0.25 0.26
νe

0.2

0.3

0.4

0.5

0.6

σ e/σ
1

K2/K1 = G2/G1 = 0,

φ2 = 0.4

φ2 = 0.5

φ2 = 0.6

ν1 = 0.29, σ2/σ1 = 0

FIG. 10. Cross-property maps for σe(Ee ) (top) and σe(νe ) (bot-
tom) for compressible matrices that contain insulating cavities at
select high values of the inclusion volume fraction φ2. For a fixed
value of φ2, moving along any curve from right to left, ζ2 increases
from its minimum value of 0.

in this case is the same as the top curve in Fig. 9 and, thus, is
not shown graphically again here.

E. Compressible matrix with conducting/insulating
liquid inclusions

Here we determine cross-property maps for compress-
ible matrices (ν1 < 1/2) and liquid inclusions (ν2 = 0.5 and
G2/G1 = 0) that are either superconducting (σ2/σ1 = ∞) or
perfectly insulating (σ2/σ1 = 0). This is a model of a fluid-
saturated porous medium.

Figure 11 shows the cross-property maps for compressible
matrices with ν1 = 0.29 and superconducting liquid inclu-
sions for inclusion volume fractions φ2 = 0.4, 0.5, and 0.6.
The effective conductivity σe(Ee ) and effective Poisson’s ratio
νe(Ee ) are monotonically decreasing functions of Ee for fixed
φ2, and σe(νe ) is a monotonically increasing function of νe.
The left end point of σe(Ee ) and νe(Ee ) corresponds to the
largest value of ζ2, and the right end point of σe(Ee ) and
νe(Ee ) corresponds to ζ2 = 0 (Hashin-Shtrikman upper bound
for Ee) for the respective φ2. The left end point of σe(νe )
corresponds to the ζ2 = 0 (Hashin-Shtrikman lower bound for
σe), and the right end point of σe(νe ) corresponds to the largest
value of ζ2 for the respective φ2.
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FIG. 11. Cross-property maps νe(Ee ) (top), σe(Ee ) (middle), and
σe(νe ) (bottom) for compressible matrices that contain conducting
liquid inclusions at select high values of the inclusion volume frac-
tion φ2. For νe(Ee ) and σe(Ee ) at fixed φ2, moving along a curve from
right to left, ζ2 increases from its minimum value of 0. For σe(νe ) at
fixed φ2, moving along a curve from left to right, ζ2 increases from
its minimum value of 0.

Figure 12 shows the cross-property maps σe(Ee ) and
σe(νe ) for compressible matrices with ν1 = 0.29 and insulat-
ing liquid inclusions for inclusion volume fractions φ2 = 0.4,
0.5, and 0.6. The cross-property map νe(Ee ) in this case is
the same as the top curve in Fig. 11 and, thus, is not shown
in Fig. 12. The effective conductivity σe(Ee ) is a monoton-
ically decreasing function of Ee for fixed φ2, and σe(νe ) a
monotonically increasing function of νe. The left end point
of σe(Ee ) corresponds to the largest value of ζ2, and the right
end point of σe(Ee ) corresponds to ζ2 = 0 (Hashin-Shtrikman
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FIG. 12. Cross-property maps σe(Ee ) (top) and σe(νe ) (bottom)
for compressible matrices that contain insulating liquid inclusions at
select high values of the inclusion volume fraction φ2. For σe(Ee ) at
fixed φ2, moving along a curve from right to left, ζ2 increases from
its minimum value of 0. For σe(νe ) at fixed φ2, moving along a curve
from left to right, ζ2 increases from its minimum value of 0.

upper bound for Ee) for the respective φ2. The left end point
of σe(νe ) corresponds to the ζ2 = 0 (Hashin-Shtrikman upper
bound for σe), and the right end point of σe(νe ) corresponds to
the largest value of ζ2 for the respective φ2.

F. Compressible matrix with conducting/insulating,
auxetic inclusions

Here we determine cross-property maps for compressible
matrices (ν1 < 1/2) and superrigid and auxetic inclusions
(G2/G1 = ∞ and ν2 = −1) that are either superconducting
(σ2/σ1 = ∞) or perfectly insulating (σ2/σ1 = 0). Auxetic
materials are characterized by a negative Poisson’s ratio
[65–67], i.e., in contrast to common materi-
als, they laterally dilate in response to axial
stretching.

