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DFT study of the electronic properties and the cubic to tetragonal phase transition in RbCaF3
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The structural, elastic, vibrational, and electronic properties of RbCaF3 in the cubic and low-temperature
tetragonal phases have been studied at the ab initio level with density functional theory. Using various
exchange-correlation functionals of the generalized gradient approximation for structural properties like the
CaF6 octahedron rotational angle or ratio c/a of the tetragonal lattice constants, it is found that the best agreement
with experiment is obtained with the PBEsol and Wu and Cohen (WC) functionals. The fundamental band gap
is calculated to be direct and indirect in the tetragonal and cubic phases, respectively. The relation between the
cubic and tetragonal phases is studied by monitoring the cubic zone boundary soft mode phonon R15′ as well
as the c/a ratio and tilt angle. The results for the Born effective charge tensors are also reported in order to
study the effect of the long-range Coulomb interactions. We also investigated the corresponding pressure driven
phase transition at T = 0 K, which we observe to be of second order in contrast to the first-order character
experimentally detected for the structurally similar high pressure transition at ambient temperature. Based on
recently developed finite strain Landau theory, we offer a possible explanation for this peculiar change of
character.
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I. INTRODUCTION

Materials of the perovskite family have been extensively
studied for many decades, but still continue to attract great
attention [1,2]. Despite its simplicity, the perovskites structure
can undergo a large variety of structural phase transitions with
respect to temperature and/or pressure, thus giving rise to
a rich spectrum of interesting physical properties with cor-
responding technological applications. As to fluoride based
perovskites, we mention their interesting optical properties
[3–5] and the occurrence of high-temperature ferroelectricity
[6], although without stereochemically active atoms ferroelec-
tricity is not to be expected in the present case. Due to its
wide band gap, RbCaF3 can be used as a vacuum-ultraviolet-
transparent material for lenses in optical lithography steppers
[7].

Similar to what is found in many other perovskites, on
lowering the temperature at ambient pressure, RbCaF3 un-
dergoes a series of temperature-induced phase transitions in
which the parental cubic Pm3̄m aristotype symmetry [8] is
lowered by octahedral tilting [9]. The first cubic-tetragonal
transition in this sequence is structurally similar to the ones
in SrTiO3 and KMnF3 (see Refs. [10–13]). These types of
perovskites undergo a second-order antiferrodistortive (AFD)
phase transition to space group symmetry I4/mcm due to
the rotation of CaF6 octahedra around the cubic z axis re-
lated to the softening of the triply degenerate R15′ phonon
mode in the cubic Brillouin zone (BZ). For RbCaF3 this
transition was extensively studied experimentally by a num-
ber of authors. Depending upon the experimental techniques
used like Raman scattering [14,15], x-ray diffraction [16–19],
specific-heat measurements [20], neutron-scattering [21–23],
or thermal conductivity [24], this cubic-to-tetragonal phase
transition is observed with reported transition temperatures

varying between approximately 193 and 199 K. In parallel to
the case of, e.g., SrTiO3, a recent study of RbCaF3 showed
that at room temperature, a structurally similar transition can
also be triggered by application of hydrostatic pressure, but
the resulting transition at 2.8 GPa is reported to be of first
rather than of second order [23].

The subsequent temperature-driven phase transition from
tetragonal to orthorhombic symmetry is much less studied in
comparison to the former one. In the Raman study of both am-
bient pressure transitions (cubic→tetragonal→orthorhombic)
[14], a first-order transition to Pnma symmetry is reported at
around 31.5 K.

As to theoretical approaches, there are a number of ab initio
calculations for the cubic phase of RbCaF3 [25–27,27,28]
but, to the best of our knowledge, neither the tetragonal
phase nor results of density functional theory (DFT) based
phonon calculations have been published up to date. It is the
purpose of the present work to provide a thorough ab initio
investigation of structural, elastic, vibrational, and electronic
properties of RbCaF3 in both, the cubic and the tetragonal
phase. Special emphasis will be given to the pressure induced
phase transition between these two phases.

This paper is organized as follows. In Sec. II, the computa-
tional details are given. Sections III, IV, and V are devoted to
the structural, electronic, and elastic properties, respectively,
while the vibrational properties are discussed in Sec. VI and
the born effective charges in Sec. VII. The continuous (i.e.,
second-order) nature of the pressure-driven phase transition
we detect at zero temperature as opposed to the first-order
character of the experimentally observed high-pressure phase
transition at ambient temperature can be understood within the
framework of the recently developed finite strain Landau the-
ory [29,30], as is argued in Sec. VIII. Finally, the conclusions
are summed up in Sec. IX.
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FIG. 1. Structures of the (a) cubic and (b) tetragonal phases of
RbCaF3, where green, blue, and red colors represent Rb, Ca, and
F atoms, respectively. Note that the conventional tetragonal cell is√

2 × √
2 × 2 larger than the cubic cell (although we actually use a

two times smaller body-centered cell) and the tilt angle φ is clearly
visible.

II. THEORY AND COMPUTATIONAL DETAILS

The ab initio calculations were performed with the WIEN2K

code [31], which is based on the (linearized) augmented
plane-wave and local orbitals [(L)APW+lo] method to solve
the Kohn-Sham equations [32] of DFT. Here, we content
ourselves with sketching the main ideas of this approach (see,
e.g., Ref. [33] for more details). In the (L)APW+lo method,
the unit cell of the crystal is divided into atomic spheres
surrounding the nuclei and the remaining interstitial region.
Inside the atomic spheres, the wave functions are expanded
with atomiclike basis functions, i.e., numerical radial func-
tions times spherical harmonics while, in contrast, within the
interstitial region the basis functions are plane waves. These
two regions are connected by requiring continuity of the basis
functions (and their first derivative depending on the flavor of
the (L)APW+lo method) across the sphere boundary.

The cubic Pm3̄m unit cell of RbCaF3 contains five
atoms [Fig. 1(a)]: Rb at the Wyckoff position 1a (0, 0, 0),
Ca at 1b (0.5, 0.5, 0.5), and F at 3c (0.5, 0.5, 0). During the
cubic→tetragonal transition, the CaF6 octahedra are rotated
along one of the cubic axes, which for definiteness we take to
be the z axis. With respect to the x and y axis, the octahedra
thus appear to be tilted, the tilt angle φ serving as an order pa-
rameter for the transition. Since the tilts occur in an alternating
fashion for neighboring cells, the transition is accompanied
by a doubling of the primitive unit cell, whose conventional
x and y axes are rotated by 45◦ and stretched by a factor of√

2 with respect to the parent cubic cell. Along the z axis, the
rotations/tilts occur in an alternating fashion [Fig. 1(b)], which
also implies a doubling of the conventional lattice parameter c.
The resulting conventional body-centered tetragonal I4/mcm

unit cell hosts 20 atoms with four nonequivalent sites: Rb sits
at 4b (0, 0.5, 0.25), Ca at 4c (0, 0, 0), F1 at 4a (0, 0, 0.25),
and the other F3 at 8h (u + 0.25, u + 0.75, 0), where u is
a free parameter. Lattice periodicity in the tetragonal phase
along the rotated x and y directions is described by the
lattice constant a

√
2, whereas the periodicity along z is close

to twice the lattice constant of the cubic phase. The ratio
c/a (for simplicity we will use c/a instead of c/

√
2a) of

pseudocubic lattice constants is commonly taken as a measure
of the tetragonal distortion. Note, however, that in the actual
calculation primitive cells are used.

