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Large-scale atomistic simulations with classical potentials can provide valuable insights into microscopic
deformation mechanisms and defect-defect interactions in materials. Unfortunately, these assets often come with
the uncertainty of whether the observed mechanisms are based on realistic physical phenomena or whether they
are artifacts of the employed material models. One such example is the often reported occurrence of stable
planar faults (PFs) in body-centered cubic (bcc) metals subjected to high strains, e.g., at crack tips or in strained
nano-objects. In this paper, we study the strain dependence of the generalized stacking fault energy (GSFE) of
{110} planes in various bcc metals with material models of increasing sophistication, i.e., (modified) embedded
atom method, angular-dependent, Tersoff, and bond-order potentials as well as density functional theory. We
show that under applied tensile strains the GSFE curves of many classical potentials exhibit a local minimum
which gives rise to the formation of stable PFs. These PFs do not appear when more sophisticated material models
are used and have thus to be regarded as artifacts of the potentials. We demonstrate that the local GSFE minimum
is not formed for reasons of symmetry and we recommend including the determination of the strain-dependent
(110) GSFE as a benchmark for newly developed potentials.
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I. INTRODUCTION

Atomic-scale modeling of materials can provide funda-
mental information about microscopic deformation mecha-
nisms and defect-defect interactions [1], which can ultimately
stimulate the development of higher-scale models with input
parameters from atomistic simulations [2,3]. At the same time,
results of atomic-level simulations are often subject to some
uncertainty, particularly in case of classical molecular dynam-
ics (MD) simulations. This uncertainty mainly arises from the
question of whether the interatomic potential employed in the
simulations correctly reflects the material’s response to the ap-
plied loads. However, studies of plastic deformation and frac-
ture necessitate the simulation of many millions of atoms [4–7],
where classical interatomic models are without alternatives. To
check if the performed simulations are independent of the used
material model is therefore of prior importance for the trans-
ferability and acceptance of the obtained results. It is important
to note that the common approach to only compare different
potentials of the same type is generally not sufficient as all po-
tentials of the same type might suffer from the same problems.

In this paper, we use various well-established material
models to determine the strain-dependent generalized stacking
fault energy (GSFE) curves for body-centered cubic (bcc)

*Corresponding author: johannes.moeller@fau.de

transition metals. The GSFE (also known as the “γ surface”)
[8] is determined by rigidly shifting two half crystals with
respect to each other, typically under stress-free boundary
conditions. Local GSFE minima and maxima indicate stable
(and unstable) stacking faults (SSFs), respectively. Whether
a material has a local GSFE minimum can be theoretically
inferred from its crystal symmetry. This principle, which
was originally established by Neumann [9], states that GSFE
minima are only possible where two nonparallel symmetry
planes intersect the crystal’s glide plane. Unlike bcc materials,
face-centered cubic (fcc) crystals contain such crossings of
symmetry planes in their slip planes and therefore exhibit SSFs.
Despite the idealized nature of the GSFE, the presence of SSFs,
their energies, and relation to the unstable stacking fault energy
turned out to be a good indicator for the nature of the material’s
slip behavior [10–12]. This is especially evident for materials
with local GSFE minima, such as the fcc metals Al, Cu, and
Ni, for which Brandl et al. [13] have already determined the
strain-dependent GSFEs for isotropic and simple shear strains.
The strain dependence of the GSFE in bcc crystals, however,
is still unknown.

For unstrained bcc crystals, it has been known for a long
time that the formation of SSFs by dislocation dissociation is
not possible [8]. However, for situations where the elastic stress
state deviates strongly from stress-free conditions this common
conception needs not be valid. In such extreme scenarios, e.g.,
at crack tips or in nanostructures, the following dislocation
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dissociation might therefore be possible [14]:

a0

2
[11̄1] → a0

8
[11̄0] + a0

4
[11̄2] + a0

8
[11̄0]. (1)

This possibility has been theoretically proposed and discussed
by a number of research groups in the early 1960s [14–19]
based on hard-sphere models. Additionally, some experimental
studies indeed gave an indication for the existence of dissoci-
ated dislocations on {110} planes in Fe [20] and Nb [21].

More than two decades after these experimental works,
the formation of PFs has now been observed in atomistic
simulations of highly strained systems, e.g., at straight crack
tips [22–27], highly curved, penny-shaped crack fronts [28,29],
and nanobeams subjected to bending [30] and tension [31]
as well as containing notches [32]. The formation of PFs at
straight crack tips is exemplified in Figs. 1(a) and 1(b) for
two different embedded atom method (EAM) potentials for Fe.
Whereas for the Chamati potential [33], Fig. 1(a), no extended
planar defects appear on {110} planes (inclined by ±45◦),
these defects are clearly visible (green colored atoms) for the
Mendelev-II potential [34]; Fig. 1(b). Upon further loading,
the cracks modeled with the Chamati potential propagate on
the original (100) crack plane whereas with the Mendelev-II
potential the crack kinks onto one of the inclined {110} planes
[26]. Examples for the formation of PFs at curved crack
fronts and in bent nanowires are provided in the Supplemental
Material [35]. An earlier work of some of the authors [26] has
shown that for many semiempirical interatomic potentials of
the EAM type [36,37], the formation of these unexpected PFs
can be traced back to the strain-induced formation of a local
GSFE minimum at relative displacements of approximately
a0/6[11̄0], which is in the range of the proposed displacement
vector in Eq. (1).

The atomistic configurations in Figs. 1(a) and 1(b) are
analyzed using the bcc defect analysis (BDA) [38] that was
specifically developed to distinguish common defects in bcc
structures. In contrast, the well-known common neighbor
analysis (CNA) [40], which was used in many of the references
above [22–32], identifies the defective regions as belonging to
the fcc crystal structure, cf. Figs. 1(c) and 1(d). A detailed
analysis of the defect structures, however, reveals that the
{110} habit plane of the defects is still closer to {110} bcc

planes than to {111}fcc planes. This can clearly be seen by
directly comparing the defective regions for the two potentials
in Figs. 1(e)–1(h). The misclassification as fcc explains why
PFs were often not labeled as such and instead discussed in the
context of bcc → fcc transformations [22–24,27], such as the
inverse Bain path [41]. We will therefore refer to this defect
type only as “planar faults” (PF) in the following. The reader
should, however, keep in mind that the same type of planar
defects might be labeled as “fcc formation” elsewhere.

