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In situ observations of spiral growth on ice crystal surfaces
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The spiral growth of crystals, mediated by their screw dislocations, is a general crystal-growth mechanism
observed over a large variety of crystalline solids. Despite its general nature, direct observations of the spiral
growth of ice have been rarely reported so far. Here, with the aid of advanced optical microscopy, we succeed in
making in situ observations of the perfect spiral growth during the vapor growth of ice. We find that the spiral
steps observed are well described by the classical Burton–Cabrera–Frank theory, taking into account surface
diffusion of water admolecules between adjacent steps. This is distinct from the dominant growth mode that
we have assigned as spiral in our recent studies, which accompanies fluctuations of the adjacent step interval.
We also successfully capture the birth of a screw dislocation and the ensuing spiral growth, originating in the lattice
mismatch arising from the coalescence of single ice crystals. Furthermore, we demonstrate that the nucleation of
quasi-liquid layers (QLLs) takes place at the spiral center immediately after the birth of the dislocation, which
suggests a link between screw dislocations and the generation of QLLs near the ice melting point.
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I. INTRODUCTION

Ice crystal formation is one of the essential processes
linked to a diverse set of natural phenomena on earth, such
as the formation of atmospheric clouds, precipitation, sea ice
formation, frost heaving, ice accretion, and so forth [1]. It
takes place not only via supercooled water but also directly
from supersaturated water vapor, the latter of which is referred
to as the vapor growth of ice. This process is known to be
intimately related, for example, to the growth of ice crystals in
mixed-phase clouds [2,3], causing the cold rain (the so-called
Bergeron–Findeisen process [4]) and the rich morphological
pattern of snow crystals, famously recorded in the Nakaya
diagram [5]. In this context, the kinetics of ice crystal growth
from supersaturated water vapor has historically attracted
considerable attention.

It is generally established that the growth of faceted crys-
tal surfaces proceeds layer by layer through nucleation and
growth of two-dimensional (2D) islands, and/or spiral growth
triggered by screw dislocations. Importantly, the latter is a
barrierless process, governing the growth of crystals in a low
supersaturation regime where 2D nucleation is almost impos-
sible stochastically. The relevance of this picture has been
checked for many years both theoretically and experimentally,
regardless of the system [6,7]. For practical applications, it is
also worth noting that spiral growth plays a key role in making
high-quality protein crystals [8]. This growth mode is known
to rather suppress incorporation of impurities into crystals,
compared with the 2D nucleation growth mode. Moreover,
fairly recently, Tominaga et al. offered a new approach,
facilitating the growth of protein crystals by inducing screw
dislocations (i.e., the spiral growth) with laser ablation [9].
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Due to its general nature, spiral growth is also expected
to be common in ice crystals. However, direct visualizations
of elementary spiral steps on ice crystal surfaces are rare.
This is mainly due to the small reflectivity of ice-air and
ice-water interfaces (1.8% and 0.01%, respectively). Only
recently have Thürmer and Nie [10] succeeded in making
direct observations of elementary spiral steps using scanning
tunneling microscopy and atomic force microscopy. Although
they uncovered the step structure and its link to the morpho-
logical selection between cubic ice (Ic) and hexagonal ice
(Ih), they did not shed light on the thermodynamic aspects
of spiral growth because of limited experimental conditions
(temperatures lower than 140 K under extremely low vapor
pressure, fixed below 3 × 10−11 mbar [10]).

In our recent series of studies [11–14], we made in situ
observations of ice crystal growth by using advanced optical
microscopy (laser confocal microscopy combined with differ-
ential interference contrast microscopy: LCM-DIM), whose
resolution in the height direction reaches the order of an
angstrom [11,15]. We investigated the elementary step dynam-
ics on ice crystal surfaces under well-controlled temperatures
and water vapor pressures. Even in our in situ observations at
the level of elementary steps, however, no perfect spiral growth
has been confirmed on ice crystal surfaces so far, contrary to
the 2D nucleation and growth. While we have often observed
a growth mode reminiscent of spiral growth, accompanying
double (paired) bilayer-like steps [12], this exhibits significant
fluctuations in the distance between adjacent steps [14] and
its spiral center is always located at edges or outside of facets.
Strictly speaking, it is fair to say that the thermodynamic nature
of spiral growth on ice crystal surfaces still remains unclear at
this stage.

