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Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress
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Adsorption-induced deformation of porous materials is the generation of strains in a solid due to its
interaction with adsorbing fluids. The theoretical description of adsorption-induced deformation often relies
on the so-called solvation pressure, the normal component of a pressure tensor in the liquid adsorbed in the
pore. Recent measurements of adsorption-induced strains in two dimensions require a description that allows
for the deformation to be anisotropic. Here, we present such a description. We refrain from using the solvation
pressure concept and instead base the discussion on a phenomenological description of coupled mechanics and
adsorption that has well-established links to continuum mechanics. We find that our approach captures all relevant
features of anisotropic sorption strain; the approach thus provides a useful alternative to the solvation pressure
concept. We derive analytical expressions for the stress-strain relations in a model porous material with an array
of parallel channel-like pores of high aspect ratio (length/width). These relations include separate terms from
the liquid pressure, from the surface stress at the liquid-solid interface, and from a spreading tension at the
solid-liquid-vapor triple line. Surface stress and liquid pressure contribute to the strains along and normal to
the pore axis in a qualitatively different manner. The underlying discussion of capillary forces sheds light on the

variation of the surface stress during adsorption and capillary condensation.
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I. INTRODUCTION

Stress and strain are generated in porous solids when matter
adsorbs on the pore surfaces [1]. The solid may be in contact
with gas, where the vapor pressure of the adsorbate controls the
adsorption process. Alternatively, the solid may be in contact
with a solution containing the adsorbing species in the form
of dissolved molecules or ions, in which case a chemical or
electric potential controls the adsorption. In simple scenarios
the fluid (vapor or solution) extends uniformly from the outside
of the porous solid into the pore space. The solid is then loaded
by the combination of the hydrostatic pressure of the fluid
and by capillary forces that act along the pore walls. More
complex scenarios are found during capillary condensation of
undersaturated vapors [2] and imbibition of wetting liquids
[3-9] as well as forced intrusion of nonwetting liquids [10,11].
Here, menisci form between the outer fluid and the liquid
in pore space. This leads to a mechanical loading scenario
in which part of the solid surface is loaded by the pressure
in the liquid, while simultaneously capillary traction forces
act at the liquid-solid-vapor triple lines and the liquid-solid
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interfaces experience surface stress. The coupling of liquid
capillarity and solid elasticity is here similar or even more
complex as encountered in planar wetting geometries [12—16]
or for droplet spreading on flexible fibers and wires [13,17,18]
upon liquid-vapor coexistence.

The strains in each of the above situations have practical
implications, for instance in the context of sensing and actu-
ation. Such examples include a porous polymer, responding
with significant strain when water or acetone vapors adsorb on
its surface [19]; an actuating device made of a microcantilever
with a layer of mesoporous silica deposited on one of its sides,
strain induced by adsorption of water vapor on the silica walls
causes bending of the cantilever [20,21]. Another actuating
device was synthesized in a form of an artificial pine cone,
made of porous silica, which is able to mimic the behavior of
its natural prototype: adsorption-induced deformation makes
the ovuliferous scales of the cone move with the change of
humidity [22].

Nanoporous materials saturated with gas or electrolyte
provide a striking example where the fluid is uniform and
menisci absent. Nanoporous gold permeated by gas can act
as an actuator driven by changes in the partial pressure of
adsorbing species in the gas [23]. Sorption from gas, and
specifically the sorption-induced expansion of coal, is also sig-
nificant for geology and the exploitation of fossil fuels [24-26].
Nanoporous carbons [27-29] and metals [30-33] permeated
by electrolyte react to electric signals by reversible strain.
The porous metal also exhibits the inverse effect, namely, the
generation of electric signals in response to external load [34].
Thus, the coupling between mechanics and (electro)chemistry
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at pore surfaces may even induce piezoelectricity classically a
prerogative of ceramics in metals [35].

First measurements of adsorption-induced strains were
reported by Meehan [36] and Bangham and co-workers [37]
for various gases on charcoal. Experiments on mesoporous
Vycor glass [38,39] and zeolites [40,41] followed. In recent
years, adsorption-induced deformation was measured for many
novel synthetic materials: microporous and mesoporous car-
bons [42—44], mesoporous silica [45-48], mesoporous silicon
[49,50], metal-organic frameworks [51,52]. Electrosorption
phenomena in porous solids were first reported by Beck [53].
Later work used cantilever bending studies and planar surfaces
to precisely quantify the underlying electrocapillary coupling
effects [54-58], which are applied in modern nanoporous metal
actuation schemes [59].

Theoretical studies of adsorption-induced deformation have
presented various thermodynamic models based on macro-
scopic [60,61] and microscopic [62,63] descriptions as well
as mechanical models [50,64,65]. Atomistic simulation of the
deformation of porous solids by capillary forces provides a test
bed for such theories [66,67].

Although using different experimental methods, typically
experimental works report a single measure for the strain.
The same applies to most of the theoretical considerations.
Deformation of disordered materials can often be considered
isotropic. Yet, as the deformation varies the volumes of the
solid and of the pore space independently, a single scalar strain
value may not appropriately describe the deformation. This has
been demonstrated by experiments on nanoporous metals [68]
and by atomistic simulation [66,69]. Ordered materials with
microstructural anisotropy may require an even more complex
description. In 2015 two experiments reported adsorption-
induced strains for porous materials with anisotropic structure
performed in two different directions [70,71]. Balzer et al.
[70] reported the measurements of strains in hierarchical
silica monoliths, composed of long struts with channel-like
mesopores oriented along the struts. Using in situ small-angle
x-ray scattering (SAXS) they measured the strain of the pores
normal to the pore walls, and using dilatometry they measured
the strain of the monolithic sample, related to the deformation
both normal to and along the pore walls. Grosman et al.
[71,72] studied the strains in mesoporous silicon membranes.
Similar to the silica samples from Balzer ef al., this material
has an array of channel-like parallel pores. Strains normal to
the pore walls and along the pore walls were measured by
dilatometry. Both of these works showed a difference between
the strains normal to the pore walls and along the pore walls.
This stimulated the development of a three-dimensional (3D)
model of adsorption-induced deformation for such systems,
which is the focus of the current paper.

Theory can approach adsorption-induced stresses at the
pore walls in two alternative ways. The first one is based on
the so-called solvation pressure. In the field of solid mechanics,
pressure is a scalar quantity, defined as —_% of the trace of a
stress tensor. In that field, bulk fluids at rest are uniform and are
understood to be distinguished by their hydrostatic stress state.
Yet, molecular fluids can be inhomogeneous in the regions
adjacentto a solid surface, and this entails nonhydrostatic stress
states. Their discussion involves what is often referred to as a
pressure tensor [73,74], and the solvation pressure is defined as

anormal component of this quantity [75]. Thus, the adsorption-
induced deformation phenomenon is typically described in
terms of one scalar pressure variable. The second approach is
based on the surface stress at the solid surface. This approach
considers the fluid as uniform and hydrostatic, while account-
ing for the interactions in the interfacial regions in terms of a 2D
surface which exhibits tangential stress. On curved surfaces,
the tangential stress entails a normal stress component. One
of us has shown recently that the two approaches to local
stress states can be consistent in the case of non-site-specific
adsorption [76]. Yet, there is ample experimental evidence
for the relevance of site-specific adsorption and of associated
changes in the surface stress. The two approaches, solvation
pressure versus surface stress, appear to remain separate and
possibly even mutually exclusive when it comes to those more
general adsorption scenarios. Furthermore, their consequences
for adsorption-induced strains during capillary condensation
have not been compared so far.

Here, we explore in how far the deformation of porous solids
in the various stages of capillary condensation can be described
by the concept of surface stress, and we compare the results
to predictions based on the concept of solvation pressure. We
explicitly consider both adsorption scenarios, site-specific and
non-site-specific. Closed-form expressions are obtained for
the stress-strain relations in a model porous material with an
array of parallel channel-like pores in the limit of high aspect
ratio. The results include separate terms from the fluid pressure
and from the surface stress at the fluid-solid interface and
the liquid-solid-vapor triple lines after capillary condensation.
These terms contribute to the strains along the pore axis and
normal to the pore axis in a qualitatively different fashion.
Based on the stress-strain relations, we calculate the pore-load
moduli corresponding to the strains normal to and along the
pore walls. The normal pore-load modulus is close to that of a
2D model [50], while the parallel pore-load modulus, which is
beyond that of the 2D model, has a noticeably different value.
Our results establish the description in terms of surface stress
as a valid approach to analyzing the deformation of porous
solids during capillary condensation.