Since the energy gain due to the AFD phase transition is
very small, particular care in the choice of the parameters
of the calculations was taken in order to properly converge
the total energy and forces. For instance, 7 × 7 × 7 and
10 × 10 × 10 k meshes were used and found sufficient for the
tetragonal and cubic primitive unit cells, respectively. Also
of crucial importance is the size of the basis set, which is
controlled by the product of the smallest of the atomic sphere
radii Rmin

MT and the plane-wave cutoff Kmax. The calculations
of the present work were done with Rmin

MT Kmax = 9 and atomic
sphere radii of 2.2, 1.9, and 1.9 bohr for Rb, Ca, and F,
respectively.

In DFT, the reliability of the results usually depends on
the approximate exchange-correlation (XC) functional that is
chosen for the calculations [34,35]. Therefore it is important
to choose, to the extent it is possible, an approximation that
is suited for the problem and property under study. In the
present work, we considered the local density approximation
(LDA) [36] and three functionals of the generalized gradient
approximation, namely, PBE from Perdew et al. [37], and its
solid-state optimized version PBEsol [38] and WC from Wu
and Cohen [39]. On average, LDA and PBE are known to
underestimate and overestimate the lattice constants of solids,
respectively, while PBEsol and WC produce more accurate
results in between LDA and PBE [40,41]. Additionally, we
also report calculations with the modified Becke-Johnson
potential [42] (mBJ) for the electronic properties. The mBJ
potential, which depends on the kinetic-energy density and is
therefore of the meta-GGA class, is well known [43–45] to
give significantly improved band gaps compared to standard
GGA functionals like those considered in the present work.

III. STRUCTURAL PROPERTIES

In order to calculate structural properties like the lattice
constants and bond lengths, the first step consists of determin-
ing the unit cell dimensions at vanishing hydrostatic pressure.
For the cubic phase, this merely amounts to calculating the
total energy as a function of the lattice constant a and fitting
the energy values with a Birch-Murnaghan equation of state
[47]. Table I shows the results of our calculations for the
equilibrium lattice constant a0, the bulk modulus B, and its
pressure derivative B ′ that were obtained with the different
XC functionals. For comparison purposes, experimental val-
ues as well as previous DFT results are also displayed in
Table I. As commonly obtained with LDA, the equilibrium lat-
tice constant is too short (by 0.1 Å) compared to experiment,
while PBE shows the opposite trend (a0 too large by 0.07 Å).
As expected [29,30], both, PBEsol and WC, improve the
agreement with experiment, since their values for a0 are 4.444
and 4.449 Å, respectively, which basically coincide with the
experimental value 4.448 Å [16]. The same conclusion is
reached for the bulk modulus B, since PBEsol (52.5 GPa)
and WC (50.8 GPa) also lead to excellent agreement with
experiment (50 GPa), while LDA and PBE lead to overes-
timation and underestimation, respectively. Compared to the
other theoretical works, our results for LDA, PBE, and WC are
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TABLE I. Structural properties and band gap of the cubic phase of RbCaF3.

Present work Other works

LDA PBE PBEsol WC mBJ LDA PBE WC mBJ Expt.

a0 (Å) 4.355 4.522 4.444 4.449 4.349 [27], 4.34 [28] 4.353 [26], 4.514 [27] 4.452 [25] 4.448 [16]
B (GPa) 64.1 46.7 52.5 50.8 62.96 [27], 57.88 [28] 61.9 [26], 46.72 [27] 49.77 [25] 50.03 [23]
B ′ 4.8 4.6 4.8 4.9 4.12 [26] 5.0 [25] 4.2 [23]
Band gap (eV) 6.62 6.40 6.50 6.58 10.46 6.629 [27], 6.79 [28] 6.6 [26], 6.40 [27], 6.65 [28] 10.88 [28] 10.9 [46]

in agreement with the values in Refs. [25,27]. However, the
PBE results from Ref. [26] differ significantly from ours and
are, curiously, much more similar to the LDA results. The cal-
culations in the tetragonal phase are somewhat more involved
than those in the cubic phase, since for each unit cell volume
the ratio c/a of the unit cell parameters and the free parameter
u of the F atom at Wyckoff position 8h (determining the tilt
angle of the fluorine octahedra) have to be optimized. Since
PBEsol (and WC) was shown to be more accurate than the
other functionals for the cubic phase, the calculations in the
tetragonal phase were done only with PBEsol. The results
for the tetragonal structure are shown in Table II, which also
contains experimental results. The theoretical unit cell volume
obtained from our calculation is found to be only 0.4% smaller
than the experimental value, while most other quantities, e.g.,
c/a, the Ca-F bond length, and the bulk modulus are also in
good agreement with experiment. We just note that the PBEsol
and experimental values for the CaF6∠ differ slightly (9.31◦
for PBEsol versus 7.96◦ for experiment).

Figure 2(a) compares the PBEsol equation of state of the
cubic and tetragonal phases, where we can see that the tetrag-
onal structure has a lower total energy and is therefore more
stable than the cubic one. Nevertheless, as the volume in-
creases, the energy difference between both phases decreases
and at a volume of 99 Å3 the two curves merge and the phase
transition between the cubic and tetragonal structures occurs.
Numerically, the transition volume, which translates into a
negative pressure of −4.8 GPa, is more clearly determined
from monitoring the variation of the c/a ratio and tilt angle

TABLE II. Structural properties and band gap of the tetragonal
phase of RbCaF3 calculated with the PBEsol functional. The band
gap calculated with the mBJ potential is also shown. CaF6∠ is a
measure of the tilting of the CaF6 octahedra.