In this article, we present several examples of observations
of the genuine spiral growth on ice basal faces with the aid
of LCM-DIM. We succeeded in making direct visualization of
advancing spiral steps born from screw dislocations formed by
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coalescence of single ice crystals. We discuss quantitatively
the detailed relationship between this spiral behavior and
the Burton–Cabrera–Frank (BCF) theory [16,17], the classic
model for spiral growth. Furthermore, we also demonstrate that
such screw dislocations not only mediate the spiral growth it-
self, but also assist the formation of quasi-liquid layers (QLLs)
near the melting point of ice. Our findings offer a fundamental
understanding of the origin of ice crystal growth from water
vapor, inseparably involved in the unsolved conundrum of the
complex behavior of the ice crystal habit [5,18].

II. METHODS

In this study, we employed a confocal system (FV300,
Olympus Corporation) attached to an inverted optical micro-
scope (IX70, Olympus Corporation) with a superluminescent
diode (Amonics Ltd., model ASLD68-050-B-FA, 680 nm)
as a light source to prevent the generation of interference
fringes. In the observation images, the differential interference
(DI) contrast was adjusted as if the ice crystal surface were
illuminated by a light beam slanted from the upper-left to the
lower-right direction. Thus, convex (concave) objects showed
brighter (darker) and darker (brighter) contrast on the upper-
left sides and the lower-right sides, respectively, compared with
a flat crystal surface.

An observation chamber is composed of upper and lower Cu
plates, whose temperatures were separately controlled by using
Peltier elements. At the center of the upper Cu plate, a cleaved
AgI crystal was attached as an ice nucleating agent. Sample ice
crystals were grown epitaxially on this AgI substrate. Other
ice crystals were also prepared on the lower Cu plate, as a
source of water vapor for the sample ice crystals. The vapor
pressure in the chamber is controlled by the temperature of
the source ices; that is, their equilibrium vapor pressure at
the corresponding temperature because a larger amount of
source ice is attached to the lower plate compared with the
sample crystals on the upper plate. Thus, separate control of
the temperature of the sample and source ice crystals allows
us to adjust the temperature (T ) and water vapor pressure (p)
of the sample independently. Here, p is the partial pressure
of H2O in a nitrogen environment. The total pressure is the
atmospheric pressure. For the discussion below, we further
define supersaturation of ice crystals as σ = (p − pe )/pe,
where pe is the equilibrium water vapor pressure for the sample
ice.

We used ultrapure water (>18.2 M� cm) as a source of ice
and vapor. The purity of dry nitrogen gas filling the observation
chamber is more than 99.99 % (oxygen �50 vol. ppm and the
dew point �−58 ◦C). Further details of the experiments are
described in Refs. [11,19].

III. RESULTS AND DISCUSSION

Figure 1(a) shows an observation example of spiral growth
of an ice basal face visualized by LCM-DIM (T = −9.7 ◦C and
p = 280 Pa). We see that steps rotate around a trench (a gap
between the two sides of the prismatic walls) and steadily flow
in the counterclockwise direction while keeping an equal step
spacing, which is characteristic of the spiral growth behavior.
However, this spiral pattern does not coincide with that of a
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FIG. 1. (a) LCM-DIM image of spiral growth on an ice basal
face at T = −9.7 ◦C and p = 280 Pa. The contrast of the spiral
steps is enhanced by subtracting the averaged background image.
Here, l corresponds to the step spacing. (b) The ice basal face at
T = −9.7 ◦C and σ = 2.4 × 10−3 (p = 268 Pa). The area enclosed
by the blue dashed line indicates the undersaturated region and is
hollowed by sublimation (see the DI contrast opposite to the steps,
meaning the concave surface). This ice surface has a very weak
gradient of the water vapor pressure. The thick step shown by the
green arrow is stationary at the boundary between supersaturation
and undersaturation where σ is exactly zero. The height of this
step corresponds to the magnitude of the Burgers vector. (c) At
T = −9.7 ◦C andσ = 0.039 (p = 277 Pa). The white bars are 20 μm.