II. PORE-FILLING REGIMES

Our discussion starts out with the brief introduction of the
three regimes of the pore filling and capillary condensation
process, as schematically illustrated in Fig. 1. We consider a
solid matrix, containing cylindrical pores, in contact with the
vapor (V) of the adsorbate. We consider mesoporous materials,
i.e., the pore sizes in our discussion are in the range above 2 nm,
so that the macroscopic concepts of liquid films and capillary
condensation can be used. The pressure p of the vapor is
controlled and provides the experimental control variable that
governs the process of pore filling. This pressure controls the
chemical potential p of the adsorbate and can be parametrized
by w. We consider an initial state (Fig. 11) with p = 0, so that
the pore walls are clean, and we investigate the evolution of
the system as p is gradually increased.

Increasing p will initially result in the adsorption of sub-
monolayer quantities on the pore walls (Fig. 11I). This is
followed by the formation of a thicker layer that may comprise
few molecular monolayers (Fig. 11II). Up to this point, the net
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FIG. 1. Schematic illustration of pore-filling regimes. Back-
ground image: adsorption isotherm of adsorbed/condensed amount
N of matter versus reduced pressure p/po. Schematics show pore
filling regimes, starting with the clean surfaces (I) and progressing
through adsorption of a partial (II) and then complete (III) monolayer,
capillary condensation (IV), and (V) approach to saturation. Labels
denote the phases and interfaces: B, solid bulk; V, vapor; L, liquid;
W, pore wall; M, meniscus. The data are taken from Ref. [77] for
nitrogen adsorption on mesoporous silica.

quantity of adsorbed matter scales with the area of pore surface.
Further increase of p triggers capillary condensation, that is,
the onset of filling of the pore with liquid (Fig. 1IV). Once this
process is complete, the net amount of absorbed matter scales
with the volume of the pores. The condensate is separated from
the vapor by a concave meniscus. As the pressure is further
increased, the meniscus approaches a planar configuration,
while the pores approach saturation (Fig. 1V). These processes
lead to an adsorption isotherm with two distinct regions,
separated by a capillary condensation point. Typically the
capillary evaporation during the desorption process takes place
atthe lower vapor pressure than the capillary condensation. The
sorption isotherm then has a hysteresis loop, as exemplified in
Fig. 1. Detailed discussion of the hysteresis can be found in
the recent reviews [78-80].

III. INTERFACES AND CAPILLARY TERMS

The relevant interfaces in our problem are first, the meniscus
(M) that separates the liquid (L) in the pores from the vapor (V),
and second the pore walls (W), that is, the interface between
the solid bulk (B) and the vapor (in the adsorption regime)
or the liquid (in the capillary condensation and approach to
saturation regimes). Each of these interfaces is associated with
a surface tension (i.e., an excess energy per area of surface) y
and we designate the three surface tensions by v, yBY, 5Bl

In fluids, the specific excess free energy or surface tension
is inherently linked to the pressure via the Young-Laplace
equation: across a fluid-fluid interface with a mean curvature
Kk, the pressure jumps by 2« y. It is important to note that this
equation applies to the meniscus but does not apply to the
interface between the solid and the fluid. Here, the effect of the
interface on the mechanics is governed by the surface stress S.

For an in-depth discussion of the distinction between y
and S, the reader is referred to Ref. [81]. In brief, the surface
tension quantifies the work which is done against the surface
when atoms are added to it at constant atomic structure; this
deformation mode is characteristic of the surface of a liquid.
By contrast, the surface stress refers to the work done when
elastically deforming the surface, keeping the number of atoms
constant but changing their spacing. This characterizes the
elastic deformation of the surface of a solid. The surface stress
has the same units and similar numerical magnitude as the
surface tension, yet its mathematical representation differs:
whereas the surface tension may be described by a scalar,
the surface stress describes a directional stress in the tangent
plane of the surface and thus requires a representation as a
second-rank tensor. The surface-stress state may be anisotropic
in the plane. Furthermore, whereas stability criteria constrain
the surface tension to positive values, the entries of the surface-
stress tensor may be of either sign.

For the problem at hand, y is the relevant parameter
when the meniscus is deformed since this process changes
the number of atoms in the liquid’s surface. By contrast,
elastic deformation of the solid matrix changes the interatomic
spacing in the pore walls, thereby working against S.

IV. CONSTITUTIVE STATEMENTS
A. Free energy

This section briefly introduces a phenomenological thermo-
dynamics description of surface mechanics and of its coupling
to adsorption. More details can be found in Ref. [34]. We start
out with an expression for the net free energy of the porous
solid. We take the solid as an elastic substrate and the liquid
as an incompressible fluid. The energetics of the bulk phases
are represented by free-energy densities (per volume V), W8
for the solid and W' for the liquid, and by the superficial
free-energy densities Y (per area A of surface). The free-energy
densities are defined so that the net free energy § obeys

g:/\dev+/ yWdA + BV + gMAM (1)
B w

where the subscripts denote the respective regions. The equa-
tion is based on the notion that the fluid is uniform, whereas
the solid will in general contain gradients in stress and strain
and it may be bordered by interfaces with different fluids.
Discussion of the mechanics of the solid surface is consider-
ably simplified by the use of “Lagrangian” coordinates, where
V and A are measured not in the actual, strained state of the
solid (“Eulerian” coordinates), but in a strain-free reference
configuration [81,82]. The alternative use of Lagrangian or
Eulerian coordinates is routine in solid mechanics in three
dimensions, where it underlies the distinction between Cauchy
and second Piola-Kirchhoff stress measures (see for instance
the textbook by Bonet and Wood [83]). The generalization of
this concept to surfaces, which underlies a standard approach
to surface mechanics [84,85], is adopted here. In particular,
therefore, the densities WB and W are defined as energy
in the actual state, per volume or per area of surface in the
undeformed state. The “hatted” quantities in Eq. (1), ¥™ and
AM  refer entirely to the fluid. Here, the concepts of strain and
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of reference configuration are not appropriate, and densities are
referred to volume V and area A in the actual configuration.

Quite generally, throughout this work, the hat denotes
quantities measured in actual (laboratory) coordinates. This
convention is also relevant when defining the superficial excess
I' of the adsorbate. I is defined as the excess, per referential
area, of the actual amount of adsorbate in the system over the
amount in the same volume of pore if there was no surface.
For instance, if the pore wall is completely wetted, then the net
amount of adsorbate in the system is

N = pyV- +TAB. )

Atthis point, we introduce the parameter L, which translates
between areas of surface measured in referential and laboratory
coordinates, respectively (see Ref. [34] for details):

L=A/A=1+e. 3)

The area-strain parameter e denotes the relative variation in
surface area (in laboratory coordinates) by elastic strain of the
underlying bulk. The superficial densities transform as ¥ =
Ly, T =LT.

We restrict attention to isothermal processes and take W8 =
WB(E) as the constitutive assumption for the (Helmholtz-type)
free-energy density function of the solid. E denotes the strain
tensor. The fundamental equation for W is then

dVB =S :dE “4)

with S the stress tensor [86].
As the liquid is assumed incompressible, we can take (for
isothermal processes)

Pt = \il(')‘ = constant, (@)

gM = 1/73" = constant . (6)

Contrary to the liquid-vapor interface, the energy of the
surfaces of the solid can vary as a function of the strain in the
substrate. Furthermore, the ¥ will depend on I'. The consider-
ations so far are consistent with constitutive and fundamental
equations for the surfaces of the solid in the form [34]

yW =y E), )

dyWV = udr +S:dE, (®)

with u the chemical potential of the adsorbate, S the surface
stress, and [E the tangential strain tensor, a projection of the
strain E in the regions of bulk near the interface into the local
tangent plane.

Henceforth, we shall simplify the discussion by assuming
all surfaces to be isotropic in the plane. Then, S = fPwith f a
scalar surface-stress parameter and PP a unit tensor in the local
tangent plane. The constitutive and fundamental equations then
simplify to

YW =y, e), 9)

dyWV = pdr + fde, (10

respectively. Here f = %Tr S is a scalar surface-stress vari-
able.

The state functions for the free-energy density of the solid
surfaces ¥ (I", e) are related to the surface tensions y (u, e) by
Legendre transforms such as

y(u,e) =y (I, e) —ul, an

dy = -Tdu+ fde. (12)

Equation (12) is a generalized Gibbs adsorption equation that
applies to solid surfaces (and is here written for isothermal
processes). For the fluid-fluid interface at the meniscus we
have, consistent with our assumptions, simply yM = yM =
constant.

A consequence of the above considerations is that elastic
deformation at constant referential area (constant number
of surface atoms) changes the net surface free energy of a
uniform section of surface by A dyr = Af de. By contrast, if
the referential area of the section of surface is changed by
varying its number of surface atoms at constant strain, then the
change in free energy is ¥ d A or y d A, depending on whether
I" or u are held constant.

The distinction between Eq. (12) and the Shuttleworth equa-
tion [87], f = dy/de versus f = p + a7 /0e, is discussed in
detail in Ref. [81]. The two equations are equivalent and they
describe the same physics. Their formal dissimilarity is simply
the consequence of the different reference frames, Lagrangian
versus Eulerian. Yet, the discussion of surface stress, for in-
stance by analysis of thermodynamic derivatives, is drastically
simplified when working with Eq. (12). In a field that is riddled
with dubious statements [81], the superior conceptional clarity
of that latter formulation must be considered a decisive asset,
which motivates our preference for Lagrangian coordinates.