Present work Expt.

a0 (Å) 6.235 6.251 (55 K) [16]
c0 (Å) 8.941 8.933 (55 K) [16]
B (GPa) 49.3
c/(

√
2a) 1.014 1.0105 (55 K) [16]

u 0.041 0.035 (55 K) [16]
CaF6∠ 9.31◦ 7.96◦ (55 K) [16]
Rb-F1 (Å) 3.117
Rb-F3 (Å) 2.899
Ca-F1 (Å) 2.235 2.2405 (87.5 K) [16]
Ca-F3 (Å) 2.233 2.2395 (87.5 K) [16]
Band gap (eV) 6.63 (mBJ: 10.58)

of the rotation of the CaF6 octahedra with volume as shown
in Fig. 2(b). At a volume of 99 Å3, the c/a ratio and tilt
angle reach the values of 1 and 0◦, respectively, i.e., the cubic
structure is obtained. From Fig. 2(b), one can also see that
the tilt angle decreases more sharply starting from a volume
of 95 Å3, but both c/a ratio and tilt angle approach their
cubic limiting values in a perfectly continuous way. During
the phase transition, the Rb-F bond length decreases, while
at the same time the Ca-F bond length increases, and overall
this produces a volume for the CaF6 octahedron that is larger
in the tetragonal phase than in the cubic phase. We have
been very careful to verify the absence of any jump-wise
behavior in these bond lengths and the resulting tilt angle
and c/a ratio by tuning numerical parameters like the number
of k points and the threshold for force relaxation to extreme
values. In summary, all the evidence gathered from DFT
supports the conclusion that the zero temperature pressure-
driven phase transition Pm3̄m → I4/mcm that occurs at
a negative pressure of Pc(T = 0 K) = −4.8 GPa mediated
by octahedral tilting is of second-order. This transition is
also visible when monitoring the volume dependence of the
R15′ and R25′ phonon modes mentioned in Introduction. See
Sec.VIII for more detailed discussions.

IV. ELECTRONIC PROPERTIES

The electronic properties of RbCaF3 are revealed by the
band structure and density of states (DOS), which are shown
in Figs. 3 and 4 for the cubic and tetragonal phases, respec-
tively, and were obtained with PBEsol and the mBJ potential.

The band structure of the cubic phase is calculated along
lines connecting the high-symmetry points X (0,1/2,0), �, R

(1/2,1/2,1/2), M (1/2,1/2,0), and �, respectively. Inspection of
the band structure shows that the valence band maximum is at
the R point and the conduction band minimum at �, thus in-
dicating that the fundamental band gap is indirect. The values
of the fundamental band gap are shown in Table I where we
can see that, as expected, all GGA methods underestimate the
experimental value of 10.9 eV [46] by a large amount (more
than 4 eV), while mBJ leads to a pretty good agreement with
experiment since the error is significantly reduced (∼0.5 eV).
Due to the strong ionicity of the system, the valence bands
(covering band widths of 2 and 1.5 eV for PBEsol and mBJ,
respectively) are essentially F 2p states, while the unoccupied
bands are mainly of Ca 4s, Ca 3d, and Rb 5s characters to
which small contributions from the Rb 4d states are admixed.
Compared to PBEsol, mBJ pushes the unoccupied states up.
However, by looking more closely at the band structures, one
can see that this shift is not rigid as it is not the same for all
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FIG. 2. (a) shows the volume dependence of the PBEsol total energy (triangles) and pressure (squares) of the cubic and tetragonal phases
of RbCaF3, while (b) shows the volume dependence of the c/a ratio and tilt angle in the tetragonal phase. The pseudocubic cell is used for the
tetragonal phase in order to compare with the cubic phase.

bands. Furthermore, the shapes of the corresponding PBEsol
and mBJ bands also differ to some extent. For instance, the
lowest unoccupied band at the � point is clearly narrower
with the mBJ potential. In general for both the occupied and
unoccupied bands, the band width is smaller with mBJ than
with PBEsol or any other standard GGA.

As to the body-centered tetragonal phase, the energy
band structure (left panel of Fig. 4) is calculated along
lines connecting the high-symmetry points (in conventional
coordinates) X (1/2,1/2,0), �, M (0,0,1), N (1/2,0,1/2), and
P (1/2,1/2,1/2), respectively. As mentioned above, the AFD

phase transition involves a doubling of the primitive unit cell
and a corresponding folding of the first BZ, merging both
the R and � points of the cubic BZ into the � point of the
tetragonal BZ. Similarly, the M and X points of the cubic BZ
merge into the X point of the BZ of the tetragonal structure.
Therefore we expect the band gap in the tetragonal phase to
be direct (at �). This conjecture is indeed supported by the
calculated electronic band structure which shows that both the
valence band maximum and conduction band minimum are
located at �. The values of the fundamental band gap, which
are 6.63 and 10.58 eV with PBEsol and mBJ, respectively,
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FIG. 3. Band structure (left) and DOS (right) of the cubic phase of RbCaF3. Note the different energy scales for the regions below and
above the Fermi energy. The Fermi energy is set at 0.
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FIG. 4. Same as Fig. 3, but for the tetragonal phase.

only differ by ∼0.1 eV from the indirect band gap of the
cubic phase. A comparison between the DOSs of the cubic
and tetragonal phases reveals that they are essentially the same
(cf. the right columns of Figs. 3 and 4).

V. ELASTIC PROPERTIES

Generally, a crystal is mechanically stable (or at least
metastable) if it is stable under both, small arbitrary inhomo-
geneous as well as homogeneous deformations. In terms of
phonons, stability with respect to the former class of defor-
mations is tantamount to requiring that all phonon frequencies
are positive for all wave vectors throughout the BZ. The latter
class of deformations can be encoded by the infinitesimal
strain components εi (written in Voigt notation with index
i = 1, . . . , 6) defined with respect to the equilibrium zero
stress reference state of volume V0. For such homogeneous
deformations,

Cij (T , V0) = 1

V0

(
∂2F

∂εi∂εj

)
ε=0

(1)

defines the 6 × 6 symmetric matrices of the second-order
elastic constants, where F denotes the Helmholtz free energy.

At T = 0 K, where the total energy E takes over the role
of the free energy F , the elastic constants can be calculated
from DFT by applying to the crystal a set of deformations with
respect to the equilibrium state. The deformations necessary
to obtain the three independent elastic constants in cubic case
(C11, C12, and C44),were implemented in the ELAST program
developed by Charpin [48], which is part of the WIEN2K

program package.
The results for the elastic constants of RbCa3F in the cubic

phase (shown in Table III) reveal that the cubic phase satisfies
the Born stability criteria [49], i.e., it is stable under ho-
mogeneous deformations. The trends among the functionals
that were observed for the lattice constant and bulk modulus,
namely that the PBEsol and WC result are in between those
from LDA and PBE, are also reproduced with C11, but not
with C12 and C44. For C12, the LDA value is a bit larger
than the values of other functionals. However, the differences
between the various functionals are quite small in general for
C44. Our results agree with the previously published results
(also shown in Table III) from Refs. [27,28], but not with the
PBE values from Ref. [26] that resemble much more LDA
values, as already observed above for the lattice constant
and bulk modulus (see Sec. III). The variation of the elastic

TABLE III. Elastic constants (in GPa) of the cubic phase of RbCaF3.