simple spiral stemming from a single screw dislocation. To
clarify the origin of this step behavior, in Fig. 1(b) and 1(c)
(also in Videos S1 and S2 [20]), we follow the birth of the spiral
steps by tuning the water vapor pressure from an equilibrium
value [σ ∼ 0; Fig. 1(b)] to supersaturation [σ > 0; Fig. 1(c)].
Initially, we see a single stationary step in the equilibrium
region [see the green arrow in Fig. 1(b)]. Soon after entering
the supersaturation regime, this single step starts to rotate and
simultaneously splits up into lower steps [Fig. 1(c)]. Next, these
spirals reach the steady growth state shown in Fig. 1(a) (see
also Videos S1 and S2 [20]). As discussed below, these splitting
steps correspond to the elementary steps in light of the step
velocity. We find that the sum of the splitting steps is fourteen,

093402-2



In SITU OBSERVATIONS OF SPIRAL GROWTH … PHYSICAL REVIEW MATERIALS 2, 093402 (2018)

B

A

B

A

[0001]

[1000]

h =0.37 nme

2h =0.74 nme

(Unit cell)

c

Single Bilayer

FIG. 2. Schematic illustration of a cross section of a hexagonal
ice crystal and its elementary step. Gray and red atoms correspond to
oxygen and hydrogen, respectively.

which tells us that the magnitude of the Burgers vector of
the screw dislocation, |b| = b, in this system corresponds to
the height of the fourteen elementary steps, 14he = 5.28 nm
(he = 0.37 nm being the height of the elementary step; see
Fig. 2).

As shown in Fig. 2, on the basal face of the hexagonal
ice, the minimum component of the Burgers vector of screw
dislocations is the double-bilayer height; that is, the unit-cell
height in the direction of the c axis (2he = 0.74 nm), because
of the crystallographic restriction to keep the periodic ABAB
stacking consequence. Due to the entropic gain, such double-
bilayer steps further split up into two single bilayers (A and
B components, respectively), flowing alternately on surfaces
as observed in many systems [21–23]. Thus, the elementary
step in this system corresponds to this single bilayer (A or B)
and the height of the fourteen elementary steps is that of seven
unit cells. Here, note that the single bilayer steps A and B are
equivalent in this temperature range because the steps already
undergo a step-roughening transition (see the circular shape of
the steps in Fig. 1). Furthermore, due to the crystallographic
periodicity, the number of the spiral steps generated from a
dislocation is restricted to an even number, which is satisfied
in this system.

How is the screw dislocation formed in this system? In
Figs. 3(a)–3(d), we show a schematic of its formation process.
As observed in Fig. 3(e), we see the presence of a trench,
generated by the coalescence of two single crystals. Under
supersaturated conditions, the side walls (the prismatic faces)
of the trench grow and finally attach to each other at a certain
position. If there exists a gap in the height between both sides,
this leads to a lattice mismatch in the normal direction to
the surface, resulting in the screw dislocation. Actually, we
confirm a seam of the trench, corresponding to the attachment
point [see the arrow in Fig. 3(b)]. The step with the height of
b, although instantaneously splitting into multiple elementary
steps, starts to rotate with a finite curvature and steadily grows
while passing through the seam [see Fig. 3(f) and Videos S1
and S2 [20]]. Note that this mechanism has been recognized
as one of the prominent routes to yield screw dislocations; for
example, as discussed by Chernov [6].