The objective of this paper is to clarify if there is a
physical reason for the strain-dependent formation of PFs in
bcc metals. For this purpose, we determine the (110) GSFE
in the [11̄0] and [11̄1] directions (so-called “γ lines” or
“1D GSFE profiles”) for systematically varied strain states
using different EAM-type potentials as well as several atom-
istic material models with increasingly sophisticated descrip-
tions of the bonding situations: Modified EAM (MEAM)
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FIG. 1. Comparison of atomistic configurations in Fe modeled
with the Chamati (left, no PF formation) and Mendelev-II poten-
tials (right, PF formation); see Ref. [26] for details. (a) and (b),
(100)[001] crack system directly before brittle fracture, in BDA
[38,39] coloring (gray, bulk; white, surface; green, {110} PFs; blue,
nonscrew dislocation), the main deformation paths are marked with
black lines; (c) and (d), same configurations in CNA [40] coloring
(blue, bcc; green, fcc; red, hcp; white, other); (e) and (f), possible
fcc unit cells extracted from the marked regions in (c) and (d); (g)
and (h), top views on possible {111}fcc planes extracted from the
unit cells in (e) and (f); the characteristic angles between possible
〈110〉fcc bonds deviate less than 2◦ from the ideal fcc angles for
the Chamati potential (�ABC = �BCA = �CAB = 60◦); for the
Mendelev-II potential, the characteristic angles are still closer to
the ideal bcc values (�DEF = �FDE ≈ 54.7◦, �EFD ≈ 70.5◦),
where the maximum deviation is less than 4◦ (maximum deviation
from the characteristic fcc angles >7◦).
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TABLE I. Summary of contributions for modeling atomic inter-
actions explicitly included ( ) or not taken into account ( ) in the
different material models.

Radial Directional Bond Electronic
Model distance bonding order Magnetism structure

EAM/FS
MEAM
ADP
Tersoff
BOP a

DFT

aBasic electronic structure captured.

potentials, angular-dependent potentials (ADPs), Tersoff po-
tentials, bond-order potentials (BOPs), and density functional
theory (DFT). Table I summarizes the contributions for model-
ing atomic interactions that are explicitly included or not taken
into account in the different material models. Knowledge about
the underlying physical reason for the formation of bcc PFs
is of fundamental importance for the reliability of the results
and conclusions in Refs. [22–26,28–32], their transferability to
higher scales [42–44], and the development of new interatomic
potentials for bcc metals [45].

The paper is organized as follows: in Sec. II, we introduce
the various computational methods for determining γ surfaces
and γ lines. The simulation results are presented in Sec. III.
The discussion in Sec. IV focuses on possible explanations for
the strain-dependent formation of a local GSFE minimum for
EAM-type potentials and how this might be prevented during
potential fitting. Finally, a brief summary of the paper is given
in Sec. V.

II. METHODS

The 1D {110} GSFE profiles (γ lines) along [11̄0] and
[11̄1] directions were determined as functions of different
uniaxial and equi-biaxial strains in various bcc metals. The
setup geometries are described in Sec. II A. For Fe, different
material models with increasing complexity were used: EAM,
MEAM, ADP, Tersoff, BOP, and DFT. For the other bcc metals,
EAM potentials were compared to DFT. The main concepts of
the different models are described in Secs. II B–II G. Table I
provides a comprehensive summary of the different contri-
butions for modeling atomic interactions that are explicitly
included in the models.

A. Setup geometries

Uniaxial strains (US) are applied normal to the PF plane
in the range ε[110] = 0.0%–10.0% (tension) with strain incre-
ments of �ε = 1.0%. Equi-biaxial strains (EBS) contain an
equally high additional strain component in [11̄0] direction,
i.e., ε[11̄0] = ε[110]. Both strain ranges and directions are chosen
to model the high strains that are present at a crack tip; see,
e.g., Fig. 1.

Figure 2 displays two different setup geometries for de-
termining the γ surfaces and the γ lines. The “large” setup
in Fig. 2(a) is primarily suited for simulations using classical
potentials (Secs. II B–II E). It contains hundreds to thousands of

(a)Large setup (b)Small setup (DFT, BOP)
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FIG. 2. Simulation setups for determining γ surfaces and γ lines.
The large setup (a) is periodic in [11̄0] and [001] directions with
fixed regions at the top and bottom in the [110] direction; the box
size is larger than 2rcut (rcut, cutoff radius of the respective potential)
in periodic directions and approximately 60 unit cells along the
long axis; typical simulation boxes consist of hundreds to thousands
of atoms and are used in simulations with classical interatomic
potentials. The small setup [46,47] (b) is periodic in all box directions
(dotted lines); the box size is each one 〈111〉 periodicity distance along
the two short box axes and eight periodicity distances along the long
[110] direction; the box contains usually tens of atoms and is suited for
DFT calculations (and simulations using BOPs for comparison); by
adjusting the direction of the long box vector in each shearing step,
only one stacking fault is formed in the plane where the two rigid
blocks are sheared against each other. In both setups, atomic motion
during the relaxation process is limited to directions perpendicular to
the (110) plane.

atoms and fulfills the minimum image convention, namely that
the box sizes within the PF plane are larger than 2rcut. Along
these lateral box axes, periodic boundary conditions (PBC) are
used. The boundary conditions in the direction perpendicular to
the PF plane are nonperiodic, which leads to two free surfaces
at the top and bottom of the configuration. During energy
minimization, the lateral box sizes are kept fixed, meaning that
Poisson contraction is not allowed. Most simulation boxes are
constructed such that they contain 3×60×4 unit cells in the
[11̄0], [110], and [001] directions, respectively.

The “small” setup in Fig. 2(b) is mainly intended for the
more sophisticated descriptions of atomic bonding (Secs. II F
and II G). This setup is periodic in all directions and has box
vectors in the [11̄1] and [11̄1̄] directions. The long box vector,
which is initially normal to the SF plane, is adjusted at each
displacement step in such a way that the crystal structure is
coherent at both ends of the simulation box. In other words,
the simulation box contains only the stacking fault in the
center, but no additional surface or interface at the top or
bottom. The majority of the simulation boxes constructed in
this manner contains 1×8×1 unit cells in the [11̄1], [110], and
[11̄1̄] directions, respectively. Further details on this simulation
setup can be found in Refs. [46,47].