B. Adsorption: Site specific versus incommensurate

Adsorption processes may, in a simplified picture, be distin-
guished as either site specific or nonspecific (incommensurate).
The distinction is of relevance since we shall argue that the
coupling between elastic strain of the solid surface and the
superficial excess or chemical potential of the adsorbate differs
fundamentally between the two modes of adsorption.

Atoms or molecules adsorbing at a surface typically tend to
attach to specific sites, and solid surfaces may be characterized
by their density ['ge of sites per area. When the interaction
of the adsorbate with the surface is sufficiently attractive,
the specific adsorption may dominate in the early stages of
adsorption [88,89]. For metal surfaces, the adsorption of a
second metal, of small ions such as protons, inorganic anions,
or of organic molecules that are functionalized by thiol or
amine groups provide examples [90,91].

As the coverage I' /Ty approaches unity, the available sites
for specific adsorption become exhausted. This is one instance
where a commensurate-incommensurate transition may occur
[88]. The incommensurate layer is distinguished by its lack
of registry with the solid: the amount of excess in this layer
depends on the adsorbate chemical potential and on the solution
chemistry of a possible solvent, but will (ideally) not depend
on details of the crystallography of the surface.

The underpotential deposition of Bi on Au from electrolyte
[92,93] and the adsorption of Kr [88,94] on planar graphite are
prominent examples of such commensurate-incommensurate
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transitions. More generally, electrode surfaces in interfacial
electrochemistry exhibit (site-) specifically adsorbed ions in
their inner Helmholtz layer and a diffuse (and incommen-
surate) cloud of solvated ions in the outer Helmholtz layer
[95]. Amorphous surfaces naturally favor short-range ordered
interfacial layers. Examples are the pore-wall adsorbed amor-
phous monolayers of simple van der Waals liquids, such as
argon, oxygen, and nitrogen [2,96-99], water [100], and linear
hydrocarbons [101] in nanoporous amorphous silica as well as
avariety of polymeric systems in nanoporous anodic aluminum
oxide substrates [102]. Liquids, most prominently water, can
also form ordered interfacial layers near the interface with a
crystal surface [103]. The first molecular layer of a liquid may
be commensurate with the solid [88,104], while the absence
of shear stress in the bulk liquid forbids a commensurate
structure in the more bulklike regions of a liquid away from the
interface. Since we are motivated by an example of adsorption
on amorphous silica surface, we focus on the incommensurate
phases.

C. Equations of state: Solid-vapor surface tension

When the pressure in the vapor and, along with it, the
chemical potential of the adsorbate are increased, the surface
tensions, surface free-energy densities, and surface stresses
of the interfaces of the solid with liquid and vapor vary. We
shall now discuss these variations, starting out with the surface
tension.

The change of the surface tension Ay of the solid-vapor
interface due to adsorption may be obtained by integrating the
Gibbs adsorption equation (12) [105]:

mﬁv=—f“rmmn (13)

oo

For extremely small pores, corrections due to curvature may
apply. Yet, as it was shown in Ref. [61], these corrections
may be ignored except for a small vicinity of the capillary
condensation point.

Explicitly evaluating the integral in Eq. (13) requires an
adsorption isotherm in the form I' = I'(u). Following Ref. [76]
we here focus on the Brunauer-Emmett-Teller (BET) isotherm
[106], which is one of the most widely used theories for
multilayer adsorption of fluids on solid surfaces. The BET
adsorption isotherm is given by

Cp/po
(1= p/po)ll +(C —1Dp/po)’

where I' is the amount of fluid adsorbed per unit area of the
solid adsorbent, p is the adsorbate vapor pressure, pg is the
pressure of the saturated vapor, and I', and C are the only two
parameters of the model: the capacity of the monolayer and
the BET constant. The vapor pressures p and py relate to the
chemical potential as

['(p/po) =Tm (14)

W= o+ ReTIn 2, (15)
Po

with o the chemical potential of the saturated vapor and R,
the gas constant.
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FIG. 2. Experimental adsorption-induced strain € versus the re-
duced pressure p/po. Measurement by in situ dilatometry for hierar-
chical mesoporous silica during nitrogen adsorption [77].

With Eq. (14), the Gibbs adsorption equation [Eq. (13)] is
here conveniently integrated. Using Eq. (15), we obtain
1+(C - Dp/po

L—p/po

This expression determines the change of the solid-vapor
surface tension in the region prior to the capillary condensation.

AyBY = —R,TT,, ln[ } (16)

D. Equations of state: Solid-liquid surface tension

As exemplified in Fig. 2, experimental sorption strain
data exhibit discontinuity during capillary condensation and
evaporation. Similar discontinuities have been reported for
the strain isotherms on many mesoporous materials [1]. This
observation must be related to discontinuities in surface ten-
sion, surface stress, and in the pressure in the pore space.
Theory predictions for these discontinuities are shown below in
Fig. 6(b). Discussing the magnitude of the strain discontinuities
therefore requires, specifically, information on the surface
tension of the solid-liquid interface. One might be tempted to
integrate Eq. (13) up to u = po and identify the result with
the above-mentioned quantity. However, phenomenological
thermodynamics provides no basis for this approach. This
is obvious notably when one inspects the definition of the
integration variable I". For the solid-vapor interface, I is an
excess of adsorbate over the clean solid surface adjacent to
vacuum and, as such, always positive. For BET adsorption, I"
at finite p can amount to several molecular monolayers. By
contrast, I" for the liquid-vapor interface is an excess of matter
over the interface in contact with a perfectly homogeneous
fluid. That excess, for instance representative of liquid lay-
ering near the interface, may be small or even negative. The
discontinuity in I' illustrates that the integration in Eq. (13)
cannot be carried continuously through the interfacial phase
transformation between solid-vapor and solid-liquid.

Unlike the excess in matter, the local molecular structure
in the immediate vicinity of the interface is expected to be
quite similar for the thick adsorbate layer at © < wo and for
the interface between the bulk fluid and the solid at u = .
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FIG. 3. Changes Ay and Ay of the surface free-energy density
and surface tension, respectively, for the BET adsorption isotherm.
Also shown is the difference, namely the product ul' of u, the
chemical potential, and I', the specific excess in adsorbate. Dashed
line: linear extrapolation of Ay based on the slope at p/py = 0.5.
Based on parameters for nitrogen adsorption on silica (see Sec. VI).

Since the free-energy density is governed by the local atomic
configurations, we may then take the free-energy densities to
be similar as well. This suggests that

/A PR VRV (17)

In view of Egs. (11) and (13), we may therefore write for the
surface tension

BL ~ .1.BV BL
14 |/t:/10 A~y |/1—>/10 — wol” |,U.=[L()' (18)

Capillary condensation implies solid-liquid interfaces at chem-
ical potentials . < uo; here,

"

BL ~ 1/,BV BL BL,~\ 7~

Vo lu<pe YT s po — tol |u=,uo_/ =()df.
Mo

19)

We now explore the above estimate for the example of the
BET isotherm [Eq. (14)]. That isotherm is valid only at low
p: I diverges at p/po — 1, and so does A, precluding an
extrapolation in the sense of Eq. (18). Yet, the BET BV has
an extended region of nearly linear variation with p (Fig. 3),
and we here extrapolate this region linearly from p/po = 0.5
to p/po = 1.0. Accounting for Eq. (16) and for ¢ = y + ulI’
we find for the extrapolated ¢ at p = py

4C(C +2)In2
Ay, & —RgTFm|:1n (C+1)+ %}

(1+C)
(20)

Inasmuch as po can, without lack of generality, be defined
as the zero value of the chemical potential for the isothermal
processes considered here, Eq. (20) also provides an estimate
for (the incommensurate part of) yB- at p = p,. With BET
parameters for nitrogen adsorption on silica (see Sec. VI
below), one then obtains AyBL|,_, = —50.4 mN/m. This
agrees with the —50 mN/m that result from the calculation of

AyBL based on the integration of the exponential disjoining
pressure isotherm [77]. Apparently, the extrapolation captures
at least roughly the energetics of the solid-liquid interface.

E. Equations of state: Surface stress

Since the surface stress is not a thermodynamic potential,
its variation with the state variables I" or p is not restricted
by an adsorption equation of similarly fundamental character
as Eq. (12) for y. Our discussion of equations of state for f
accounts for empirical observations and simple models.