Present work Other works

LDA PBEsol WC PBE LDA PBE

C11 143.6 114.9 111.7 100.3 141.40 [28], 141.76 [27] 139.3 [26], 99.46 [27]
C12 24.1 21.1 20.1 21.1 24.49 [28], 23.55 [27] 23.3 [26], 20.36 [27]
C44 19.7 19.5 19.2 19.9 20.94 [28], 19.69 [27] 19.2 [26], 19.66 [27]
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FIG. 5. Elastic constants of the cubic phase of RbCaF3 as a function of pressure.

constants with respect to pressure is shown in Fig. 5, where
we can see that the magnitude of all elastic constants increase
rather linearly with increasing pressure. This provides a nec-
essary input for the finite strain Landau theory [29,30] as
discussed in more detail in Sec. VIII.

For the tetragonal space group I4/mcm of RbCaF3 there
are six independent elastic constants C11, C12, C13, C33, C44,
and C66. The PBEsol elastic constants of the tetragonal phase
were calculated with the program ELASTIC [50] and the results
are shown in Table IV. From these results, we can see that
the Born stability criteria [49] are satisfied. To the best of
our knowledge we are not aware of any experimental or
theoretical values to compare with, such that our results may
act as a reference for future studies.

VI. PHONONS

The phonon spectra were calculated using a frozen phonon
approach. From the optimized structures, suitable supercells
are constructed. Then, the forces, which arise due to the
displacement of atoms (by 0.02 bohr), are calculated in order
to form the dynamical matrix. Diagonalization of the dy-
namical matrix gives the phonon spectrum, where all these
calculations were done by the program PHONOPY [51].

For the cubic structure, we used a 2 × 2 × 2 supercell,
which consists of 40 atoms and is, according to our tests, large
enough to get converged phonon spectra. On the other hand,
for the two times larger body-centered tetragonal phase we
used a 2 × 2 × 1 primitive supercell (80 atoms). The phonon
frequencies were calculated along the �, X, M , R, and � high-
symmetry path of the BZ [Fig. 6(a)] of the cubic structure
and along M , N , �, X, and P (for the coordinates of these
points see Sec. IV) for the tetragonal BZ [Fig. 6(b)], where
the splitting of transverse and longitudinal optical (LO-TO)
phonon modes at the � point is included using the calculated
Born effective charges (BEC) (see Sec. VII).

TABLE IV. Elastic constants (in GPa) of the tetragonal phase of
RbCaF3 calculated with the PBEsol functional.

C11 C12 C13 C33 C44 C66

72 37 29 115 19 39

For the cubic phase, there are in total five modes at the �

point (neglecting the LO-TO splitting), all of which are triply
degenerate (see Table V). Four of them are T1u modes and one
is a T2u mode. One of the T1u modes is acoustic and the three
others are IR active, while there is no Raman active mode. The
T2u mode, which is exclusively related to the displacement of
fluorine atoms, is both IR- and Raman-silent.

FIG. 6. (a) and (b) show the PBEsol phonon spectrum of the
cubic and tetragonal phases, respectively.
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TABLE V. Phonon frequencies (in cm−1) of the cubic phase of RbCaF3. Imaginary frequencies are represented by “i”. Frequencies
obtained including LO-TO splitting at the � point are shown in parenthesis.

Modes LDA PBEsol WC PBE Rigid-ion model [14]

�(0, 0, 0)
T1u 0 0 0 0 0
T1u 52.5(52.5, 72.7) 50.6(50.6, 88.1) 48.5(48.5, 80.8) 55.2(55.2, 88.8) 85.3(85.3, 102.16)
T2u 75.4(75.4, 110.6) 88.1(88.1, 104.7) 87.3(87.3, 109.1) 99.6(99.6, 112.8) 128.6
T1u 170.1(170.1, 301.5) 179.9(179.9, 236.0) 180.0(180.0, 293.5) 187.1(187.1, 289.0) 216.4(216.4, 288.2)
T1u 456.9(456.9, 533.0) 409.5(409.5, 524.2) 404.7(404.7, 490.8) 367.9(367.9, 460.3) 417.3(417.3, 460.7)
R(0.5, 0.5, 0.5)
R15′ 77.4i 64.7i 64.6i 46.0i 21.4
R25′ 52.5 50.0 48.2 53.7 70.4
R25′ 183.9 188.5 187.7 194.3 239.9
R15 319.5 297.2 296.2 277.0 260.4
R12 413.0 371.2 366.1 335.2 333.8
R1 507.8 474.0 469.5 446.1 443.8
X(0, 0.5, 0)
X5 47.1 44.0 42.5 46.1 60.1
X5′ 58.1 59.9 58.6 66.2 79.8
X1 89.8 85.5 84.4 84.3 84.3
X4′ 93.9 103.2 101.5 113.5 139.2
X5 108.8 116.2 115.3 124.3 150.6
X2′ 152.1 155.4 155.1 152.6 186.9
X5′ 161.9 161.1 161.3 168.2 186.6
X2′ 363.1 346.4 345.6 333.8 342.0
X5′ 456.6 409.3 404.2 367.6 415.6
X1 469.6 433.1 428.4 402.5 389.8
M (0.5, 0.5, 0)
M2 73.7i 61.9i 62.14i 41.7i 23.4
M5′ 41.1 42.5 40.9 46.9 68.6
M3′ 49.5 45.7 44.6 48.1 59.9
M5 111.5 117.5 116.5 125.5 150.2
M5′ 119.4 121.8 121.1 126.1 163.6
M2′ 127.1 132.4 132.7 135.6 132.2
M4 208.7 211.2 210.3 216.2 252.7
M5′ 328.4 308.4 307.4 291.2 283.5
M3 413.3 371.5 366.3 355.3 333.9
M2′ 456.2 408.8 403.8 366.8 414.1
M1 492.6 457.6 453.1 428.5 418.1

At the R point, there are in total six individual modes.
The triple degenerate R15 mode is related to the vibrations
of the Ca atom, while the first of the triple degenerate R25′

mode is related to Rb vibrations. The remaining three modes
R1, R12, and R15′ have a degeneracy of one, two, and three,
respectively. Of these, the R15′ (and also the M2) modes show
instabilities. In particular, the instability of the R15′ soft mode,
which corresponds to alternate rotations of the CaF6 octahedra
around the cubic z axis, triggers the cubic→tetragonal phase
transition.