We first plot in the top panel in Fig. 13 the cross-property
map νe(Ee ) for compressible matrices with ν1 = 0.29 and
superrigid inclusions for inclusion volume fractions φ2 = 0.4,
0.5, and 0.6. Note that νe(Ee ) is independent of the conduc-
tivity contrast σ2/σ1. The left end point of νe(Ee ) corresponds
to the ζ2 = 0 (Hashin-Shtrikman lower bound for Ee), and the
right end point of νe(Ee ) corresponds to the largest value of
ζ2 for the respective φ2. The effective Poisson’s ratio νe(Ee )
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FIG. 13. Cross-property map νe(Ee ) for compressible matrices
that contain superrigid auxetic inclusions at select high values of the
inclusion volume fraction φ2. At a fixed value of φ2, moving along
any curve from left to right, ζ2 increases from its minimum value
of 0.

is a monotonically increasing function of Ee for fixed φ2.
Also, as φ2 increases, νe becomes more negative, as expected,
because the auxetic phase occupies a greater volume fraction.
Moreover, all other phase contrasts being equal, changing
G2/G1 to 10 from ∞ results in a cross-property map (bottom
panel in Fig. 13) that is significantly different from the top
curve shown in Fig. 13.

Figure 14 shows the cross-property maps for compress-
ible matrices with ν1 = 0.29 and superconducting auxetic
inclusions for inclusion volume fractions φ2 = 0.4, 0.5,
and 0.6. The effective conductivity σe(Ee ) and σe(νe ) are
monotonically increasing functions of Ee and νe for fixed
φ2. The left end point for each curve corresponds to
ζ2 = 0 (Hashin-Shtrikman lower bound for σe), and the right
end point corresponds to the largest value of ζ2 for the
respective φ2.

Figure 15 shows the cross-property maps for compressible
matrices with ν1 = 0.29 and insulating auxetic inclusions
for inclusion volume fractions φ2 = 0.4, 0.5, and 0.6. The
effective conductivity σe(Ee ) and σe(νe ) are monotonically
decreasing functions of Ee and νe for fixed φ2. The left
end point for each curve corresponds to the ζ2 = 0 (Hashin-
Shtrikman upper bound for σe), and the right end point
corresponds to the largest value of ζ2 for the respective
φ2.
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FIG. 14. Cross-property maps σe(Ee ) (top) and σe(νe ) (bottom)
for compressible matrices that contain conducting superrigid auxetic
inclusions at select high values of the inclusion volume fraction φ2.
At a fixed value of φ2, moving along any curve from left to right, ζ2

increases from its minimum value of 0.

IV. APPLICATION OF CROSS-PROPERTY MAPS
TO THE DESIGN OF MULTIFUNCTIONAL MATERIALS

Cross-property maps can aid in the rational design of
multifunctional particulate composites with specified material
components and volume fractions. One first should have in
mind the component materials and hence the phase properties.
From a cross-property map of such phase properties, one first
selects a point (pair of effective properties) on a curve for a
fixed inclusion volume fraction φ2. This choice implicitly de-
termines the corresponding value of the three-point parameter
ζ2, which in turn determines the associated family of disper-
sions that is characterized by the spatial distribution of the
inclusions and inclusion shapes and sizes. This family spans
particulate composites with different degrees of order/disorder
[68], which would provide experimentalists guidance in the
fabrication process. Here we specifically illustrate this proce-
dure with several examples.

To begin, suppose one wishes to design incompressible
composites with rigid, conducting inclusions. This is the case
depicted in the topmost panel in Fig. 4. Now imagine selecting
a pair of values of the effective conductivity σe and Young’s
modulus Ee corresponding to the left end point of the curve
at φ2 = 0.4, i.e., a particulate composite with ζ2 = 0. For
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FIG. 15. Cross-property maps σe(Ee ) (top) and σe(νe ) (bottom)
for compressible matrices that contain insulating superrigid auxetic
inclusions at select high values of the inclusion volume fraction φ2.
At a fixed value of φ2, moving along any curve from left to right, ζ2

increases from its minimum value of 0.

example, such a composite, to a good approximation, could
be fabricated with an elastomeric matrix [64] with spherical
gold inclusions arranged on an ordered lattice, such as the fcc
lattice. In Table II, one can see that ζ2 for the fcc array at this
inclusion volume fraction is relatively small, as required.