In Fig. 4, we show the σ dependence of the step-advancing
velocity vst at T = −9.7 ◦C as an example. At higher σ , vst

slightly deviates from the simple linear relation between the
step velocity and supersaturation (vst ∝ σ ) expected from the
standard crystal-growth theory [6]. This deviation from linear
comes from the depletion of water vapor due to the surrounding
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FIG. 3. (a)–(d) A schematic of the birth of the screw dislocation
and the resulting spiral growth. The green arrow shows a seam,
generated by the growth of the side walls in the trench. The inset
in panel (b) shows an example of the step splitting. Here, the number
of the splitting steps is four, not fourteen, for convenience. (e) The
whole image of the ice crystal surface observed in Fig. 1. The white
bar is 50 μm. (f) Schematic of the motion of a single step during the
spiral growth in this system. The surface steadily grows in the circular
process of 1–5.

ice crystals growing together with the target ice [13,14]. For
practical convenience, we employ here vst (σ ) = v∞

st tanh(ασ )
as a fitting function (the red line in Fig. 4), where α is a constant
and v∞

st is a saturated step velocity at σ → ∞ (the depletion
limit). Note that the term of tanh(ασ ) does not come from the
step-step interaction of the BCF theory.

While ice surfaces experience a lower supersaturation
(hereafter defined as σs) than that in the atmosphere inside the
chamber (σ ) at higher σ , such depletion is absent at the lower
limit of σ (see the clear linearity near σ = 0 in Fig. 4). Thus,
the step velocity without depletion is given by the first-order
expansion of vst (σ ) at σ = 0; that is, vst = v′

st (σ = 0)σ =
αv∞

st σ (the blue line in Fig. 4), where the proportionality factor
αv∞

st is the so-called step kinetic coefficient in this system.
Here, note that the supersaturation at the ice surface σs satisfies
this linear relation: vst = αv∞

st σs. Therefore, as shown in Fig. 4,
once vst is given at a certain σ , σs can be experimentally
determined as vst/αv∞

st , which is reduced from σ . In this
system, contrary to our previous studies [13,14], we can access
extremely low supersaturated regimes (σ ∼ 0.01), exhibiting
no depletion effects (see also inset in Fig. 4), because we are
able to observe the spiral center inside the facet directly, which
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FIG. 4. The supersaturation (σ ) dependence of vst at −9.7 ◦C.
The red line indicates the fit with vst = v∞

st tanh(ασ ), including
water vapor depletion at the surface whereas the blue line shows the
prediction with the absence of depletion, vst = αv∞

st σ . Note that σs is
given by vst (σ )/αv∞

st . The inset shows vst for different temperatures.
From the fit, we obtain α = 7.15 and v∞

st = 15.6 μm/s (−9.7 ◦C)
and α = 7.74 and v∞

st = 11.8 μm/s (−12.7 ◦C). For T = −6.7 ◦C,
we employ a simple linear fit because of the lack of data at higher σ

(the slope is 160 μm/s).

allows us to discuss the thermodynamic nature of the spiral
growth much more precisely.

The inset in Fig. 4 shows the data for vst, further including
the cases of T = −12.7 ◦C and −6.7 ◦C. We can see the
depletion effect at −12.7 ◦C as well as at −9.7 ◦C, although it
cannot be confirmed at −6.7 ◦C due to the lack of data at higher
σ . Here, we estimate the step kinetic coefficient, described
as v′

st (0) = αv∞
st in our expression, at each temperature. As

a result of the fitting analysis, we obtain the step kinetic
coefficients of 91.3 μm/s (−12.7 ◦C), 112 μm/s (−9.7 ◦C),
and 160 μm/s (−6.7 ◦C); the values of which almost agree
with those of the elementary step quite recently obtained by
us [14]. Thus, the splitting spiral step shown in Fig. 1 can be
regarded as the elementary step.