Early stage. Experimental studies of surface-stress variation
during specific adsorption of ions from electrolyte indicate
a roughly linear correlation, which can be quantified by an
electrocapillary coupling parameter ¢ that is characteristic of
the combination of solid surface and adsorbing ion [107,108].
The coupling between surface stress and adsorbate coverage
may be understood as a consequence of changes in the electron
density in the bonding regions between the surface atoms and
of out-of-plane relaxation in the outermost atomic layers of
the solid [109]. Electrocapillary coupling coefficients for metal
surfaces in contact with electrolyte are often quite similar to
those with gas [110]. Thus, it appears natural to approximate
the surface-stress variation in the early stages of pore filling
at not too high coverage (for instance, up to one molecular
monolayer) by a linear variation with coverage:

= fo+c¢r. @1

Here, fp and ¢ denote the surface stress of the clean solid
surface and a coupling parameter for adsorption from vapor,
respectively. If the surface-stress change per adsorbate were
identical for adsorption from vapor and for electrosorption,
then ¢ was related to the electrocapillary coupling parameter
¢ by ¢ = —zF ¢ [110]. In other words, the typical experimental
values of ¢, in the order of —1 to —2 V for negatively
charged (valency z < 0) species [110,111], would translate
into ¢ = —1to —2 eV /atom. With typical site densities at solid
surfaces in the order of 10 to 20 sites/ nm?2, a full monolayer
of adsorbate may then change the surface-stress magnitude by
several N/m. Experiment indeed supports such large changes
[23]. This effect is quite significant and may not, a priori,
be neglected. Site-specific adsorption typically makes f more
negative [93,107,108], but the opposite effect, increasing f
during adsorption, has also been reported [112,113].

Advanced stage. When the coverage exceeds one mono-
layer, the mechanism and magnitude of the chemomechanical
coupling at the surface must be expected to change. As we
have argued above, a not unrealistic scenario is that the second
and higher layers of adsorbate are incommensurate with the
surface. We now show that this scenario leads naturally to
a variant of Bangham’s law for the surface-stress variation,
which generalizes the classic Bangham’s law that has been
discussed in the context of deformation of microporous mate-
rials [76].

We assume that the net specific excess in adsorbate I" can
be decomposed into contributions from the two modes, site
specific (I's) and incommensurate (I'). Site-specific adsorp-
tion is distinguished by an explicit dependence of the surface
free energy on strain, which takes account of the fact that
changing the bond lengths in the substrate will, in general,
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change adsorption enthalpies [113,114]. Thus, the contribution
of this “inner” layer to the net surface free-energy density may
be represented by the fundamental equation ¥s = ¥s([s, e).
By contrast, the contribution of an incommensurate layer to
the surface free energy will not explicitly depend on the state
of strain of the surface. It is therefore natural to represent
the energetics of this layer in laboratory coordinates and to
assume that Yy = ;(I""). We may then write for the net surface
free-energy density of the pore walls

VU =s + Ly = ¥s(Ts, ) + (1 + e)fn(f1). (22

Experiments of pore filling probe the surface stress on the
conditions of controlled (through the fixed vapor pressure)
chemical potential of the adsorbate. When exploring the
consequences of Eq. (22) for f, we therefore need to consider
variations of free energy with e at constant . This requires
discussing y, which is the appropriate Legendre transform of
Y. We write the transform as

V(I’L’ 8) = w(F7 6) - I’LF
= ¥s(I's, &) — ul's + (1 + &)W (I'1) — nly)
= ys(i, ) + (1 + e)pr(p). (23)

Taking the strain derivative at constant chemical potential,
accounting for the fact that f is only interesting at essentially
zero strain, and identifying the derivative of the first term with
fo from the equations above results in

dy
de u

_ drs

BV _
7= de

+ 7w, (24)
i

which makes use of y = ys + (1 + e)71 [Eq. (23)]. In view of
the adsorption equation (13), one thus obtains

n

BV = fo+ ¢Ts(p) — / PdE.  ©25)

—00

Equation (25) naturally reconciles the empirical observation of
an approximately linear variation of f with I" during specific
adsorption, as in the early stages of pore filling, with the
prediction of Bangham’s law that f varies as  in later stages of
pore filling. Note that the adsorbate molecules on specific sites
and in the incommensurate layer both contribute to changing
the surface stress, yet differently and separately. Note also that
71 is only that part of the surface tension that comes from
adsorption in the incommensurate layer.

Approach to saturation stage. An approximate discussion
of surface stress of the solid-liquid interface fB- may be based
on the considerations of the solid-liquid surface tension y Bt
[see Eq. (19) in Sec. IV B]. Similarly to Eq. (25), but using the
reference state at 11y, we have the following equation for the
surface stress of the solid-liquid interface:

I
fBEA fo 4+ cT8™ + AYBY |y, — / P-()di.  (26)

Ho

F. Equilibrium conditions

A variational approach to energy minimization can be based
on Eq. (1) with the superficial free-energy density of Eq. (7),
postulating for the open system (exchange of components,

amount N;, with the environment) at equilibrium that
8% = usN. 27

Our problem requires the consideration of two distinct types
of equilibrium conditions: First, equilibria relating to elastic
deformation, and specifically elastic deformation of the solid
in which no atomic bonds are broken or new bonds formed, and
in which the referential area of all surfaces or interfaces remains
invariant. Second, equilibria in which the referential areas of
the surfaces are allowed to vary. We treat these equilibria
separately and start out with the second case.

Equilibria in which the referential surface area changes:
fluid. In the present context, this concerns the meniscus, where
exchange of matter between fluid and gas changes the fluid
volume and, thereby, its surface area. The equations of state
for the chemical potential in the vapor [Eq. (15)] and in
the incompressible liquid 1t = o + QP imply the Kelvin-
Laplace equation [115] that relates the pressure P" in the liquid
to the vapor pressure p in the gas above the meniscus through

R,T
pt=220 <£>, (28)
Po

where Qb is the molar volume in the liquid.

Equilibria in which the referential surface area changes:
solid. Once the fluid has equilibrated (see above), one may take
the position and the shape of the fluid meniscus as constant
in the laboratory frame and consider the following variation
that exclusively involves the solid: Let us apply a rigid-body
displacement, by the small distance 8z, of the region of solid
underneath the meniscus [Fig. 4(a)]. Specifically, we take the
displacement to be in the tangent plane of the solid surface,
perpendicular to the triple line, and directed inward, into
the fluid. The amount of wetted area of the solid surface,
measured, as above, in (referential) coordinates of the solid,
changes by §A = méz where m is the line length of the
meniscus. The variation does the work (work of spreading)
SW = +méz(yBY — yBL). At equilibrium, this work must be
compensated by work against opposing stresses. Since the
fluid configuration is stationary, the fluid does not contribute.
Instead, and in the absence of external traction forces on
the solid, compensating stresses in the solid are required.
This condition needs to be accounted for in the analysis of
equilibrium.

A perfectly analogous argument considers a variation where
the solid remains stationary in the laboratory frame and the
meniscus moves along the atoms of the solid surface [Fig. 4(a)].
This process again changes the wetted referential area and,
thereby, the net free energy. At equilibrium, pressure in the
fluid is required for compensating this energy change. Thereby,
the pressure in the fluid is linked to the forces acting to displace
the triple line relative to the atoms of the solid surface.

The above considerations require that a line force is intro-
duced, which acts in the plane of the interface, normal to the
triple line and proportional to the line length. The associated
line tension (force per length of triple line), which might be
termed a “spreading tension,” has the magnitude

ho=yP— B (29)
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FIG. 4. Spreading of the liquid and the associated stresses. (a)
Schematic representation of tangential rigid-body displacements of a
section of solid (circles: atoms of the solid) relative to the meniscus.
In the laboratory frame, elastic strain of the pore walls will displace
the solid, pressure change in the liquid will displace the meniscus.
Colored circles highlight atoms that changed their state from dry
to wetted after the displacement. The change of state reduces the
net surface energy, requiring compensating work terms in the solid
and in the liquid. A traction force, the spreading tension A, thus
acts at the triple line, tending to pull the solid into the liquid. This
action is balanced by stress in the solid and by pressure in the liquid.
(b) Location of the compensating stresses in partly wetted solids of
different configuration as labeled in the figure. Dry or wet regions of
the solid end up stressed, depending on where the counterforces act.

In a configuration that favors wetting (y8Y > yBL) [3,4], one
has & < 0 and the spreading tension tends to pull the solid into
the liquid. Weijs ef al. [14,15] have highlighted the relevance
of this force by pointing out that it is responsible for a stress
in the nonwetted section of a sheet or rod that is suspended
from above and partly immersed in a liquid. Figure 4(b) shows
this configuration, along with variants. The figure emphasizes
that the stressed regions may be underneath either, the dry or
the wetted part of the solid surface, depending on where the
counter forces act.