Next consider the case of a dispersion consisting of con-
ducting superrigid, auxetic inclusions in a compressible ma-
trix and select a pair of νe and Ee that corresponds to the
right end point of the curve at φ2 = 0.6 in the top panel in
Fig. 13, i.e., a particulate composite with ζ2 = 0.33. To a
good approximation, one can fabricate this composite with
nonoverlapping grooved block of metal [69] inclusions of
nonspherical (e.g., ellipsoidal) shapes, which are randomly
distributed in a magnesium or low-alloy carbon steel matrix
[70]. As mentioned in Sec. II, dispersions of hard nonspherical
inclusions possess the required sufficiently large value of ζ2.
Note that such a composite is also predicted to possess an
effective conductivity σe/σ1 = 14.24.

Finally, we now consider the case in which we purposely
choose material components that have been previously em-
ployed to fabricate composites. Specifically, we consider bar-
ium titanate inclusions in a thermoplastic polymer matrix
(e.g., polyvinyl chloride matrix). Such composites are used
because they exhibit an effective dielectric constant up to two
orders of magnitude higher than that of conventional ceramic-

2 2.5 3 3.5 4 4.5 5
Ee/E1

0
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ε e/ε
1

G2/G1 = 26, ε2/ε1 = 1000

φ2 = 0.4
φ2 = 0.5

φ2 = 0.6

ν1 = 0.40, ν2 = 0.27,

FIG. 16. Cross-property map for the effective dielectric constant
εe(Ee ) for barium titanate inclusions in a polyvinyl chloride matrix
at select high values of the inclusion volume fraction φ2. At a fixed
value of φ2, moving along any curve from left to right, ζ2 increases
from its minimum value of 0.

polymer composites [71]. We exploit the fact, as noted earlier,
that the dimensionless effective conductivity σe/σ1 can be
replaced with the dimensionless dielectric constant εe/ε1 in
Eq. (1) and hence cross-property maps derived from it. The
individual phase properties for such composites are ν1 =
0.40, ν2 = 0.27, G2/G1 = 26, and ε2/ε1 = 1000. The cor-
responding cross-property map εe(Ee ) is shown in Fig. 16.
Let us imagine that it is desired to create such a composite
with φ2 = 0.5 and select the pair of values εe/ε1 = 6.91 and
Ee/E1 = 3.33, which is midway between the left and the
right end points. This point corresponds to ζ2 = 0.25, which,
according to Table I, could be achieved by a disordered distri-
bution of nonoverlapping spherical barium titanate inclusions
of different sizes, among other possible microstructures. We
note that the resulting composite is also predicted to possess
νe = 0.34.

V. DISCUSSION

In this work, we apply closed-form analytical expressions
that have previously found widespread use to estimate ac-
curately individual effective transport or elastic properties
for a diverse class of dispersions to derive corresponding
cross-property maps that link combinations of pairs of these
effective properties to one another. Such cross-property maps
and their extensions will facilitate the rational design of
particulate media with desirable multifunctional characteris-
tics [2]. In the case of dispersions, we have shown how to de-
sign multifunctional composites. One first selects a desirable
set of effective properties with a specified volume fraction
φ2 and individual phase properties that are dictated by the
cross-property maps. This determines the corresponding value
of the three-point parameter ζ2, which in turn determines the
associated family of dispersions (spatial distribution of the
inclusions and inclusion shapes and sizes) and, hence, guides
experimentalists on how to fabricate the composites.