To determine the γ lines, one-half of the crystal is dis-
placed in incremental steps of 1/96 (Secs. II B–II E) and 1/12
(Secs. II F and II G) of the corresponding periodicity distances,
i.e., a0[11̄0] or a0/2[11̄1]. After each displacement step, the
energy of the corresponding configuration was minimized
using the relaxation algorithms and convergence criteria as
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described in the following subsections (Secs. II B–II G). For
both setup geometries, the GSFE γ is calculated as the
difference between the total potential energy of the shifted
crystal Etot and the energy Etot

0 of the initial, undisplaced,
configuration [8]:

γ =
(
Etot − Etot

0

)

A110
, (2)

where A110 is the area of the (110) plane in the simulation box.
In most cases, the γ lines in the [11̄1] Burgers vector direction
were determined for comparison.

Atomistic configurations are always visualized using OVITO

[48,49] and analyzed using the CNA [40] and the recently
developed BDA [38,39].

B. Embedded atom method potentials

According to the EAM formalism, the total potential energy
Etot

pot of an N -atom configuration is given by [36]

Etot
pot =

N∑
i=0

Ei
pair +

N∑
i=0

Ei
embed, (3)

Ei
pair =

N∑
j=0

1

2
V (rij ) for j �= i, (4)

Ei
embed = F (ρ i ) = F

⎛
⎝

N∑
j=0

f (rij )

⎞
⎠ for j �= i. (5)

The radial-symmetric functions, V (rij ) and f (rij ), depend
only on rij, i.e., the distance between two atoms i and j

and ρ i is the electron density at the site of atom i. The
nonpairwise embedding energy term, F (ρ i ), describes the
energy contribution arising from the electron density.

In this study, we compare a variety of EAM-type potentials
for Fe spanning almost 30 years of potential development:
from the historic Finnis-Sinclair (FS) potential in the modified
form of Marchese et al. [50,51], abbreviated as “MFS,” to
the most recent “Marinica11” potential by Proville et al.
[52]. In addition, we studied the FS potentials for V, Nb, Ta,
Mo, and W in the modified version of Ackland and Thetford
[53], abbreviated as “ATFS.” Since such an Ackland-Thetford
correction does not exist for Cr, we used the original FS
potential instead. For Nb, Mo, and W, the additional potential
parametrizations by Fellinger et al. [54], Ackland et al. [55,56],
Smirnova et al. [57], and Wang et al. [58] were used as well.
All EAM potentials used in our study are listed in Table II.

In case of EAM potentials, energy minimization is per-
formed using the software package IMD [59,60] with the FIRE
relaxator [61] until the force-norm ‖F‖ is below 10−8 eV/Å.

C. Modified embedded atom method potentials

As EAM potentials are unable to account for directional
bonds, the MEAM has been developed by Baskes et al. [62]
to account for this effect, which is specifically important for
bcc metals. As in the EAM formalism, the energy is still
the sum of a distance-dependent pair-potential term and an

embedding-energy term that depends on the electron density
ρ. Whereas in the EAM, the assumption was made that
ρ is a linear superposition of spherically averaged electron
densities from all neighbor atoms, in the MEAMs ρ has a more
sophisticated form that incorporates directional dependence in
the electron density [63]. The MEAM was extended to include
second-nearest neighbor (2nn) interactions by Lee et al. [64],
which was shown to be an important feature to simulate the
behavior of bcc metals more accurately.

We use the original 2nn-MEAM potential by Lee et al. [64],
which is also part of the Fe-Ti-C potential of Kim et al. [65].
In addition, two more recent parameter sets “MEAM-p” and
“MEAM-T” by Lee et al. [66] were used. Both parameter sets
have been used in the Fe parts of MEAM potentials for Fe
alloys, namely for AlSiMgCuFe by Jelinek et al. [67] and for
Fe-C by Liyanage et al. [68].

In case of MEAM potentials, energy minimization is
performed using the software package LAMMPS [69,70] with
the FIRE relaxator [61] until the force-norm ‖F‖ is below
10−6 eV/Å.

D. Angular-dependent potentials

ADPs are an alternative approach to include directional
bonding in the EAM formalism as proposed by Mishin et al.
[71]. In addition to the classical EAM functions [see Eqs. (3)–
(5), they contain measures for the dipole and quadrupole
distortions of the local atomic environment. The main differ-
ence from the MEAM formalism introduced above is that the
higher-order multipoles contribute to the electron density in
MEAM potentials whereas in the ADP method they contribute
directly to the total energy.

Currently, ADPs are less common than MEAM potentials
and available only for a few material systems [71–73]. In this
paper, we use the original ADP parametrization of Mishin et al.
[71] for Fe. However, it should be noted here that for this
parametrization the values for the elastic constants are only
one half of the experimental ones [74]. It is therefore not a
useful description whenever the elastic material response is of
interest, as, e.g., for fracture. For the ADP used here, energy
minimization is performed using the same simulation details
as for the EAM potentials described in Sec. II B.

E. Tersoff potentials

An empirical approach based on the chemical concept of
bond order was developed by Tersoff [75]. Tersoff potentials
are based on Morse-type pair interactions [76] whose attractive
parts include a function that depends on the number, strength,
and angles of the interatomic bonds.

For Fe, two different Tersoff potentials were proposed, one
by Müller et al. [77] and another by Björkas et al. [78].
Note that the latter potential contains a slight modification
of the repulsive part of the former to yield a more realistic
description of the short-range behavior between atomic nuclei.
This modification by Björkas et al. was also used to describe
the Fe-Fe bonding in the Fe-Cr-C potential by Henriksson
et al. [79]. For both Tersoff potentials employed here, energy
minimization is performed with the same simulation details as
for the MEAM potentials described in Sec. II C.
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TABLE II. Overview of material models for bcc metals and presence ( ) or absence ( ) of a local (110) GSFE minimum min(γ[hkl]) where
[hkl] is the shearing direction; US, uniaxial strain in [110] direction; EBS, equi-biaxial strain in [110] and [11̄0] direction; →, largest strain
studied.