For the configuration considered below, the partially wetted
circular pore of radius r, it is the solid underneath the wetted
pore walls that experiences the stress [Fig. 4(b)]. Furthermore,
with attention to the liquid, it is noted that the net force due

to the spreading tension along the entire triple line is 2w rA.
Since that force needs to be compensated by the pressure P-
acting over the cross section 77 of the pore, one finds that the
spreading tension is related to the pressure in the fluid by

A= —_pt (30)
=3P
Purely elastic equilibria with constant surface areas. The
equilibrium condition for the stress in the bulk is

divS = 0, 31)

whereas the local equilibrium at the surface, loaded by a fluid
at pressure Pl in the absence of external load satisfies the
Gurtin-Murdoch condition [34,84,85]

S -n+divsS + LP'n =0, (32)

with divg the surface divergence operator and n the local
outer (as seen from the solid) surface normal. This condition
specifies the normal stress component at the surface. Note that
strains are small so that we may here consider L = 1 as an
excellent approximation.

The remaining stress components are constrained by the
mean stress condition of Ref. [116]. Assuming once more the
absence of external load, this balance equation reads as

/SdV+/SdA=0. (33)
B S

Here, S denotes the entire surface of the solid, including the
pore walls and the outer surface in contact with the vapor.
The impact of the outer surface is typically negligible for the
problem at hand. An extended form of Eq. (33) is useful here
[117]. Assume that the traction everywhere on the surface of the
solid can be written as Ty - n, with Ty a constant tensor. Then,

/(S—To)dV—I—/SdA:O. (34)
B S

This result will be useful when analyzing the consequences
of the pressure in the fluid for the strain of the solid: The fluid
pressure acts selectively on the pore walls, not on the outer
surface, and for cylindrical pores this effectively introduces
an anisotropy in the loading.

Local stress concentrations at the triple line. The con-
siderations above focus on stresses and tractions that entail
long-range strains and that, thereby, affect the macroscopic
deformation of the porous solid. Previous studies [14,15] have
highlighted that there are also significant local stress and strain
concentrations at the solid-liquid-vapor triple line, which are
at least partly caused by jumps in surface stress across the line
and by the normal component of the traction exerted by the
meniscus. These local phenomena, which are not included in
our analysis, may contribute significantly to the deformation
of membranes with short and thick pores. Yet, it is readily seen
that their impact on the macroscopic sorption strain may be
neglected when attention is restricted to the limit of long narrow
pores. Our discussion henceforth focuses on that limiting case.

The integral, over the ring-shaped triple line, of the normal
component of the triple-line traction vanishes. Saint-Venant’s
principle [118] then implies that the resulting stress field must
vanish at distances larger than the pore diameter. In other
words, the stress field is local and its contributions to the mean
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strain are small in the limit of long narrow pores. The impact of
the surface stresses on the mean stress is rigorously accounted
for by Eq. (33); this implies that surface stress jumps at triple
lines can have no consequence for the mean strain.

We conclude that the local stress concentrations that are
demonstrated by the atomistic simulations of Ref. [14], though
compatible with our considerations, are not relevant for sorp-
tion strain in long narrow pores.

V. ARRAY OF PARALLEL CYLINDRICAL PORES WITH
HIGH ASPECT RATIO

A. Geometry

As an idealized geometry, we consider a planar sheet
(membrane) of thickness / with a hexagonal array of pores
penetrating through the entire thickness of the sheet, and we
restrict attention to pores that are much longer than they
are wide. Many mesoporous materials exhibit this type of
geometry: templated porous silica [119-122] and carbons
[123,124], porous alumina [125,126] and titania [120,127], and
porous silicon [50,128,129]. The pore (inner) radius is r, and
the pore spacing is such that the porosity (the void volume
fraction) is ¢. This gives the specific surface area (area per
volume of solid)

o= %ﬁ (35)
rl—¢

To good approximation we may analyze a simplified ge-
ometry, where the representative volume element (RVE) is a
cylindrical tube with inner radius r and with the outer radius
R adjusted so that ¢ matches the actual porous membrane
[50,66]. This requires that

R= (36)

=l

B. Boundary conditions

We consider the following:

(1) The outer surfaces of the membrane can displace freely
and are free of traction forces; no capillary forces act there.

(2) The pores are filled with a fluid at pressure P"; that
pressure acts on the pore wall.

(3) The filling is almost complete, but a very small under-
filling allows for the menisci to slide freely up and down along
the pore walls when the solid is elastically deformed [130].

(4) An isotropic surface stress acts at the pore walls.

This scenario leads to the following boundary conditions
(with n a radial unit vector):

(i) The outer surface of the RVE must be free of stress:

S-n=0 radial, outer surface. 37

(i) Equation (32) implies here for the radial stress compo-
nent in the solid right underneath the pore wall:

1
n-S-n=-f-— PY  radial, inner surface. (38)
r

(iii) The pressure in the liquid acts on the pore walls but
not on the outer surface of the porous membrane. This is
embodied in the traction Ton with To = —P'Q, where Q is
a unit tensor in the plane of the sheet, Q = e, ® e, with e,

and e, orthonormal in-plane unit vectors. By using this notion
with the generalized capillary equation (34), and denoting by
a an axial unit vector, one would obtain a condition for the
axial stressintheform(a - S - a)(1 — ¢)/¢p = —2f/r. Yet, this
expression ignores line forces and, specifically, the spreading
tension. That quantity imposes an axial stress that acts over and
on top of the one due to f, yet that scales with the geometry
in the same way. In the above axial stress condition, one may
therefore replace f by f + A. When accounting for Eq. (30),
one thus obtains for the axial stress balance

<a-s.a)1_¢=—%f+PL axial. (39)
1) r

The most remarkable aspect of the above is that the surface
tension of the meniscus, which determines the pressure in the
fluid, enters the boundary conditions in a different way than
the surface stress. This is apparent when comparing Eqs. (38)
and (39).

C. Displacement field and solutions

The displacement field that satisfies Eq. (31) and that re-
produces the cylindrical symmetry is here u, = c;p + ¢2/p in
the radial direction and u, = c3z axially, with the ¢; constants
(j =1,2,3) and p, z position coordinates in radial and axial
directions, respectively [66]. We compute the corresponding
stress field by assuming isotropic elasticity with Young’s
modulus Y and Poisson’s ratio v. Solving for the boundary
conditions (38) and (39) results in expressions for the c;,
which then allow to compute the displacements and strains
in mechanical equilibrium.

D. Relevant measures for deformation

We consider the following measures for the deformation of
the porous membrane:

(i) The out-of-plane (plane of the membrane) strain, par-
allel to the pores, can be measured by dilatometry or by
diffraction. This strain is simply

gg=a-E-.a. (40)

(i) The macroscopic in-plane strain, as measured for
instance by dilatometry or by the displacement of a Bragg
reflection of the pore lattice as measured in small-angle
scattering, is defined as

£ = Eu|p:R - 1. (41)

(iii) Finally, the mean in-plane strain, as measured for

instance by the displacement of an in-plane Bragg reflection

of the atomic crystal lattice of a crystalline membrane, is given
by

£1mean = (N - E - m)gojig, (42)

where the brackets denote averaging over all positions in the
solid.

Consistent with our assumption of isotropy in the plane, nin
Egs. (41) and (42) may assume any arbitrary in-plane direction.
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E. Solutions for the deformations

The boundary conditions of Sec. V B can readily be solved
for the measures of deformation of Sec. VC. Here are the
solutions:

g = L<—ﬁ(1 —v)+ P - 21))), (43)
FA=PIN Ty ]
£, = Y—(l_¢)(_7(1—v)+P (z—u)), (44)
__ % (_f,_ L1 —
Elmean = Y — ¢)< , (1-3v)+ P-(1 2‘)))~ (45)

In the absence of surface stress, Eq. (44) gives the expression
derived in the two-dimensional case (neglecting the Poisson’s
ratio effects), Eq. (3) in Ref. [50].

Equations (43) and (44) can be also compared to the strains
in axial and radial directions predicted by Balzer et al. [77]
using the solvation pressure approach. Note that the approach
of Balzer et al. requires separate derivation before and after
capillary condensation. After capillary condensation, the axial
strain is given by Egs. (15) and (13b) in Ref. [77] and the
normal strain is given by Egs. (14) and (10b) in Ref. [77]. These
expressions are exactly equivalent to our Egs. (44) and (43),
respectively. Balzer’s expressions for strains before capillary
condensation, given by their Eqs. (15) and (13a) (axial) and
(14) and (10b) (normal), differ from our results. In Sec. VI we
show the comparison for the numerical results.