In Table V, we present our DFT results for the phonon fre-
quencies of the cubic phase that are compared with those de-
rived from rigid-ion model calculations [14]. The agreement
between these empirical calculations and our first-principles
results is not very good and we can see that the frequencies ob-
tained with the rigid-ion model are close to the experimentally
observed frequencies in the tetragonal phase, but apparently
do not correctly represent the cubic phase. As for all properties
considered up to now, the phonon frequencies obtained with

PBEsol and WC are quite similar, and compared to them the
values obtained with LDA and PBE show opposite trends.
Typically, for higher frequency modes (mainly F vibrations),
LDA obtains larger values than PBE, which is consistent with
the smaller lattice constant obtained with LDA. On the other
hand, for low-frequency modes, PBE leads often to larger
frequencies. We have also investigated whether these shifts
are due to the functional or simply due to volume effects and
very different behavior can been found. For instance, for the
T1u mode around 50 cm−1 the large effect of the functional
(PBE gives 30 cm−1 higher frequency at the LDA volume)
is almost canceled by the softening due to the volume effect.
On the other hand, the T2u and the following T1u modes show
hardening with volume while the highest T1u gets much softer
with increasing volume, dominating the hardening effect of
the PBE functional (again around 30 cm−1).

The PBEsol phonon frequencies for the tetragonal phase
at the � point are presented in Table VI along with the
Raman active modes measured in experiment. On lowering
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TABLE VI. Phonon frequencies (in cm−1) of the tetragonal
phase of RbCaF3 at the � point calculated with the PBEsol functional
are compared with experimental values obtained by Raman spectrum
[14]. Nonobserved Raman modes and imaginary frequencies are
denoted with “n.o.” and “i” respectively.

Modes Present Expt. (15 K) Expt. (50 K) Expt. (80 K)

Eg 5.1i n.o 23 22.5
A2u 0
Eu 0
Eu 69.6
Eg 71.9 74 75 75
B2g 78.9 87.7 83 n.o
A2u 93.9
A1g 98.0 82 81 80
Eu 113.5
B1u 128.5
Eu 182.8
A2u 187.9
Eg 193.4 202 200 201
B2g 205.4 210 210 211
A1u 288.8
Eu 291.4
B1g 352.1 364 364 365
A2g 353.7
Eu 388.4
A2u 391.0
A2g 456.1

the symmetry from cubic to tetragonal, the degeneracies of
the cubic phonon modes are partly lifted, which is reflected
in the observed spectra of the tetragonal modes. Similarly
as for the electronic band structure discussed in Sec. IV,
the tetragonal � point hosts modes derived by back-folding
from the � and R points of the parent cubic phase, while
the tetragonal X point modes are inherited from the cubic
X and M point modes. At the tetragonal � point, eight IR
active modes (3A2u, 5Eu), seven Raman active modes (A1g ,
B1g , 2B2g , 3Eg), and four silent modes (A1u, B1u, 2A2g) are
identified, leaving the remaining acoustic modes A2u, Eu.
The comparison with experiment shows that PBEsol leads to
good agreement with experiment. The largest discrepancy is
for the A1g mode, which is overestimated by 16 cm−1. All
experimentally observable modes originate originally from
cubic R-point phonons. The softest Eg and the A1g modes
originate from the unstable cubic R15′ mode while the two
pairs of Eg and B2g modes are hardened by 5–28 cm−1

compared to the cubic R25′ modes. Finally, the observed B1g

mode is softer by nearly 20 cm−1 than its corresponding R12

mode.
Figure 6, which presents the phonon spectrum in both

phases, indicates that the tetragonal structure is more stable
than the cubic one, but still shows a slight instability of its Eg

mode. In order to understand these observations, one should
bear in mind that our DFT calculations at T = 0 K do not
account for the entropic effects that are present at nonzero
temperature. From experiment, it has been found that the
cubic structure only stabilizes above temperature of about
200 K, while the tetragonal structure, being a low-temperature

descendant of its cubic parent, is stable within the temperature
range 50–200 K. The lowest temperature phase found below
20 K is orthorhombic as described in Ref. [52] and the residual
Eg mode instability in the tetragonal phase should be due to
the orthorhombic distortion, which was not investigated in this
paper.

VII. BORN EFFECTIVE CHARGES

In order to quantitatively understand the splitting between
transverse and longitudinal optical phonon modes, we calcu-
lated the Born effective charges. The BEC tensor Z∗, which
was introduced by Born [53], is a dynamic quantity capturing
the effects of the long-range Coulomb interaction. Formally,
it is derived from the change in polarization P with respect to
a displacement of an ion [54]:

Z∗
ν,αβ = �0

|e|
∂Pβ

∂rν,α

, (2)

where �0 is the unit cell volume and ∂Pβ is the change in
polarization in direction β due to the small displacement ∂rν,α

of the atom ν in the direction α from its equilibrium position.
Using the software package BERRYPI [55], which is included
in WIEN2K, we can compute the polarization in RbCaF3.

In the cubic structure, the Born effective charge tensors for
the Rb and Ca atoms are isotropic for site symmetry group
Oh. For the F atom, the site symmetry group is D4h and
the two independent components F‖ and F⊥, corresponding
to displacements of F parallel and perpendicular to the Ca-F
bond, differ by more than 50%. From Table VII, it becomes
also clear that different DFT functionals in the cubic phase
show the same kind of behavior seen in other properties. The
BEC values obtained by PBEsol and WC are in between the
result obtained by LDA and PBE. We have verified that LDA
gives the highest BEC because it has the smallest equilibrium
lattice constant (for the same volume the differences between
LDA and PBE are well below 0.01), but overall the variations
with the different functionals are rather small. As usual, the
BEC are a bit larger than the formal ionic charges and are
in particular much larger than what was used in the rigid ion
phonon calculations in Ref. [14].

In the tetragonal phase, the BEC tensor Z∗ of Rb and Ca
have two distinct values, whereas F atoms (F1 and F3) have
three distinct values (Table VII), since there are considerable
atomic displacements involved in the transformation from the
cubic to tetragonal structure for the F atom. Nevertheless, we
observe that the values of the BEC remain relatively close
to their nominal ionic charges, a behavior that is similar to
what is also exhibited by other fluoroperovskites but opposite
to that of oxygen perovskites [54,56,57]. Strongly anomalous
BEC play an important role in explaining ferroelectricity in
perovskite oxides. Its absence, in turn, hints to a nonfer-
roelectricity of fluoro-perovskites in most cases. A similar
behavior has also been reported in other fluoroperovskites (see
Ref. [58]). However, there are also some exceptions like in the
case of the high-temperature ferroelectricity that is observed
in CsPbF3 [6].