Element min(γ[11̄1])
min(γ[11̄0])

(Potential) Ref. ε = 0% ε = 0% εUS = 7.5% εEBS = 5% εEBS = 7.5%

Embedded atom method (EAM) potentials
Fe (Mendelev-II) [34]
Fe (Chamati) [33]
Fe (Chiesa) [104,105]
Fe (MFS) [50,51]
Fe (Simonelli) [106]
Fe (Men-IIext) [107]
Fe (Gordon) [108]
Fe (Marinica07) [109] a a

Fe (Marinica11) [52]
V (ATFS) [50,53] –
Nb (ATFS) [50,53] –
Nb (Fellinger) [54] –
Ta (ATFS) [50,53] –
Cr (FS) [50] –
Mo (ATFS) [50,53] –
Mo (Ackland) [55,56] –
Mo (Smirnova) [57] –
W (ATFS) [50,53] –
W (Ackland) [55,56] –
W (Wang) [58] –

Modified embedded atom method (MEAM) potentials
Fe (Lee2001) [64] – –
Fe (Lee2012-p) [66] – a –
Fe (Lee2012-T) [66] – –

Angular-dependent potential (ADP)
Fe (Mishin) [71] – –

Tersoff potentials
Fe (Müller) [77] – –
Fe (Björkas) [78] – –

Bond-order potentials (BOP)
Fe (Mrovec) [80] – –
Fe (Ford) [85,86] – –

Density-functional theory (DFT) calculations
Fe (PAW-PBE) [100,101] (→ 10%) –
Fe (USPP-PBE) [96] (→ 10%) (→ 22.5%)
Nb (USPP-PBE) [96] – – –
Ta (USPP-PBE) [92] – – –
Mo (USPP-PBE) [96] – – –
W (USPP-PBE) [96] – –

aOriginal bcc lattice transformed to hcp lattice.

F. Bond-order potentials

A common characteristic of all previously mentioned clas-
sical interatomic potentials is the lack of magnetic interactions.
These potentials are therefore neither able to describe the
broad variety of magnetic phases of Fe nor provide any
information about local magnetic phenomena in the vicinity

of crystal defects [80]. One of the most successful methods to
overcome this shortcoming are bond-order potentials (BOPs)
[81]. This family of potentials is based on the tight-binding
(TB) approximation and includes a description of both the
electronic structure and magnetic interactions according to the
Stoner theory of itinerant magnetism [82]. For a recent review
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on the derivation and parametrization of BOPs we refer the
reader to Ref. [83].

BOPs represent a bridge between the classical potentials
mentioned above and the more accurate but computationally
more expensive DFT calculations described in the next subsec-
tion. For this reason, both small and large setup geometries, cf.
Fig. 2, are compared using the “numerical” BOP for Fe by
Mrovec et al. [80] with the computational details (OXON code
[84], relaxation with FIRE [61] until the maximum force was
less than 0.01 eV/Å) as described in Ref. [80]. The procedure
is repeated for the small setup geometry using an analytical
BOP that Ford et al. [85] devised from a TB model of Madsen
et al. [86] within the framework of analytic BOPs for d-valent
systems [87]. In this case, the simulations are performed using
the BOPfox code [88] with damped-Newtonian relaxation until
the energy difference is below 0.001 eV/atom or the maximum
force is below 0.001 eV/Å.

G. Density-functional theory calculations

Most DFT calculations [89,90] were carried out with the
plane-wave code PWscf of the QUANTUM ESPRESSO software
package [91,92] using the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [93], which is based on the
generalized gradient approximation (GGA), and Vanderbilt-
type ultrasoft pseudopotentials (USPP) [94]. DFT calculations
with USPPs are expected to yield comparable results for
GSFEs as compared with results for the more recent projector-
augmented wave (PAW) methods; see, e.g., Ref. [95]. The ki-
netic energy cutoff of the USPPs was 30 Ry for wave functions
and 120 Ry for charge densities and potentials [96]. To deter-
mine the properties of magnetic Fe, spin-polarized calculations
were performed. The convergence threshold for self-consistent
calculations was 10−8 Ry (approximately 1.36×10−7 eV).
Shifted 39×3×39 k-point meshes for Brillouin-zone integra-
tions were generated by the Monkhorst-Pack scheme [97] and
the fractional occupations of the electronic states were realized
by a Gaussian broadening [98]. Atomic positions were relaxed
by minimizing the atomic forces using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) relaxation scheme [99] with a con-
vergence threshold for the largest residual force component of
10−3 Ry/Bohr (approximately 2.6×10−2 eV/Å).

To check the independence of the DFT results from the used
simulation package and realizations of the external potential,
we also performed DFT calculations using the Vienna Ab initio
Simulation Package (VASP) [100,101]. The simulation details
used with VASP (GGA, PBE, and PAW [102]) are reported
in more detail in Ref. [103]. The determined γ lines were in
good agreement with other calculations using the VASP code
and reference data from literature [95].

III. RESULTS

The results for the occurrence of strain-dependent local
minima in the calculated γ lines are summarized in Table II.
For reference, we compared the unstable stacking fault energies
γusf along the [11̄1] Burgers vector direction under unstrained
conditions with other published data for the corresponding
interaction models. As it is indicated in the table, some of the
EAM potentials exhibit a local minimum in the middle of the

γ line in [11̄1] direction [denoted as min(γ[11̄1])]. This leads
to a “double hump” shape of the GSFE where there should
be only one maximum (according to the predictions of the
more sophisticated methods). The Gordon potential [108], for
instance, was developed exactly with the purpose to suppress
this unwanted feature of many EAM potentials. The remaining
three columns of Table II indicate whether there is a local
minimum in the corresponding γ line under zero strain (ZS),
7.5% uniaxial strain (US), and/or 5% equi-biaxial strain (EBS)
or not. For Fe, the size independence of the results was ensured
by using simulation box sizes containing 480, 2880, and 5760
atoms for the Mendelev-II EAM potential, 16 and 2880 atoms
for the Mrovec BOP, and 16 and 32 atoms in case of DFT
calculations.

In Fig. 3 the γ surfaces of Fe are shown under unstrained
(a) as well as for 7.5% uniaxial strain in [110] (b) and 5%
biaxial strain in the [11̄0] and [110] directions (c). Note that
all GSFE data points are plotted with respect to the energy
of the crystals at zero normalized shifts irrespective of their
strain state. This conceals the fact that all configurations under
strained conditions are of course of higher energy than those
under unstrained conditions, but it allows one to compare
directly their relative evolution on the same scale as also
displayed in Figs. 4 and 5. While the γ surfaces are only shown
for the popular Mendelev-II potential [34], the γ lines are
also presented for the more recent Chamati [33] and Chiesa
potentials [105]. As expected from literature [95], the DFT
results obtained with USPPs are in good agreement with the
results for the more recent PAW method (see Supplemental
Material [35]).