To check the relevance of the BCF picture for the spiral
growth on ice surfaces, we also examine the relationship
between the step interval l [see Fig. 1(a)] and the surface
chemical-potential difference between ice and water vapor (the
driving force in this system), �μs. The latter quantity can
be defined by σs as �μs = kBT ln(1 + σs), where kB is the
Boltzmann constant. Figure 5 indicates the �μs dependence
on l at T = −12.7 ◦C, −9.7 ◦C, and −6.7 ◦C. The data show a
nice collapse among the different temperatures, which means
that the step free energy of the ice basal face is independent
of T in this temperature regime. We see that two characteristic
regimes exist at lower �μs and higher �μs. In the former
region, due to the broad step spacing, surface diffusion effects
on adjacent steps are absent. Thus, the following well-known
relation of the spiral growth [24] is expected to appear:

ls = 19�κ (�μs)−1, (1)

where ls is the step interval of a single spiral, κ is the step free
energy of the ice basal face, and � is the surface area occupied
by one water molecule (8.85 × 10−20 m2 for the basal face).

FIG. 5. Scaling relation between l and �μs for different temper-
atures. Here, lc correspond to a characteristic step spacing where the
crossover of the scaling exponent takes place.

However, as discussed above, the spiral steps observed are not a
single spiral but are composed of fourteen splitting steps. This
spiral pattern is exactly reminiscent of that generated from
a group of multiple dislocations with the same sign, evenly
ordered in a straight line [25,26]. Given the length of the
straight line (here, the length of the trench) and the number of
the dislocations as L and n, respectively, the resultant interstep
spacing is known to be expressed as follows [25]:

l = ls

n(1 + 2L/ls)−1 , (2)

where L = 39 μm and n = 14 in this system. Note that,
although Burton et al. employed ls = 4π�κ (�μs)−1 in their
original paper [25], we employ here the more accurate form
of ls = 19�κ (�μs)−1 [see Eq. (1)] derived by Cabrera and
Levine [24]. From fitting Eq. (2) to the data in the lower-σ
regime, we obtain κ = 4.7(±0.2) × 10−9 J/m, the value of
which agrees well with that recently determined from the
observation of imperfect spiral growth (κ = 5.0 × 10−9 J/m)
[14]. This suggests that κ estimated here, a quantity that
is extremely difficult to determine in the usual manner, is
sufficiently robust.

On the other hand, the latter region exhibits a rather moder-
ate change in l [∝(�μs)−1/3]. This exponent is characteristic
of the so-called back-force effect [27–31], appearing when
the local supersaturation at a spiral center is depleted by the
rest of the own (outer) spiral step. This crossover behavior
is natural, considering the analogy to the back-force effect;
that is, the competition between the step spacing and the
surface diffusion distance λs, the value of which was previously
estimated to be 4.5 μm [13]. The system is expected to recover
the ideal spiral behavior [see Eqs. (1) and (2)] free from the
depletion effect, when l reaches 2λs with decreasing �μs. This
means that the spiral center is no longer influenced by the
depletion of water vapor caused by adjacent steps. Actually,
we find that lc ∼ 7.3 μm, where the crossover takes place,
roughly corresponds to 2λs. A similar crossover behavior,
although indirectly characterized by the slope of hillocks, has
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FIG. 6. (a)–(c) The birth of a screw dislocation and a resulting hollow core, and subsequent nucleation of a QLL (T = −3.9 ◦C and
p = 471 Pa; see also Video S3 [20]). In this process, the transformation of the growth mode into the spiral growth also occurs simultaneously
due to the formation of the screw dislocation. The white bar is 10 μm. (d), (e) Enhanced images of (a)–(c), obtained by the same procedure as
Fig. 1 (see also Video S4 [20]). The light-blue arrowheads in panel (e) indicate the spiral steps flowing out from the core. (g) Schematic of the
formation of the screw dislocation as shown in panels (a) and (b), viewed from the direction of the red arrow in panel (a).