Our work also has implications for the application of
machine-learning and other data-driven approaches [72–74]
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for materials discovery. Indeed, the recent rapid development
of such computational techniques along with the emergence
of advanced imaging techniques [75] provides a promising
automated means of devising cross-property maps for general
composite microstructures. Specifically, imaging techniques
such as high-throughput x-ray tomographic microscopy [75]
have made it possible to acquire large amounts of high-
resolution images for a wide range of materials. These image
data provide important infrastructure for the identification of
structure-property relations through the use of data-driven
approaches [72–74]. By combining the different identified
structure-property relations and eliminating the structural
components (similarly to how we eliminate ζ2 and η2 in this
work), one can ascertain cross-property maps to design the
next-generation multifunctional composite materials.
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APPENDIX: THREE-POINT PARAMETERS ζ2 AND η2

Here we summarize some known results for the three-
point parameters ζ2 and η2 for various disordered and ordered
model microstructures as a function of the volume fraction, as
excerpted from Ref. [3].

A two-phase symmetric-cell material (SCM) is constructed
by partitioning space into cells of arbitrary shapes and sizes,
with cells being randomly designated as phases 1 and 2 with
probability φ1 and φ2, respectively [76]. Consider an isotropic
SCM made up of d-dimensional ellipsoidal cells. Such space-
filling cells must be randomly oriented and possess a size dis-

TABLE I. Three-point parameter ζ2 vs inclusion volume frac-
tion φ2 for various random dispersions of spheres: symmetric-cell
material (SCM) with spherical cells [76,77], identical overlapping
spheres [78], disordered identical hard spheres [79], and disordered
hard spheres with a size distribution [57].

Three-point parameter ζ2

SCM Identical Identical Polydisperse
with spherical overlapping hard hard

φ2 cells spheres spheres spheres

0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.056 0.020 0.05
0.2 0.2 0.114 0.041 0.10
0.3 0.3 0.171 0.060 0.15
0.4 0.4 0.230 0.077 0.20
0.5 0.5 0.290 0.094 0.25
0.55 0.55 0.320 0.110 0.275
0.6 0.6 0.351 0.134 0.30
0.7 0.7 0.415
0.8 0.8 0.483
0.9 0.9 0.558
0.95 0.95 0.604
0.99 0.99 0.658

TABLE II. Three-point parameter ζ2 versus particle volume frac-
tion φ2 for hard spheres arranged on a simple cubic (SC) lattice,
body-centered cubic (BCC) lattice, or face-centered cubic (FCC)
lattice [80].

Three-point parameter ζ2

φ2 SC BCC FCC

0.10 0.0003 0.0000 0.0000
0.20 0.0050 0.0007 0.0004
0.30 0.0220 0.0031 0.0021
0.40 0.0678 0.0107 0.0078
0.45 0.1104 0.0184 0.0136
0.50 0.1738 0.0307 0.0232
0.60 0.0796 0.0619
0.66 0.1381 0.1095
0.70 0.1596
0.71 0.1756

tribution down to the infinitesimally small. For d-dimensional
ellipsoidal cells, one can express the three-point parame-
ters in terms of the “depolarization” factors [3]. For ex-
ample, for d-dimensional spherical cells, ζ2 = η2 = φ2; for
three-dimensional needlelike cells, ζ2 = η2 = φ1/4 + 3φ2/4;
and for three-dimensional disklike cells or two-dimensional
needlelike cells, ζ2 = η2 = φ1. For an SCM with identical
cubical cells [3],

ζ2 = 0.11882φ1 + 0.88118φ2. (A1)

In Tables I–III, we tabulate the three-point parameters for
certain disordered and ordered dispersions.

TABLE III. Three-point parameter η2 vs inclusion volume frac-
tion φ2 for various random dispersions of spheres: symmetric-cell
material (SCM) with spherical cells [76,77], identical overlapping
spheres [78,81], disordered identical hard spheres [82], and disor-
dered hard spheres with a size distribution [57].

Three-point parameter η2

SCM Identical Identical Polydisperse
with spherical overlapping hard hard

φ2 cells spheres spheres spheres

0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.075 0.048 0.05
0.2 0.2 0.149 0.097 0.10
0.3 0.3 0.224 0.145 0.15
0.4 0.4 0.295 0.193 0.20
0.5 0.5 0.367 0.241 0.25
0.6 0.6 0.439 0.290 0.30
0.7 0.7 0.512
0.8 0.8 0.583
0.9 0.9 0.658
0.95 0.95 0.710
0.99 0.99 0.742
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