It can clearly be seen that both the Mendelev-II and Chiesa
potentials lead to local minima at normalized shifts in the range
of 0.15 and 0.20 in the [11̄0] direction. For the strain states
shown in the figure, this was not the case for the Chamati
potential and the DFT calculations. It is important to note that
the shape of the GSFE curves for the Mendelev-II and Chiesa
potentials differs qualitatively from the shape of the Chamati
potential already at 0% strain [see Fig. 3(a)]. The GSFE curves
of the Mendelev-II and Chiesa potentials exhibit a consecutive
change of curvature from positive to negative and back, which
leads to a shoulderlike shape of the GSFE curve. By comparing
the GSFE curves in Figs. 3(b) and 3(c), it can be seen that this
“shoulder” often develops into a “hump” for applied strains.
This “hump,” which is identical to the formation of a local
minimum, is shifted to smaller values of normalized shifts with
increasing strain. Interestingly, this shoulderlike shape is also
observed for relative shifts in the usual Burgers vector direction
([11̄1] direction, rightmost subfigures in Fig. 3). The Chamati
potential, on the other hand, does initially not show such a
shoulder, but starts to develop a similar shape at applied strains;
see Figs. 3(b) and 3(c).

As can be seen in Table II and in Fig. 3, the GSFE curves
calculated with DFT methods do not develop a local minimum
even for EBS values up to 10% whereas a local GSFE minimum
occurs for the Chamati potential when the EBS was increased
to 7.5%. The Chamati potential shares this behavior with all
other EAM potentials. From the more sophisticated material
models only the MEAM potential by Lee et al. (“Lee2012-p”)
and the Tersoff potentials by Müller et al. and Björkas et al.
showed local minima (see Fig. 4). In the latter two cases,
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(a)

(b)

(c)

FIG. 3. γ surfaces of the (110) glide plane and corresponding 1D GSFE line profiles (γ lines) in [11̄0] and [11̄1] directions as a function
of external loads: (a) no external load; (b) 7.5% uniaxial strain (US); (c) 5% equi-biaxial strain (EBS). Note that the scale of the γ lines is the
same as for the color bars of the γ surfaces. The shifts in [001], [11̄0], and [11̄1] directions are normalized, i.e., divided by the corresponding
periodicity distances a0,

√
2a0, and

√
3/2a0. The γ surfaces are displayed for the Mendelev-II potential [34]. The γ lines are plotted for the

Mendelev-II [34], Chamati [33], and Chiesa [105] potentials as well as for DFT calculations. All GSFE curves are plotted with respect to the
energy of the crystals at zero normalized shifts irrespective of their strain state. The Mendelev-II and Chiesa potentials tend to result in a local
GSFE minimum along the [11̄0] direction under external strain [(b) and (c)]; this behavior is observed neither for the Chamati potential nor in
DFT calculations.

the minimum is not only local but global, which indicates
the instability of the bcc phase under these conditions. For
the other MEAM potentials as well as the ADP and BOPs
local GSFE minima were not observed in the studied range of
applied strains.

Figure 5 summarizes the resulting γ lines in the [11̄0]
direction of the EAM potentials for the other bcc transition
metals V, Nb, Ta, Cr, Mo, and W. In case of Nb, Ta, Mo,
and W the results for the EAM potentials were compared
to DFT calculations. Note that the EAM potentials for Cr
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FIG. 4. Strain-dependent γ lines for Fe using MEAM, ADPs, and BOPs in comparison to the DFT (USPP) data. The GSFE data are plotted
for 0% (solid lines) and 5% (dashed) applied equi-biaxial strain parallel to both the (110) plane normal and the [11̄0] shearing direction. The
formation of a local GSFE minimum or at least a terrace at normalized shifts around 0.15 as observed for several EAM potentials (see Figs. 3
and 5) is only observed for the Lee2012-p MEAM potential. In this case, the GSFE exhibits generally higher values for 5% than for 0% applied
strains, which is attributed to a bcc → hcp phase transformation for the unshifted configuration at 5% applied strain.

FIG. 5. Strain-dependent γ lines of various EAM potentials for the bcc metals V, Nb, Ta, Cr, Mo, and W. The GSFE data are plotted for 0%
(solid lines), 5% (dashed), and 7.5% (dotted) applied equi-biaxial strain parallel to both the (110) plane normal and the [11̄0] shearing direction.
The shift in [11̄0] direction is normalized, i.e., divided by the corresponding periodicity distance

√
2a0. Relaxed stacking fault energies for Nb,

Ta, Mo, and W were additionally calculated using DFT.

093606-8



{110} PLANAR FAULTS IN STRAINED BCC METALS: … PHYSICAL REVIEW MATERIALS 2, 093606 (2018)

(FS) and Mo (ATFS) show a completely different behavior
for ε[11̄0] = ε[110] = 5%. While the Mo potential shows a local
(and even global minimum), no such minimum is observed for
Cr. The nonphysical predictions of the EAM potentials for Mo
are in this case again confirmed by DFT calculations for the
same strain state.

IV. DISCUSSION

Our results indicate that the observation of {110} planar
faults—sometimes discussed as “fcc formation”; see, e.g.,
Refs. [22–25,28,31,32]—is linked to the appearance of a
local GSFE minimum under an applied strain. Zhang et al.
already emphasized that the correct shape of GSFE curves is
a challenge to empirical potentials [110]. In their work, the
authors compared the GSFE curves for the {112} twin plane in
the classical 〈111〉 Burgers vector direction for five different
interatomic potentials and DFT calculations for Nb. Similar to
our work, some of the potentials lead to local GSFE minima
at x ≈ 1/3 and 2/3 (where x corresponds to the shift in 〈111〉
direction normalized to the Burgers vector length a0/2〈111〉)
for applied external strains. They showed that the trend to give
a local GSFE minimum at applied strains correlates with the
trend to give a local GSFE minimum in the 〈111〉 Burgers
vector direction but at x = 1/2 already at zero strain, leading
to a double-hump shape of the GSFE. This observation is
in contrast to our results where the focus is on the GSFE
in 〈110〉 directions (and on {110} planes) and where such
a straightforward correlation is absent, cf. Table II. In other
words, the formation of {110} PFs under applied strains is
found to be independent of a double-hump GSFE at zero strain.
Moreover, we applied comparably moderate tensile stresses
around 20 GPa (for Fe) instead of 50 GPa compressive strains
in the work by Zhang et al. In our work, the ATFS [50,53] and
Fellinger [54] potentials, which Zhang et al. found to reproduce
the GSFE at applied strains for the {112} plane in the classical
〈111〉 shearing direction, failed to do so for the {110} plane
in 〈110〉 shearing directions which are typically not subject to
intense research efforts. It is therefore important to note, that an
analysis of possible reasons for the occurrence of local {110}
GSFE minima at applied strains is currently lacking.