F. Pore-load moduli

To quantify the elastic response of a porous material to the
pressure in the pores, Prass et al. introduced the notion of
pore-load modulus M as aratio of the fluid pressure in the pore
to the measured strain of the porous material [45]. Considering
the two-dimensional model of porous material with parallel
channel-like pores filled with a capillary condensate, Ref. [50]
derived the analytical expression for the pore-load modulus
[their Eq. (4)]:

Y 1—¢
2007 ¢
Reference [50] considered only strain normal to the pore walls,
therefore, Eq. (46) describes the normal pore-load modulus.
Within the presented 3D model one can introduce two different

pore-load moduli: M, and M|, corresponding to normal and
tangential strains. Equations (44) and (43) give

M= (46)

Y 1-¢

2-v) ¢
Y 1-—¢
M=—————-: (48)
I1-2v) ¢
These two pore-load moduli are noticeably different, the
difference between them as a function of Poisson’s ratio is
shown in Fig. 5. This figure also shows the difference between
the normal pore-load modulus derived in the 3D model and the
pore-load modulus calculated for the 2D model in Ref. [50].
The relative difference (M; — M)/ M does not exceed 7%.
It is emphasized that the total deformation exhibits con-
tributions that stem from surface stress and that are not
represented by the pore-load moduli of Egs. (47) and (48). In
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FIG. 5. Comparison of three different pore-load moduli derived
in this paper: the moduli for filled pore M, corresponding to strains
normal to the pore walls [Eq. (47)], M along the pore walls [Eq. (48)],
and the modulus M’ [Eq. (49)] for the deformation in the film region.
We also plot the pore-load modulus derived in Ref. [50] for the
2D model. The moduli are normalized by Young’s modulus Y and
porosity is assumed ¢ = 0.5.

fact, the solid acts as if an (effective) pressure P acted already
before the onset of capillary condensation; this pressure varies
with the amount of adsorbate. These extra deformations may
be accounted for by (effective) pore-load moduli for the
deformation of the pores due to surface stress. These terms,
which are analogous to the ones introduced above, are relevant
throughout the entire regime of pore filling, including the
stages before capillary condensation. Contact to the above
notation can be made by taking the quantity P = f/r as an
“effective pressure parameter” (not to be confused with any
physical pressure). For the moduli related to the deformation
normal and along the pore walls we then obtain

P_P_ v 1me
e, 20—-v) ¢

€l

M/

Figure 5 shows the difference between the pore-load mod-
ulus M’ before the capillary condensation and the moduli M
and M| after the capillary condensation. While the difference
between M’ and M is relatively small, the modulus M| is
significantly different from the former two. The ratio M /M |
exceeds a factor of 2 and increases with Poisson’s ratio.
Small difference between the pore-load modulus before the
capillary condensation and the modulus M, after the capillary
condensation justifies the approximation of a constant pore-
load modulus within the whole range of vapor pressures 0 <
p/po < 1 used in our previous works [46,61,76].

VI. SORPTION STRAINS: NUMERICAL EXAMPLE AND
COMPARISON TO SOLVATION PRESSURE APPROACH

With an eye on illustration, we now inspect a numerical
example for the strain variation during pore filling, as predicted
by our Egs. (43)—(45). We choose an example for which a
detailed analysis by the theory of solvation pressure has been
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reported, namely, nitrogen adsorption on mesoporous silica
[77]. This will allow us to compare the two theory approaches.

The parameters in Ref. [77] were matched to experiment.
We here adopt the same parameters when applicable. Addition-
ally, our analysis requires BET parameters which were reported
in the reference. They were obtained by fitting Eq. (14) to
the nitrogen adsorption data in the region 0.05 < p/po < 0.5.
The numerical values were as follows: ¢ = 0.34, ¥ = 92.0
GPa, v = 0.2, | = 3.465 x 10~ m?/mol, pore size 4.7 nm
(r =2.35 nm), BET constant C = 135, BET surface area
Sger = 191 m?/g, and monolayer capacity 'y, = 1.025 x
1073 mol/m? [131].

Since the adsorption coupling parameter ¢ is not known for
this system, we start out by ignoring specific adsorption and so
treat the process as entirely incommensurate, with { = 0. This
is consistent with our use of the BET adsorption isotherm. Site-
specific adsorption will be discussed at the end of the present
section. All relevant equations contain a term f;/r, and again
a numerical value (here, fy) is not known. Yet, the resulting
strain contributions do not vary during pore filling and so may
be subtracted as constants from the strain values at all p. We can
thus ignore the fy-related terms consistently by setting fy = O.
Finally, the change of the solid-liquid surface stress fB- with
the chemical potential for the filled pore, which is given by
the last term in the right-hand side of Eq. (26), is expected
much smaller than the change of the surface stress fBV before
the capillary condensation [132]. Therefore, we neglected that
change and represented fBl/r as a horizontal line in Fig. 6(b).
Figure 6 shows the results for the adsorption-induced strains,
which will now be discussed.

We first consider the strains after the capillary condensation.
Inthe example of Fig. 6, these strains are governed solely by the
fluid pressure, which is given by the Kelvin-Laplace equation
(28). That equation gives P- = 0 as the maximum pressure
in the liquid at the saturation point (p = py). In the approach
to saturation, P is negative. If a solid body were completely
immersed in a fluid at P~ < 0, it would isotropically expand.
However, the condensate here exerts the pressure only in
the pores, and this leads here to compression. Note also the
anisotropic strain, as embodied in our Eqs. (43) and (44). This
exemplifies the difference of the pore-load moduli of Eqgs. (47)
and (48). The anisotropy in this example results exclusively
from the interaction of the solid with the loads from the fluid
and from the spreading tension; itis not related to surface stress.
Note also that the mean strain varies considerably less than the
macroscopic in-plane and out-of-plane strains.

Next, we discuss the strains in the regime preceding conden-
sation. Here, we combine Eqgs. (43)—(45) for the strains with
Eq. (25) for the surface stress. As can be seen in Fig. 6, the mean
strain variation is again small. By contrast, the macroscopic
strains vary considerably.

A noteworthy feature of our example is the strain variation
during the phase transformation: as condensation sets in, the
in-plane as well as out-of-plane strains are both discontinuous,
yet the jumps can go in different directions. Figure 6 shows
the out-of-plane strain jumping to positive (expansion parallel
to the pores), whereas the in-plane strain jumps to negative
(contraction in the plane of the film). This prediction is a natural
consequence of our model assumptions and specifically of our
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FIG. 6. Predictions of our analysis for the variation of capillary
forces and strains with relative vapor pressure p/po: strains from
Eqgs. (43), (44), and (45). Material parameters are matched to nonspe-
cific adsorption of nitrogen on porous silica (see text). Discontinuities
in graphs indicate capillary condensation, here by assumption at
p/po = 0.5. (a) Variations Ay and Ay in surface tension and in
surface free-energy density of the bulk-vapor or bulk-liquid interface.
(b) Pressure P in the liquid and the effective pressure term P =
—2f/r. Note that P* is governed by the liquid-vapor surface tension
at the meniscus whereas P is governed by the surface stress at the
solid-fluid interface. (c) The macroscopic strains g (parallel to the
pore axis) and ¢, (normal to the pore axis), and the volume-average
strain €, mean (also normal to the pore axis).
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FIG. 7. Sorption strains versus reduced vapor pressure p/po,
comparing predictions based on surface stress to those based on
solvation pressure. Lines: surface-stress-based analysis of this work;
results for out-of-plane (parallel to the pore axis €)) and in-plane
(e, ) strains [Egs. (43) and (44)], as indicated by labels. Symbols:
analogous results based on solvation pressure approach [77]. Param-
eters of both data sets are matched to nitrogen adsorption at 77 K in
mesoporous silica.

discussion of Bangham-type behavior of the surface stress; that
discussion leads to Egs. (25) and (26).

It is of interest to compare our results to those obtained
from the analysis based on the concept of solvation pressure.
To this end, Fig. 7 shows the present sorption strain data
(based on the concept of surface stress) along with the results
of calculations from Ref. [77]. First, the two approaches
provide qualitatively similar results in the adsorption regime.
Second, the results for the regime of partial pore filling agree
precisely. Third, both approaches predict substantial strain
discontinuities, of comparable magnitude, during capillary
condensation or evaporation. The above-mentioned agreement
implies that the analysis of the mechanics of the solid and
the two approaches are fully consistent. This is in particular
clear in the regime of partial pore filling, where the loading is
by the pressure in the fluid, which is simply predicted by the
Kelvin-Laplace equation and so takes identical values in both
approaches. Note that our approach does not predict the vapor
pressure of capillary condensation or capillary evaporation. We
took those points from the experimental data: for condensation
pe = 0.63 and for evaporation p, = 0.5 [77].

With respect to the adsorption regime, at vapor pressures
below condensation, the two approaches differ quantitatively,
yet there are no apparent qualitative differences. In view of the
considerable uncertainty in comparing theory to experiment,
we propose that each of the two approaches is equally com-
patible with the available experimental observations. Note that
we do not attempt to compare the predictions of our approach
directly to the experimental strain data of Ref. [77] (which are
reproduced in Fig. 2 above). As pointed out by those authors,
their strain data represent a weighted sum of € and € . Since
the relative contributions of the two strains are not known, a
direct comparison of the experiment to any one of the two
strains of our theory is not meaningful.