been observed in solution growth systems [32–34]. Here, it
is worth noting that, differently from the usual back-force
effect, focusing on the single spiral step, the depletion of the
supersaturation at an spiral center results not only from the
rest of the own spiral step but also from adjacent splitting
steps in this system. Even so, the characteristic exponent
and its crossover themselves qualitatively agree with the
conventional model of the back-force effect, which may imply
that local depletion caused by multiple splitting steps roughly
corresponds to that by a single spiral step with a narrower
step spacing. However, in this system, an analytical form of
l in the back-force regime (l � 2λs) still remains elusive.
Because of the coupling between multiple splitting steps and
the back-force effect caused by them, l cannot be written
by the simple substitution of ls under the back-force effect,
ls = 5.32(T �κλ2

s )1/3(�μs)−1/3 (T being the tapering factor)
[30,31], into Eq. (2). The theoretical approach taking into
account this coupling properly is highly required in the future.

We next focus on the relationship between screw disloca-
tions and the generation of QLLs near the ice melting point.
Figure 6 and Videos S3 and S4 [20] show the transformation
of the growth mode into the spiral growth and subsequent
nucleation of a QLL from a spiral center; that is, a hollow
core. Before the transformation, we see a clear grain boundary
at the top of the hollow core [see the blue arrow in Fig. 6(a)].
The spiral growth begins to proceed immediately after the
disappearance of the grain boundary by the attachment of the
neighboring facets [Figs. 6(b) and 6(e)]. This clearly indicates
that lattice mismatching, resulting in the screw dislocation,
takes place by this coalescence as schematically shown in
Fig. 6(g). On this surface, we can see six spiral steps flowing
out from the hollow core, which means that the magnitude
of the Burgers vector of this screw dislocation corresponds
to the height of six elementary steps [see the arrowheads in
Fig. 6(b)], 6he = 2.22 nm, (the three unit cells in the direction
of the c axis). In the initial process, the existing core grows as
a result of the release of the strain energy associated with the
screw dislocation [Fig. 6(b)], which can also be regarded as

the process compensating for the strain energy by the surface
energy (making the outcrop on the surface). Then, the hollow
core is filled with a QLL nucleated and grown from the inside
[Fig. 6(c)]. Here, interestingly, the spiral growth can survive
even after the appearance of QLLs in the core [Fig. 6(f)], which
implies that this growth mode is also expected to exist in the
so-called melt growth of ice crystals.

This result suggests that the hollow core acts as a source of
nucleation of QLLs. Note that the hollow core still stores the
excess strain energy and also has a different surface free energy
from the basal face, both of which generally affect the so-
called heterogeneous nucleation. However, strain effects from
solid substrates are not coupled to the energy barrier for the
nucleation of QLLs due to the disordered nature of liquid,
unlike the heteroepitaxy of solids [35]. In contrast, the surface
free energy of ice is directly linked to the nucleation barrier
through the wettability of QLLs on ice surfaces. Recently, we
confirmed that the nucleation behavior of QLLs on a prism and
other higher-index faces is almost identical to that on a basal
face [36], which means that there is no significant difference
in the surface free energy between the basal and the higher-
index faces. Thus, the reduction of the nucleation barrier on
the hollow core is extremely small even though it ideally exists.

The other possible origin of the nucleation of the QLL
is the abrupt change in local supersaturation inside the hol-
low core, caused by its formation. We have demonstrated
that the formation of the QLLs takes place not at the ice-
vapor equilibrium but under certain supersaturated conditions
(at least, beyond the metastable ice-water equilibrium line)
[37,38]. Because, as shown in Fig. 6(b), a large amount of ice
sublimes instantaneously due to the surface destabilization by
the screw dislocation, this leads to a drastic increase in the
local supersaturation and is sufficient to trigger the nucleation
of QLLs.