From a theoretical point of view, the occurrence of a local
GSFE minimum is not expected in bcc materials. According
to Neumann’s principle [9], which states that the symmetry of
physical properties is linked to the symmetry of the crystal,
a local GSFE minimum (i.e., zero slope) would necessitate
the crossing of two nonparallel mirror planes perpendicular
to the studied glide plane. For bcc crystals at zero applied
strains, this is clearly not the case while it is for fcc materials;
cf. Figs. 6(a) and 6(b). However, under conditions of extreme
strains (e.g., ε[11̄0] = 22.5%) the {111} and {112} planes can
become additional mirror planes of bcc crystals [cf. Figs. 6(c)
and 6(d)], thereby enabling the theoretical possibility of a local
GSFE minimum. As can be seen in the figure, only strains in
the [11̄0] and [001] directions are needed for such a scenario,
i.e., no strain perpendicular to the (110) PF plane is needed.
On the other hand, some EAM potentials presented in Sec. III
predict a GSFE minimum even if no strains are applied in these
lateral directions but only in the [110] direction. We therefore
conclude that the appearance of a local GSFE minimum does

(a) (b)

(c)

(e)

(d)

FIG. 6. Symmetry planes and Burgers vectors (black solid ar-
rows) on the (110) slip plane in bcc (a) and the (111) slip plane
in fcc crystals (b). Under zero-strain conditions, the {111} and {112}
planes are no mirror planes of bcc crystals (c). Only if the crystal is
strained in such a way that the isosceles triangle ABC becomes the
equilateral triangle A′B′C′ (d), then the {111} and {112} planes are
mirror planes, form additional intersections, and the appearance of a
local GSFE minimum is theoretically possible. The 1D GSFE profiles
as calculated with DFT (e) for this (black symbols) and other extreme
scenarios associated with an equilateral triangle A′B′C′, however, do
not predict a local GSFE minimum.

not occur for reasons of symmetry but is an unrealistic artifact
rooted in the oversimplifications assumed to construct some
of the material models. In particular, the strain-dependent
formation of a local GSFE minimum was not observed for
BOPs and in DFT calculations while it is predicted by all
EAM and Tersoff potentials as well as for one MEAM potential
(Lee2012-p). We further note that even for ε[11̄0] ≈ 22.5% and
other scenarios of extreme applied strains, DFT calculations do
not predict a local GSFE minimum as displayed in Fig. 6(e).
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Why do certain models predict a local GSFE minimum and
others do not? Although the statistical basis of our results
is clearly not large enough to give a conclusive answer to
this question, we can shed some light on it by analyzing
the contributions that are explicitly included in the different
material models (see Table I). Together with the results pre-
sented in Table II, this overview suggests that for obtaining an
artifact-free GSFE surface the inclusion of direction-dependent
bonding is a necessary—but not sufficient—condition. It is
necessary since none of the EAM-type potentials (without
direction dependence) results in an artifact-free behavior while
some of the MEAM potentials (with direction dependence) do
so. At the same time, it is only a sufficient condition since
one MEAM and both Tersoff potentials (which both include
direction dependencies) predict a local GSFE minimum. Ac-
cording to this analysis, it is not necessary to include electronic,
magnetic, or bond-order effects to obtain a GSFE curve without
a local minimum.

The failure of purely radial-symmetric functions to cor-
rectly describe the GSFE can generally be understood by the
insufficient description of the nearest neighbor bonds in the
EAM formalism when the atomic environment is deformed
and difficulties in modeling situations where atoms leave
or come within the interaction range of EAM potentials as,
e.g., at surfaces, along transformation paths such as the Bain
path, and in the case of GSFE surfaces. In a perfect crystal
the contribution of further neighbor bonds is typically small
(because the bond-order matrix elements of the further neigh-
bors are significantly reduced). If, however, nearest neighbor
atoms would be removed, the bond order with further distant
neighbors would increase. As the dependence of the strength of
a bond on its local environment is not contained in the EAM, in
order to suppress the formation of strong further distant bonds,
EAM potentials have effectively to be cut off beyond the first or
second neighbor shell of the equilibrium volume. Furthermore,
the EAM formalism neglects the fact that the bond order may
vary significantly between nearest neighbor bonds if an atom
is not coordinated homogeneously.

It is also important to note that the material models which
formally include direction dependence but give a local GSFE
minimum, namely the MEAM and Tersoff potentials, still
strongly rely on the contribution of pair potentials, e.g., of the
Morse (Tersoff potential by Müller et al. [77]) or the Lennard-
Jones type (ADP by Mishin et al. [71]). For both model types
at least 10 parameters define the characteristics of the potential
and it is difficult to deduce which of these is most responsible
for the formation of a local GSFE minimum. However, the
result that only the Lee2012-p MEAM potential [66] gives
a local GSFE minimum opens the possibility to compare
the changes made to its parameters with those parameters
of the Lee2001 [64] and Lee2012-T [66] potentials which
do not give a local GSFE minimum. Figure 7 compares the
parameters that differ between these three MEAM potentials.
From this comparison it can be seen that the tendency to
lead to a local GSFE minimum correlates with the trend in
the Cmin and t (2) parameters and anticorrelates with the A

and β0 parameters. This agrees well with the statement of
Lee and Baskes [64] that the effect of changes in A, β0,
and Cmin on the elastic constants and the energy differences
between bcc, fcc, and hcp can be significant. The analysis is,

FIG. 7. Comparison of the parameters for the three MEAM
potentials. The tendency to show a local GSFE minimum (in case of
the Lee2012-p potential) correlates with the Cmin and t (2) parameters
and anticorrelates with the A and β0 parameters.

however, dramatically complicated by the distinct behavior of
the Lee2012-p potential, which transforms from bcc → hcp
already in the unshifted configuration at 5% equi-biaxial strain
and gives an increase of the GSFE with applied strains (see
Fig. 4). This transformation, however, is most likely not an
artifact but due to its designation to reproduce the bcc-to-
hcp transition pressure around 12 GPa (see Ref. [66]). For
this reason, we can currently not propose a criterion for the
tendency to form {110} PFs based on MEAM parameters.