When comparing the values of the BEC in both phases for
PBEsol, we find that Z∗(Ca) remains almost unchanged but
there is a slight asymmetry of about 4% in Z∗(Rb). There
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TABLE VII. Born effective charges (Z∗) of Rb, Ca, and F calculated with different functionals in the cubic phase and with PBEsol in the
tetragonal phase. F‖ and F⊥ indicate the Born effective charge of the F atom when it is displaced parallel or perpendicular to the Ca-F bond,
respectively.

Cubic Tetragonal

Nominal LDA WC PBEsol PBE PBEsol

Z∗(Rb) 1 1.23 1.23 1.22 1.21 1.20[100]

1 1.23 1.23 1.22 1.21 1.20[010]

1 1.23 1.23 1.22 1.21 1.27[001]

Z∗(Ca) 2 2.37 2.35 2.35 2.34 2.36[100]

2 2.37 2.35 2.35 2.34 2.36[010]

2 2.37 2.35 2.35 2.34 2.35[001]

Z∗(F‖) −1 −1.66 −1.64 −1.64 −1.63 −1.64(F1) −1.60(F3)
Z∗(F⊥) −1 −0.97 −0.97 −0.97 −0.96 −0.97(F1) −0.97(F3)

−1 −0.97 −0.97 −0.97 −0.96 −0.96(F1) −1.00(F3)

are two inequivalent F atoms in the tetragonal phase. Z∗(F1)
remains almost the same as in the cubic structure, but for
Z∗(F3) an increased asymmetry of about 2.4% compared to
the cubic values can be seen and in addition the x and y

directions become slightly different due to the rotation of the
F octahedra.

VIII. PRESSURE-DRIVEN PHASE TRANSITION

Figure 7 shows the volume dependence of the R15′ and R25′

phonon modes with three different functionals (WC is similar
to PBEsol and therefore not shown). Gradually increasing
the volume of the unit cell (thus lowering the pressure), the
R15′ mode is found to harden and to become positive at
about 99 Å3, which is in agreement with the observations
made above for the c/a ratio and the tilt angle of the CaF6

octahedron that approach 1 and 0 at this volume, respectively.
Altogether, this once more indicates that a tetragonal→cubic
pressure-driven transition does occur at a negative pressure

FIG. 7. Volume dependence of the R15′ and R25′ phonon modes
of the cubic phase of RbCaF3. Imaginary frequencies are represented
by negative numbers.

of −4.8 GPa. In the vicinity of the transition volume, the
curves for the R15′ and R25′ modes sharply increase and
decrease, respectively. Figure 7 also shows that the R15′ mode
is more or less insensitive to the functional, as observed in
SrTiO3, [59] whereas the R25′ phonon mode shows a much
more pronounced dependence and becomes unstable at much
larger volumes except for LDA, where both modes would be
unstable in a volume range of 91–98 Å3.

In the field of structural phase transitions, it has been stan-
dard practice for many decades to analyze phase transitions
of the group-subgroup type using the machinery of Landau
theory (LT) [60,61], which provides a convenient unifying
framework for all important thermodynamic and crystallo-
graphic aspects. From the perspective of LT, it is however
rather puzzling to reconcile our observation of the second-
order nature of the P -driven transition at T = 0 K with the
above mentioned experimental findings of a weakly first-order
thermal transition between 193 and 199 K at ambient pressure
and the detection of clear signs of a first-order high-pressure
transition at Pc(300 K) = 2.8 GPa for ambient temperature
in Ref. [23]. In fact, as discussed at length in Ref. [30], it
is virtually impossible to explain such a change from first
to second order within the framework of traditional LT. In
the present paper, however, we do not intend to duplicate the
corresponding discussion. Moreover, for RbCaF3, no com-
plete set of Landau parameters seems to be available in the
literature, such that our present discussion must remain at the
qualitative level anyway. In a nutshell, however, we would like
to offer the following explanation.

Recall that a standard Landau free energy expansion
[60,61] is a polynomial expansion in powers of the compo-
nents of a primary order parameter and possibly additional
secondary order parameter(s). Reflecting the three possible
choices for the octrahedral rotation axis, the primary order
parameter Q of the cubic-tetragonal transition, whose mod-
ulus is proportional to the octahedral tilt rotation angle φ,
has three components (Q1,Q2,Q3). To incorporate elastic
response, we consider the infinitesimal strains εi , i = 1, . . . , 6
as secondary order parameter components. The key require-
ment for a Landau free energy expansion is its order-by-
order invariance under the action of space group of the high-
symmetry phase, which in the present case is the cubic group
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Pm3̄m. A free energy expansion exclusively built from the
corresponding cubic invariants up to sixth order yields

Fq = A(T )

2

(
Q2

1 + Q2
2 + Q2

3

) + b1

4

(
Q2

1 + Q2
2 + Q2

3

)2

+ b2

4

(
Q4

1 + Q4
2 + Q4

3

) + c

6

(
Q2

1 + Q2
2 + Q2

3

)3

+ c′

6
(Q1Q2Q3)2 + c′′

6

(
Q2

1 + Q2
2 + Q2

3

)
× (

Q4
1 + Q4

2 + Q4
3

)
. (3)

Introducing the so-called symmetry-adapted strains [62]

εa = ε1 + ε2 + ε3, (4a)

εo = ε1 − ε2, (4b)

εt = (2ε3 − ε1 − ε2)/
√

3 (4c)

allows to decompose the harmonic cubic elastic free energy
Fel = ∑

ij (C0
ij /2)εiεj into [62]

Fel = K0

2
ε2
a + μ0

2

(
ε2
o + ε2

t

) + C0
44

2

(
ε2

4 + ε2
5 + ε2

6

)
, (5)

where K0 = (C0
11 + 2C0

12)/3 and μ0 = (C0
11 − C0

12)/2 denote
the cubic bulk and longitudinal shear moduli, respectively, and
the subscript or superscript “0” are used to label the harmonic
elastic moduli of the cubic reference phase. As to the allowed
couplings between primary order parameter and strain, up to
linear order in strain and quadratic order in Qi , we list

Fc = λ1εa

(
Q2

1 + Q2
2 + Q2

3

)
+ λ2

[√
3εo

(
Q2

2 − Q2
3

) + εt

(
2Q2

1 − Q2
2 − Q2

3

)]
+ λ3(ε6Q1Q2 + ε5Q1Q3 + ε4Q2Q3). (6)

The thermodynamic behavior of the coupled system of order
parameter and strain components is therefore—at least for
small strains and in the vicinity of Tc—approximately gov-
erned by the Landau free energy

F = Fq + Fel + Fc. (7)

In accordance with the usual assumptions of LT, we expect

A(T ) ≈ A0(T − T0) (8)

to depend roughly linearly on temperature, while a possible T

dependence of all other coupling coefficients appearing in the
potentials (3), (5), and (6) is neglected.