Recall that the present approach bases the sorption strain
in that regime on its analysis of the surface-stress variation
during adsorption of an incommensurate phase, using the BET
isotherm as a conservative approximation to the physics of
adsorption. The adsorbate is treated as a classic hydrostatic
fluid, excluding the anisotropic stress states that underlie the
solvation pressure approach. Apparently, such stress states are
not necessary for explaining the experimental observations. By
contrast, it requires the explicit consideration of the effective
forces associated with the migration of the triple line along
the solid surface, and of the associated stresses in the solid.
This led to our concept of a spreading tension at the line. The
spreading tension again depends only on classic properties of
the solid-fluid interface, namely, on the difference between the
surface tensions.

In summary, the agreement between the two separate
approaches in Fig. 7 demonstrates that the strains €| and € | can
be obtained simply by combining the adsorption isotherm with
the notions of surface stress and of spreading tension, without
involving the concepts of disjoining or solvation pressures.

How will site-specific adsorption affect the observations?
As discussed above, this question is most relevant in the early
stages of adsorption. Here, since the pores are still dry, the
strains of Eqs. (43)—(45) are governed by f as the capil-
lary parameter. Specifically, we consider the limit p/py —
0, retaining the assumption of a BET adsorption isotherm
[Eq. (14)]. The same result is obtained with a Langmuir
isotherm. The surface-stress variation of Eq. (25) here takes
the forms

f=fo+ P I'm¢ adsorption coupling, (50)
Po

f=fo— £CFngT incommensurate (51
Po

for site-specific and incommensurate adsorption, respectively.
The magnitudes of the respective coefficients ¢ or —R,T are
expected to be quite different:

(i) For Bangham-type behavior (incommensurate adsor-
bate layer), at the temperature (77 K) of our example, we have
—R,T ~ —6.6 meV.

(ii) For site-specific adsorption with strong bonds, the
value of ¢ is in the order of £1 eV, 100-fold larger (see Sec.
IVE above). Furthermore, and contrary to R, T, the adsorption
coupling parameter ¢ can take either sign.

(iii) Even van der Waals bonded adsorbates can have a
comparatively large ¢: electronic structure density functional
theory values suggest { = —64 and —69 mV, respectively, for
CH4 and CO; on graphene [133]. Here again, the adsorption
coupling brings a much (here, tenfold) larger initial slope of
strain versus partial pressure than Bangham-type behavior.

Since the surface materials parameters C and I'y, of
Egs. (50) and (51) can be measured independently from sorp-
tion isotherms, measurements of the deformation of porous
solids can be analyzed to yield the adsorption coupling pa-
rameter ¢. Aside from the quantitative difference, namely
initially weaker coupling for Bangham-type surface-stress
variation, there are also qualitative signatures that afford a
discrimination between the two types of coupling: the explicit
linear temperature dependence of the Bangham-type behavior
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of Eq. (51) is missing in the adsorption-coupling behavior
of Eq. (50). Temperature-dependent studies may thus be
particularly suitable for separating the contributions of the
respective phenomena.

VII. DISCUSSION AND CONCLUSIONS

We have presented a theory of adsorption-induced defor-
mation of porous materials with parallel channel-like pores
of high aspect ratio (length/width). The theory accounts ex-
plicitly for the pressure in the fluid, for the surface stress
at the fluid-solid interface, and for line forces acting at the
solid-liquid vapor interface. The strains along and normal to
the pore axis differ for the present geometry. Our closed-
form stress-strain relations are based on a combination of
phenomenological thermodynamics and surface mechanics.
Electrosorption phenomena and actuation or sensing studies
with nanoporous metals provide instances where this approach
is successful and established. Our study does not aim to
predict the condensation point or the adsorption isotherm. Yet,
given a specific adsorption isotherm, we aim to analyze the
sorption strains, exploring their directionality and establishing
consistency with a classical phenomenological description.

Many previous studies of sorption strain invoke a “pressure
tensor” which acts in an extended region of the fluid near the
interface. By contrast, our approach considers the interface of
an elastic solid with a classic fluid that supports no shear stress
and that is, thus, at hydrostatic pressure. All nonhydrostatic
effects at the interface, which is represented as a 2D manifold in
our approach, are accounted for by its surface stress. We show
that the phenomenology of sorption strain is indeed reproduced
in this more conventional picture. In fact, our stress-strain
relations predict the adsorption-induced deformation in the
whole region of vapor pressures from p = 0 (dry solid surface)
to p = py (filled pores at saturation).

A crucial element of our approach is the analysis of the
variation of the surface stress with the vapor pressure. We
decompose the adsorption into site-specific (commensurate)
and nonspecific (incommensurate) parts. We naturally find
that the incommensurate part behaves according to Bangham’s
law: its contribution to the change in surface stress equals its
contribution to the change in surface tension (excess energy per
area). One of us had previously pointed out that Bangham’s
law is indeed well justified for non-site-specific adsorption
[76], e.g., nitrogen adsorption on amorphous silica. Yet, our
analysis also shows that total change in surface stress contains
a second part, which relates to specific adsorption. This part is
entirely independent of the variation of the surface tension with
chemical potential. Experiments, most recently in the context
of actuation with nanoporous solids, demonstrate that this part
can be large and that there are many experimental situations
where it is the dominant part of the surface-stress variation.

We discuss a numerical example for isotherms of strain as
the function of relative vapor pressure. We list three measures
of strains: macroscopic strain in the directions parallel and
normal to the pore walls, and average strain in the latter
direction. These strains can be different. It is emphasized that
the anisotropy of the strain emerges even though all interfacial
stresses in our analysis, and specifically the surface stress, are
isotropic in the plane of the interface. The directionality of

the strains results exclusively from the anisotropic geometry
of the microstructure, with pore channels aligned in one
specific direction. Our results for the strains are consistent
with observations for adsorption in mesoporous materials with
channel-like pores, as they were reported both by dilatometric
measurements [50,70,71] and by in situ x-ray diffraction
[45,46,51,70,134].

In the approach to saturation, our results also suggest
different pore-load moduli in the directions normal and parallel
to the pore walls. In the direction normal to the pore walls, the
difference between the strains before and after the capillary
condensation does not exceed 50% (at v — 0.5), and for
silica (v =0.17) it is only about 10%. This justifies the
approximation of a constant pore-load modulus within the
whole range of vapor pressures used in the previous work by
one of the present authors [46,61,76]. For the strain along the
pores, the difference is noticeably higher: at v = 0 it is a factor
of 2 and for v = 0.4 it is already a factor of 6.

In conclusion, our work reconciles experimental obser-
vations of anisotropic strain during adsorption and capillary
condensation in porous solids with a description by phe-
nomenological thermodynamics and surface mechanics as it is
widely used in the field of materials science. With regard to real
nanoporous media it will be particularly interesting to study the
filling-fraction-dependent mechanical loading upon capillary
condensation in terms of the adsorption/desorption hysteresis.
Given the importance of the strain fields at menisci triple
lines the distinct distribution of liquid between adsorption and
desorption, i.e., many small liquid bridges upon adsorption,
much less menisci because of a coarsening of the material will
result in distinct loading situations [135,136].
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APPENDIX: DERIVATION OF EQ. (34)

Equation (33) of the main text gives a mean stress condition
that applies to solids with surface stress in the absence of
external load. Here, we extend this relation to a more general
loading state. The result is given as Eq. (34) in the main text.

For the purpose of the derivation we focus on the solid phase
B alone; the fluid in the pore space is considered exclusively
inasmuch as it can apply traction forces to the pore walls. We
here denote by S the entire surface of the solid. For the special
case of a membrane, S includes not only the pore walls (W
in the main text) but also all the planar outer surfaces. The
latter are ignored in the main text since they do not noticeably
contribute to the specific problem considered there.

We admit the special loading state in which the solid,
everywhere on its surface S, experiences a traction (load per
area) t that can be derived from the constant tensor Ty via

086002-13



GOR, HUBER, AND WEISSMULLER

PHYSICAL REVIEW MATERIALS 2, 086002 (2018)

t = Ty - n. As above, n denotes the local outer surface normal.
Here, we keep Ty general, but in Sec. VB of the main text we
introduce a specific choice that reproduces both the loading
of the pore walls by a pressure in the fluid during capillary
condensation and at the same time the vanishing load on the
outer surfaces of the membrane.

We restrict attention to linear elasticity, where the super-
position principle of elasticity holds. We can thus separately
consider the equilibrium of the bulk with (i) the surface stress
and (ii) the load due to the pressure in the fluid. The former is
described by Eq. (33), and the latter will now be derived.