We have also analyzed the training data that were used
for parametrizing interatomic potentials as the training data
generally determine the application range of a (material)
model and it is therefore not a priori clear how it will
respond to “unknown” scenarios. Due to the limited intrinsic
transferability (as compared to BOP and DFT), the predic-
tive power of classical potentials depends critically on the
training set used during their parametrization. We noticed a
vague trend that the inclusion of elastic constants, surface
energies, and phase stabilities at the same time (this is the
case for the Chamati-EAM, Lee2001-MEAM, and Mishin-
ADP as well as for the BOPs) may be sufficient but not
necessary (the MFS potential, for instance, was only fitted
to elastic constants) for reducing the tendency to form a
local GSFE minimum; see Supplemental Material [35] for
details.

Coming back to our initial statement about the impor-
tance of direction dependence, we now ask whether distance-
dependent potential functions are really not sufficient to predict
the correct shape of the strain-dependent GSFE surface or
if the cutoff radii of the studied potentials (or their con-
tributions due to pair interactions) were just too small. A
too small cutoff radius may disable important interactions
between atoms across the stacking fault plane when they are
shifted relative to each other or when they are pulled apart
by the application of external strains. However, the potentials
with the smallest cutoff radius (MFS potential, rcut = 3.4 Å,
including only first- and second-nearest neighbor interactions)
and the largest cutoff radius (Chamati potential, rcut = 5.67 Å,
including fifth-nearest neighbor interactions) both exhibit a
similar behavior (local GSFE minimum at 7.5% equi-biaxial
strain; see Table II). Therefore—although we cannot ultimately
rule out this possibility—our results indicate that a too small
cutoff radius is not responsible for the formation of a local
GSFE minimum. A further indication for this conclusion is that
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(a) (c) (e)

(b) (d) (f )

FIG. 8. (110) GSFE lines in the [11̄0] direction decomposed in contributions of pair/embedding energy (EAM potentials) and pair/bond
energy (BOP): (a) and (b), Mendelev-II EAM potential; (c) and (d), Chamati EAM potential; (e) and (f), Mrovec BOP. The top (bottom) row
shows the decomposed γ lines at 0% (5% equi-biaxial) strain. See Eq. (6) for the definition of R.

third-nearest neighbor interactions are completely screened in
the “Lee2012-T” MEAM potential [66] for which no local
GSFE minimum is formed.

An alternative explanation for the failure of EAM potentials
to predict the correct shape of GSFE surfaces may be found
in the decomposition of their total energy into contributions
by “pair” and “embedding” energies. This distinction, which
dates back to the early days of the EAM formalism [36,37],
is somewhat arbitrary in more recently developed potential
where potentials are obtained by the parametrizing, e.g.,
cubic spline functions; see, for instance, the Fe potentials
in Refs. [34,52,104–106,108,109]. In Fig. 8 we compare the
evolution of the “pair” and “embedding” contributions in
dependence of the relative shift x for two interatomic potentials
(Mendelev-II and Chamati) and the BOP by Mrovec et al. for
which the “bond” energy is plotted instead of the “embedding”
energy. It can be seen that for all potentials the increase in
total energy is mainly determined by pair interactions at zero
strain and that the contribution of embedding/bond energy is
negligible until approximately x = 1/6. When strains are ap-
plied (bottom row), this behavior persists only for the Chamati
potential and the BOP [Figs. 8(d) and 8(f)]. For the Mendelev-II
potential, on the other hand, the total energy is lowered due to
the increased (negative) contribution of the embedding energy
[Fig. 8(b)] leading to the formation a local minimum. This
observation suggests that an increasing contribution of the
embedding energy under applied strains could be responsible
for the formation of {110} PFs. As the individual contributions
of pair/embedding energy depend, however, on the specific
potential, this statement is not generalizable.

Under the assumption that first- and second-nearest neigh-
bor interactions mainly determine the shape of the GSFE
(as we have discussed before), we will now focus on their
interactions across the sheared (110) plane. As we can see in
Figs. 9(a)–9(c), each atom is interacting with two first-nearest

neighbors (nn) and two second-nearest neighbors (2nn). Upon
shifting the two half crystals, both nn bonds and one of the 2nn
bonds are stretched while the other 2nn bond is compressed.
For analyzing the energy contributions of these interactions,
we make use of the effective pair potential format [111,112],
which overcomes the often arbitrary decomposition into “pair”
and “embedding” contributions and thereby allows one to
compare different EAM-type potentials on the same scale.
More importantly this format offers a qualitative view on the
energetics of pair interactions in a crystal (strictly, however,
only for the perfect crystal structure and constant electron
density). The effective pair potentials for the MFS, Mendelev-
II, and Chamati potentials are plotted in Fig. 9(d). Since the
energy change of the stretched 2nn bond is much larger than for
the other bonds and the energy contributions of the nn bonds
and the compressed 2nn bond nearly cancel out each other,
the overall energetics of the GSFE must be dominated by the
stretched 2nn bond. While being stretched, the energy contri-
bution due to this bond is decaying and the contributions of the
other bonds become more important. When external strains are
applied, this transition takes place even earlier thereby opening
the possibility that the stretched nn bonds or the compressed
2nn bond have not yet passed through the minimum (which
lies between the nn and 2nn distance for most potentials). In
such a case, the evolution of the total (GSFE) energy of the
system would also pass through a (local) minimum.