In the tetragonal phase η ≡ Q1,Q2 = Q3 = 0, we have

Fq = A(T )

2
η2 + B

4
η4 + C

6
η6, (9a)

Fc = λ1εaη
2 + 2λ2εtη

2, (9b)

where B ≡ b1 + b2 and C ≡ c + c′′. From the hydrostatic
pressure conditions ∂F

∂εa
|
εa=ε̄a

= −P and ∂F
∂εt

|
εt=ε̄t

= 0, we de-

termine the spontaneous stresses ε̄a = − λ1η
2+P

K0
and ε̄t =

− 2λ2η
2

μ0
, which are used to replace strain by pressure de-

pendence by virtue of a Legendre transform F → G. The

resulting Gibbs free energy G turns out to be

G = Fq − λ1P

K0
η2 −

(
λ2

1

2K0
+ 2λ2

2

μ0

)
η4 − P 2

2K0

≡ A(T , P )

2
η2 + B̃

4
η4 + C

6
η6 − P 2

2K0
. (10)

Thus, for hydrostatic pressure, the strain coupling effects
could be completely absorbed in a renormalized P -dependent
scalar order parameter potential with a linearly P -dependent
quadratic coefficient

A(T , P ) = A(T ) − 2λ1P

K0
(11)

and a reduced but P -independent quartic coefficient

B̃ = B − 2λ2
1

K0
− 8λ2

2

μ0
. (12)

This negative shift, which involves the ratio of the strain-
order parameter coupling coefficient(s) to the “bare” harmonic
elastic constants, may or may not produce a negative sign
of the resulting effective fourth order coupling coefficient
B̃. While the parameter C is assumed to be constant and
positive for obvious stability reasons, the physically important
parameters that govern the physics of the phase transition
captured by the effective single domain Landau potential (10)
are the quadratic parameter A(T , P ) and the quartic parameter
B̃. All other parameters remaining inert. In this effective LT
the transition is triggered by the evolution of the quadratic
parameter A(T , P ). In fact, it is easy to see Refs. [60,61]
that for B̃ �, we find a line of second-order transition points
(T , Pc(T )) given by A(T , Pc(T )) ≡ 0, while for B̃ <, a first-
order phase boundary (T , Pc(T )) is predicted, which is de-
termined by the equation A(T , Pc(T )) ≡ 3B̃2

16C
. Comparing the

critical pressure Pc(T ) at an arbitrary temperature T to that
at room temperature T = TR , the condition A(TR, Pc(TR )) ≡
A(T , Pc(T )), which holds both for the first- and second-order
cases, yields the linear relation

Pc(T ) = Pc(TR ) + K0

2λ1
A0(T − TR ). (13)

The crucial parameter determining the so-called Clapeyron
slope dPc(T )/dT = K0

2λ1
A0 of the resulting linear phase bor-

der is the Landau coupling parameter λ1. If it is positive,
Pc(T ) decreases on lowering the temperature. For example, in
the case of SrTiO3 and KMnF3, room temperature AFD tran-
sitions Pm3̄m → I4/mcm completely similar to our present
case are detected at 9.6 [63] and 3.4 GPa [64], whereas they
occur at T = 105 [65] and 185.6 K [66], respectively, under
ambient pressure conditions. For RbCaF3, our present DFT
calculations yield Pc(T = 0) = −4.8 GPa, while the pressure
driven cubic-to-tetragonal phase transition is experimentally
observed at a positive pressure of 2.8 GPa at room tem-
perature in Ref. [23]. These facts are also consistent with a
positive value λ1 > 0, which was to be expected given the
similarity of all these transitions. As an example for a negative
Clapeyron slope, i.e., λ1 < 0, we mention the ferroelectric-
to-paraelectric phase transition in PbTiO3. Under ambient
pressure it occurs at Tc ≈ 492 ◦C, while at room temperature
it takes Pc = 12 GPa to observe it [30].
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However, the LT prediction (12) of a P -independent re-
duced quartic coefficient B̃ is fundamentally inconsistent with
the available information extracted from DFT versus exper-
iment. As emphasized above, the sign of B̃ determines the
order of the transition, which is predicted to be of second
order for B̃ > 0 and first order for B̃ < 0. The manifest P -
independence of (12) therefore implies that by changing P

it should not be possible to convert the transition from first
to second order. For RbCaF3, however, we unambiguously
observe a second-order transition at negative pressure, indi-
cating B̃ > 0, while a first-order one at positive P is seen
at room temperature and positive pressure, which is only
possible for B̃ < 0. Traditional LT is thus unable to offer
any convincing mechanism explaining this apparent change
of character. In this respect, however, RbCaF3 is certainly not
an isolated incident. In fact, the above mentioned ferroelectric
transition in PbTiO3 is of pronounced first-order character at
ambient pressure, while at 12 GPa, it appears to be of second-
order within experimental resolution. In KMnF3, the ambient
temperature high-pressure transition is weakly first-order, but
the ambient pressure transition is second-order. So what is
wrong with the conventional Landau description?

In the traditional approach, the elastic energy expansion is
truncated beyond harmonic order. Implicitly, this forces all cu-
bic elastic moduli entering in this expansion to be independent
of pressure. A glance at Fig. 5, where the calculated pressure
dependence of cubic elastic constants of RbCaF3 is shown,
demonstrates that the harmonic approximation breaks down.
In fact, within the relevant pressure range C0

11 changes from
C0

11(−4.8 GPa) ≈ 50 GPa to some C0
11(2.8 GPa) ≈ 130 GPa,

and similarly C0
12(−4.8GPa) ≈ 15 GPa to C0

12(2.8 GPa) ≈
25 GPa. This behavior is impossible to reconcile with a simple
harmonic elastic energy approach. It has already been recog-
nized in Ref. [67] that a nonlinear and anharmonic extension
of Landau theory coupled to finite strain is required once the
external pressure becomes non-negligible in comparison to
the elastic constants. It is only rather recently [29,30,68–70]
that such a nontrivial extension of LT has been constructed.
Not unexpectedly, its backbone is the mathematically con-
sistent incorporation of the pressure-dependence of elastic
constants. Even without knowledge of all technical details,
one may immediately anticipate that such theory should be
capable of explaining the observed change of the nature of the
transition from first to second order. Once K0 and μ0 were
formally allowed to depend on P , Eq. (12) would suggest that
B̃ should inherit a nontrivial P dependence.