Here, it is worth remarking on the relationship between
screw dislocations and hollow cores. It is known that the hollow
core formation occurs not only at undersaturation (the etch
pit) but at supersaturation when the screw dislocation stores a
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FIG. 7. The whole pathway to the formation of the grain boundary
shown in Fig. 6. Here, the temperature is fixed at T = −4.1 ◦C.
(a) A whole image of the ice basal face at p = 449 Pa. The white bar
is 50 μm. (b) p = 438 Pa. The white bar is 10 μm. (c) p = 427 Pa.
(d) p = 420 Pa. (e) p = 472 Pa. Here, the time interval between
panels (c) and (d) is 193 s. In panel (a), droplet-type QLLs already
appear near the edge of the crystal, which may come from the
heterogeneity of supersaturation (the so-called Berg effect); that is,
the edge has higher supersaturation than the center.

sufficient strain energy density; that is, has a large Burgers
vector [39]. The size of the hollow core, rhc, is known to
be described by b as rhc = Gb2/8π2γ [40], where G is the
shear modulus of ice (∼3 GPa [41]) and γ is the surface free
energy of the lateral side of the core (∼0.1 J/m2 [42]). In
this equation, rhc is referred to as the so-called Frank’s radius.
Inserting b = 2.22 nm, directly determined from Figs. 6(e)
and 6(f), yields rhc = 2 nm, which means that the radius of
the hollow core (almost 5 μm in Fig. 6) is too large compared
with the Frank’s radius. Surprisingly, this core size, reaching

a micrometer scale, is comparable with that of SiC [43],
which possesses a fairly high shear modulus (∼200 GPa [44]).
Although we cannot make any conclusive statement at this
stage, the anomalous gap between the core size and the Burgers
vector is an interesting topic to be addressed in the future.

Finally, we briefly follow how the above grain boundary
[indicated by the blue arrow in Fig. 6(a)], acting as the source
of the screw dislocation, is formed in a single ice crystal.
In Fig. 7(a), we initially see a trigeminal trench (still not
attached to each other), a vestige of merging of at least two
single crystals. The trench shrinks due to growth of the side of
the faces and the minimization of their surface free energies
[Fig. 7(b)]. At a certain time, the neighboring faces attach to
each other at one point [see blue arrow in Fig. 7(c)] and then
the trench is gradually closed as a grain boundary while the
hole remains inside [Figs. 7(d) and 7(e)]. Together with the
observation in Fig. 1, the coalescence of crystals, leading to
the lattice mismatching, is a prominent route to yield screw
dislocations and the resulting spiral growth for ice crystal
surfaces although coalescence is a rare event in our single
ice crystals, grown epitaxially and in isolation on an AgI
substrate. However, we speculate that spiral growth is more
frequently observed on surfaces of polycrystalline ices, which
inevitably include large numbers of dislocations and grain
boundaries.

IV. CONCLUSIONS

With the aid of LCM-DIM, we succeed in making in situ
observations of genuine spiral growth mediated by screw
dislocations on ice basal faces. We have demonstrated that
the spiral growth on ice is well described by the classical BCF
theory, taking into account the depletion of water admolecules
by adjacent steps. In fact, we have confirmed the crossover
behavior in the step spacing, which is due to the presence or
absence of the depletion. In our system, screw dislocations are
formed through the lattice mismatch caused by the coalescence
of neighboring single ice crystals, which is a common route to
yield screw dislocations. Furthermore, we have also elucidated
the relationship between hollow cores, generated by screw
dislocations, and the formation of QLLs. Our noninvasive
approach with optical microscopy has a great advantage for
observing surfaces near the melting point, which is sensitive
to the contact required by probe-based techniques, inevitably
disturbing their native state.

We again note that the spiral growth presented in this article
is distinct from the growth mode that we have often seen and
assigned as spiral growth in our series of recent studies [11–14],
exhibiting large fluctuations of the adjacent step interval with
decreasing supersaturation. Such fluctuation effects are not
dealt with by the simple spiral growth model described by
BCF theory. This may imply the presence of other growth
mechanisms, such as steady step nucleation excited by thermal
fluctuations, although its origin is unclear at this stage. In
addition, it still remains elusive why the source of their steps
only appears at edges or the outside of facets. On isolated single
ice crystals without coalescence, this apparent spiral growth is
a dominant growth mode. Understanding the differences from
the usual spiral growth is an important topic for future studies.
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