The analysis of the nn and 2nn distances in Fig. 9(d)
suggests that for an EAM-type potential to be robust against
the formation of artificial {110} PFs, one of the neighbor
distances (nn or 2nn) should be significantly further apart
from the minimum under zero-strain conditions than the other
(as for the Chamati potential). At the same time, the “tail” of
the effective potential should monotonically increase to zero
at large distance, i.e., without additional terrace points (e.g.,
Mendelev-II, Mendelev-IIext, and Marinica07). This recipe
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(a)

(d)

(b) (c)

FIG. 9. Close-up views of the atomistic configurations at x = 0
(a), x = 1/12 (b), and x = 1/6 (c) for the Mendelev-II potential for
Fe. For one atom in the upper half crystal, nn and 2nn neighbor
atoms and the bonds between them are indicated in green color.
The energy contributions due to the different neighbor distances are
qualitatively compared using the effective pair potential (Veff) format
(d). For comparison, Veff(rij) is also shown for the MFS and Chamati
potentials, which are less prone to show a local GSFE minimum than
the Mendelev-II potential (see Table II). For the Mendelev-II potential,
the gray-shaded area indicates the change of Veff for decreasing
electron densities (corresponding to increasing applied strains). The
nn and 2nn bonds and their evolution upon increasing shifts x are
shown with purple and orange lines, respectively, for zero strain
(electron density ρ0) and 5% EBS (ρEBS). While one 2nn bond is
compressed [marked with a dashed line; see (a)], the other is stretched
(solid line).

would also explain our previous observation that the cutoff
radius does apparently not play a major role for the formation
of {110} PFs. The plots of the effective pair potentials for the
EAM-type Fe potentials can be found in the Supplemental
Material [35]. Although the effective pair potential is generally
more suitable for a reliable and robust criterion than the
decomposition into pair/embedding contributions, it has to be
noted that there are also cases where this recipe does not work:
Namely, in case of the FS potential for Cr where the minimum
lies well centered between the nn and 2nn distances but does
not show the formation of {110} PFs.

To overcome the lack of robustness of the previously sug-
gested recipes, we introduce an empirical but straightforward
criterion for the tendency to form {110} PFs. An important
feature of the potentials which exhibit a local GSFE minimum,
which can be clearly observed in Figs. 3–5, is that the formation
of a local GSFE minimum (or alternatively, the formation of

TABLE III. Comparison of R [cf. Eq. (6)] for different material
models for Fe.

Model Parameter set R(ε = 0%) R(εEBS = 5%)

EAM Mendelev-II 2.9 0.4
EAM Chamati 3.6 2.1
EAM Chiesa 3.8 1.3
MEAM Lee2001 2.8 2.6
ADP Mishin 3.6 3.1
Tersoff Björkas 1.6 1.4a

BOP Mrovec 4.0 3.2
DFT USPP-PBE 3.2 3.2

aBoth γ (x = 1/6) and γ (x = 1/12) are negative.

a “hump”) at applied strains is linked to the formation of a
“shoulder” under unstrained conditions (with “shoulder” we
mean the region between two consecutive inflection points in
the GSFE curves, where the curvature changes from positive
to negative and back). The Mendelev-II, Chiesa, Müller, and
Björkas potentials for Fe and the Ackland potentials for Mo
and W are prominent examples for this rather qualitative
description; cf. Figs. 3–5. In an attempt to quantify this visual
distinction between “hump” and “shoulder,” we calculate and
compare the ratios,

R = γ (x = 1/6)

γ (x = 1/12)
, (6)

in Table III for selected material models for Fe and visualize
them in Fig. 8 for the EAM potentials by Mendelev et al. and
Chamati et al. and the BOP by Mrovec et al. When comparing
the R values for the different models, it becomes evident that
a significant decrease of R (more than 40%) from unstrained
to strained conditions is indicative for the formation of a local
GSFE minimum. Moreover, R < 2 is a good indicator for a
“shoulder” already under unstrained conditions, as, e.g., for
the Björkas potential. An R value around or below unity is
indicative for a “hump,” as, e.g., for the Mendelev-II and Chiesa
potentials. This means that for the future development of EAM
potentials (and likewise for the pairwise parts of MEAM, ADP,
and Tersoff potentials) it may be enough to ensure that R is
well above 3 under unstrained and strained conditions which
does not involve the calculation of the complete GSFE surface
but only at x = 0, 1/12, and 1/6.

Since we have not yet found a conclusive and generally
applicable explanation for the formation of the local GSFE
minimum under applied strains, we recommend including the
determination of the strain-dependent (110) GSFE in the [11̄0]
direction (or only the R value for reasons of efficiency) as a
benchmark for newly developed potentials until the underlying
reasons are clarified. For many practical applications, it may
even be sufficient if R remains above 3 for equi-biaxial strains
up to around 6%–7%. Potentials, which show PFs only at such
high strains, can be seen as effectively artifact-free in this
respect; see, e.g., the Chamati potential for Fe, which gives a
local GSFE minimum at 7.5% equi-biaxial strain (cf. Table II),
but no PFs under practical conditions (cf. Fig. 1), i.e., at crack
tips.
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V. SUMMARY

In this study, we determined the strain dependence of the
generalized stacking fault energy (GSFE) of {110} planes
in bcc transition metals with different state-of-the-art mate-
rial models for atomic-scale simulations: EAM and MEAM
potentials, ADPs, Tersoff potentials, BOPs, and DFT calcu-
lations. We showed that a number of EAM, MEAM, and
Tersoff potentials predict an evolution of the strain-dependent
{110} GSFE that exhibits a local minimum under applied uni-
and equi-biaxial tensile strains resulting in the formation of
planar faults (PFs), which are structurally very similar to the
fcc structure. Examples for the formation of PFs in practice
include simulations of cracks [22–29] and nanowires [30–32].
Since a local GSFE minimum under applied external strains
is not observed with more sophisticated material models,
i.e., DFT and BOPs, we conclude that the strain-dependent
formation of PFs is an artifact of many classical potentials.
For this reason, previous discussions based on observations of
PFs (or misclassified fcc formations) in atomistic simulations
can become questionable and should better be re-evaluated
carefully.

We show that a local GSFE minimum is not formed
for reasons of symmetry and that the inclusion of angular-
dependent interaction terms is necessary but not sufficient
for a material model to exhibit an artifact-free GSFE. For

purely distance-dependent potentials, a too short cutoff radius
is excluded as possible reason for the formation of {110} PFs.
Instead, we find that the evolution of the effective pair potential
for the next- and second-next-nearest neighbor distances can
be used to qualitatively understand the formation of a local
GSFE minimum. Our attempts to develop a robust recipe to
prevent this behavior were, however, not fully conclusive and
we hope for future research in this direction. Until such a recipe
is found, we recommend including the determination of the
strain-dependent (110) GSFE (or the R value introduced in
this paper) as a benchmark for newly developed potentials.
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