For some of the mentioned examples, this new approach
has already been worked out quantitatively and indeed proves
to be able to theoretically explain the change from first to
second-order character observed in experiment. In Ref. [30],
the quartic parameter B(T , P ) ≈ B(P ) of PbTiO3 is found
to start out negative at ambient pressure but with a positive
pressure slope, and for P � 0.5 GPa becomes positive. A re-
lated behavior was also observed [29] in an application to the
AFD transition of SrTiO3, where the quartic coefficient starts
out positive but with negative pressure slope, and is observed
to change sign in the vicinity of the ambient temperature
transition pressure Pc = 9.6 GPa.

Unfortunately, for RbCaF3, a complete numerical
parametrization of the underlying Landau potential remains

to be worked out, such that we must content ourselves
with a qualitative discussion, in which we shall rely on the
close similarity of the transition to the one in SrTiO3. Thus
let us assume that the quartic effective Landau parameter
for RbCaF3 also decreases roughly linearly with P . As
mentioned before, experimentally the ambient pressure
thermal transition of RbCaF3 at 193–197 K was found to be
of weakly first-order, which would translate into an ambient
pressure quartic Landau parameter that is slightly negative.
Based on this information and assuming a behavior similar
to that of SrTiO3, one would therefore anticipate that the
corresponding ambient temperature high-pressure phase
transition, which takes place at 2.8 GPa should definitely
be of first-order with a much more pronounced first-order
character, which is exactly what is found in experiment
(Ref. [23]). On the other hand, assuming the roughly linear
increase of the quartic Landau coupling with falling pressure,
its value at −4.8 GPa is very likely to be positive, which
translates into the second-order behavior we have detected in
our present simulations.

The preceding theoretical discussion of LT has shown
that switching from a strain—to a pressure—parametrized
description by virtue of the Legendre transformation (10)
resulted in a much simpler and more transparent formalism
which provided additional physical insight. This suggests
to parametrize our DFT results in terms of P rather than
V as well. Mathematically, one passes from energies E(V )
to enthalpies H (P ) = E(V (P )) + PV (P ). While this may
seem in principle straightforward, numerically, the resulting
enthalpies Hcubic and Htetra of both phases usually differ only
in the mRy range. Thus our DFT calculation of the enthalpy
difference �H = Hcubic − Htetra of both phases, which is dis-
played in the upper panel of Fig. 8, required a careful control
of tiny energy offsets arising from the use of (necessarily finite
and incommensurate) fast Fourier grids or k meshes, which
are rotated by 45◦ relative to each other in the corresponding
cells.

For the P dependence of the other observables of the
pressure-driven transition, we find that c/a is indeed linear
in P − Pc in accordance with LT (cf. middle panel of Fig. 8).
Interestingly, we observe that the tilt angle φ, which represents
the order parameter of the transition, does not follow the clas-
sical Landau prediction φ ∼ √

P − Pc, but rather seems to
obey a power law φ ∼ (P − Pc )βP governed by an exponent
of βP ≈ 0.36. This is remarkable for the following reasons.
As we have mentioned above, from the point of view of
symmetry, the soft mode behavior of the AFD transition of
RbCaF3 is similar to that of the well-studied 105 K transition
in SrTiO3. As to its critical behavior, an early renormalization
group analysis by Cowley and Bruce [71] shows that this
transition should belong to the universality class of the three-
dimensional (3D) antiferromagnetic Heisenberg model. The
static critical indices should thus coincide with those of the
classical ferromagnetic Heisenberg model [72]. In the present
context, it may be objected that we are actually dealing with
a compressible version of the 3D Heisenberg model with
P rather than T driving the transition. Integrating out the
infinitesimal strains from a corresponding order-parameter
and strain dependent effective Hamiltonian, the bare quadratic
term of the resulting purely order-parameter dependent
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FIG. 8. From top to bottom; the behavior of enthalpy difference
�H = Hcubic − Htetra between cubic and tetragonal phase, tilt angle,
and c/a ratio is shown with respect to pressure.

effective Hamiltonian does acquires a linear P dependence
similar to that on temperature [73]. We would therefore an-
ticipate that βP should coincide with the exponent β which
governs the power-law behavior φ(τ ) ∼ |τ |β of the order
parameter as a function of reduced temperature τ = (T −
Tc )/Tc. In Ref. [74], these exponents have been determined by
state-of-the-art Monte Carlo methods, and the resulting value
of β for the 3D Heisenberg model is β = 0.3689(3).

While this apparent numerical agreement between expo-
nents βP and β is certainly remarkable, it may be too good
to be true for several reasons. Theoretically, integrating out
the strains also produces a nonlocal fourth-order coupling
in the remaining effective lattice spin Hamiltonian, and this
generally induces a fluctuation-induced first-order transition
[75,76] instead of a second-order one, which may, however,
be very difficult to detect due to its weak character. At a more

practical level, it is hard to believe that we should actually
have observed true critical behavior. DFT is essentially a
mean-field method based on homogeneous configurations,
while criticality implies long-range spatial correlations. In-
stead, the observed power-law behavior may very well be
merely “pseudocritical” and might be reproducible within
LT by taking into account the effects of sixth or possible
higher powers of the order parameter, but that still remains
to be shown. In addition, any such explanation must also
simultaneously reproduce the linear increase of c/a with P ,
which, according to classical LT should be proportional to
the tetragonal strain ε̄t and thus to the square of the order
parameter, which is obviously at odds with the observed
power law and βP �= 1/2.

In any case, for RbCaF3, all these questions are somewhat
academic, since the tetragonal phase is not the T = 0 K
ground state and therefore the aforementioned power law in
P − Pc will never be observable in experiment. But this may
be different for other perovskites, SrTiO3 certainly being an
interesting candidate for a corresponding investigation.

IX. SUMMARY AND CONCLUSION

In this paper, we calculated the electronic, structural, and
vibrational properties of RbCaF3 in its cubic and tetragonal
phases. The analysis of phonon spectra indicates that the
observed AFD phase transition is caused by the softening of
an R15′ mode. This is in complete agreement with the previous
experimental studies [14]. The electronic band gap changes
from indirect to direct as due to back-folding of the cubic
BZ into the tetragonal one. We also observe the presence
of weakly anomalous Born effective charges, which play an
important role in explaining the absence of ferroelectricity in
RbCaF3. A similar behavior is also observed in other fluo-
roperovskites [58]. In the framework of finite strain Landau
theory, the observed change in the character of the pressure-
induced transition from second order at zero temperature
to first order at ambient temperature can be understood by
postulating a linear decrease of the quartic Landau coupling
parameter with increasing pressure. However, it remains to
work out a complete numerical parametrization for the under-
lying Landau potential of RbCaF3. This would be even more
desirable in order to further study the alleged pseudocritical
power-law behavior demonstrated in Sec. VIII.
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