We apply the principle of virtual work in order to derive a
condition for mechanical equilibrium. This approach exploits
the following statement: For all kinematically admissible small
displacement fields w(x) around the equilibrium configuration
(where x is a position variable), the net free energy change 5§
in the solid, due to the action of the displacements against the
stresses in the equilibrium state, must equal the net work 6 W
done against the environment:

53 = SW. (A1)

Since this statement holds for arbitrary w(x), we can consider
specifically the virtual displacement field

w(x) = SEo - x (A2)

with SEq a constant and small but otherwise arbitrary strain
tensor.
We first evaluate §5. To this end, we express the variation
in net free energy § of the solid phase as
5g=/aw5dv =/s : SEod V. (A3)
B B
Even though we allow for the stress at equilibrium S(x) to be
nonuniform in B, our choice of w(x) as derived from a constant
strain allows to move the strain outside the integral, so that the
bulk contribution to the virtual work emerges as
85 = 8Ky : / Sdv. (A4)
B
Let us now evaluate § W, which is simply the work done
against the traction forces:

8W:/t~deA=/(To-n)-wsdA, (AS)
S s

with wg the displacement on S. We transform the right-hand
side of this equation by means of the tensor identity

(To-n)-ws =Tp: (Ws ®n) (A6)
and we then substitute w from Eq. (A2). The symbol ® denotes

the Kronecker product. Since the constant Ty can be moved out
of the integral, the combined Eqs. (A2), (AS5), and (A6) lead to

6W=T0:/(8E0-Xs)®ndA (A7)
S

with Xg a position on S. Next, we convert this equation by
using a divergence law (Sec. 2.4.2 in Ref. [83]), which here
takes the form

/((SEO-Xs)@)ndA=/V(8E0-x)dV. (A8)
S B

The kernel of the integral on the right-hand side is simply the
constant §E¢, which can again be moved out of the integral.
This yields the desired expression for the traction work in the
simple form

W =Ty : §Eo Vg, (A9)

where Vg is the volume of B.

‘We can now evaluate the equilibrium condition by equating
Egs. (A4) and (A9). Since §Ej is an arbitrary constant tensor
this yields

0= / (S — Ty)dV. (A10)
B

In other words, if a solid of arbitrary shape and arbitrary
microstructure is subject to tractions t that, everywhere on its
surface, obey t = T - n, then the volume average of the stress
in the solid is T.

In view of the superposition principle, the above result can
be added to Eq. (33). The resultis Eq. (34) of the main text. That
equation generalizes the mean stress condition of Ref. [116],
Eq. (33) of the main text, to a more general loading state at the
outer surface.

[1]1 G. Y. Gor, P. Huber, and N. Bernstein, Appl. Phys. Rev. 4,
011303 (2017).

[2] P. Huber, J. Phys.: Condens. Matter 27, 103102 (2015).

[3] P. G. de Gennes, F. Brochard-Wyart, and D. Queré, Capillar-
ity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(Springer, New York, 2004).

[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev.
Mod. Phys. 81, 739 (2009).

[5] D. L. Dimitrov, A. Milchev, and K. Binder, Phys. Rev. Lett. 99,
054501 (2007).

[6] S. Gruener, T. Hofmann, D. Wallacher, A. V. Kityk, and
P. Huber, Phys. Rev. E 79, 067301 (2009).

[7] Y. Xue, J. Markmann, H. Duan, J. Weissmiiller, and P. Huber,
Nat. Commun. 5, 4237 (2014).

[8] Z. Sadjadi, M. Jung, R. Seemann, and H. Rieger, Langmuir 31,
2600 (2015).

[9] O. Vincent, B. Marguet, and A. D. Stroock, Langmuir 33, 1655
(2017).

[10] D.I. Dimitrov, A. Milchev, and K. Binder, Phys. Chem. Chem.
Phys. 10, 1867 (2008).

[11] F. Cailliez, M. Trzpit, M. Soulard, I. Demachy, A. Boutin, J.
Patarin, and A. H. Fuchs, Phys. Chem. Chem. Phys. 10, 4817
(2008).

[12] C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman,
and C. N. Baroud, Phys. Rev. Lett. 98, 156103
(2007).

[13] A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, Phys.
Rev. Lett. 109, 236101 (2012).

086002-14


https://doi.org/10.1063/1.4975001
https://doi.org/10.1063/1.4975001
https://doi.org/10.1063/1.4975001
https://doi.org/10.1063/1.4975001
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/PhysRevLett.99.054501
https://doi.org/10.1103/PhysRevLett.99.054501
https://doi.org/10.1103/PhysRevLett.99.054501
https://doi.org/10.1103/PhysRevLett.99.054501
https://doi.org/10.1103/PhysRevE.79.067301
https://doi.org/10.1103/PhysRevE.79.067301
https://doi.org/10.1103/PhysRevE.79.067301
https://doi.org/10.1103/PhysRevE.79.067301
https://doi.org/10.1038/ncomms5237
https://doi.org/10.1038/ncomms5237
https://doi.org/10.1038/ncomms5237
https://doi.org/10.1038/ncomms5237
https://doi.org/10.1021/la504149r
https://doi.org/10.1021/la504149r
https://doi.org/10.1021/la504149r
https://doi.org/10.1021/la504149r
https://doi.org/10.1021/acs.langmuir.6b04534
https://doi.org/10.1021/acs.langmuir.6b04534
https://doi.org/10.1021/acs.langmuir.6b04534
https://doi.org/10.1021/acs.langmuir.6b04534
https://doi.org/10.1039/b719248g
https://doi.org/10.1039/b719248g
https://doi.org/10.1039/b719248g
https://doi.org/10.1039/b719248g
https://doi.org/10.1039/b807471b
https://doi.org/10.1039/b807471b
https://doi.org/10.1039/b807471b
https://doi.org/10.1039/b807471b
https://doi.org/10.1103/PhysRevLett.98.156103
https://doi.org/10.1103/PhysRevLett.98.156103
https://doi.org/10.1103/PhysRevLett.98.156103
https://doi.org/10.1103/PhysRevLett.98.156103
https://doi.org/10.1103/PhysRevLett.109.236101
https://doi.org/10.1103/PhysRevLett.109.236101
https://doi.org/10.1103/PhysRevLett.109.236101
https://doi.org/10.1103/PhysRevLett.109.236101

ELASTOCAPILLARITY IN NANOPORES: SORPTION ...

PHYSICAL REVIEW MATERIALS 2, 086002 (2018)

[14] J. H. Weijs, B. Andreotti, and J. H. Snoeijer, Soft Matter 9,
8494 (2013).

[15] B. Andreotti, O. Baumchen, F. Boulogne, K. E. Daniels, E. R.
Dufresne, H. Perrin, T. Salez, J. H. Snoeijer, and R. W. Style,
Soft Matter 12, 2993 (2016).

[16] S.Karpitschka, A. Pandey, L. A. Lubbers, J. H. Weijs, L. Botto,
S. Das, B. Andreotti, and J. H. Snoeijer, Proc. Natl. Acad. Sci.
USA 113, 7403 (2016).

[17] J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Nature
(London) 432, 690 (2004).

[18] C. Duprat, S. Protiere, A. Y. Beebe, and H. A. Stone, Nature
(London) 482, 510 (2012).

[19] Q. Zhao,J. W. Dunlop, X. Qiu, F. Huang, Z. Zhang, J. Heyda, J.
Dzubiella, M. Antonietti, and J. Yuan, Nat. Commun. 5, 4293
(2014).

[20] C. Ganser, G. Fritz-Popovski, R. Morak, P. Sharifi, B.
Marmiroli, B. Sartori, H. Amenitsch, T. Griesser, C. Teichert,
and O. Paris, Beilstein J. Nanotechnol. 7, 637 (2016).

[21] M. Boudot, H. Elettro, and D. Grosso, ACS Nano 10, 10031
(2016).

[22] D. Van Opdenbosch, G. Fritz-Popovski, W. Wagermaier, O.
Paris, and C. Zollfrank, Adv. Mater. 28, 5235 (2016).

[23] J.Biener, A. Wittstock, L. Zepeda-Ruiz, M. Biener, V. Zielasek,
D. Kramer, R. Viswanath, J. Weissmiiller, M. Bdumer, and
A. Hamza, Nat. Mater. 8, 47 (2009).

[24] Z. J. Pan and L. D. Connell, Int. J. Coal Geol. 85, 257 (2011).

[25] G. Chen, J. Yang, and Z. Liu, Energy Fuels 26, 4583 (2012).

[26] T. Chen, X.-T. Feng, and Z. Pan, Int. J. Coal Geol. 150, 64
(2015).

[27] R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Igbal, J. N.
Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi,
A. G. Rinzler et al., Science 284, 1340 (1999).

[28] A. E. Aliev, J. Y. Oh, M. E. Kozlov, A. A. Kuznetsov, S. L.
Fang, A. F. Fonseca, R. Ovalle, M. D. Lima, M. H. Haque, Y. N.
Gartstein et al., Science 323, 1575 (2009).

[29] J. Biener, S. Dasgupta, L. H. Shao, D. Wang, M. A. Worsley,
A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O.
Kucheyev et al., Adv. Mater. 24, 5083 (2012).

[30] J. Weissmiiller, R. N. Viswanath, D. Kramer, P. Zimmer,
R. Wiirschum, and H. Gleiter, Science 300, 312 (2003).

[31] D. Kramer, R. Viswanath, and J. Weissmiiller, Nano Lett. 4,
793 (2004).

[32] H. J. Jin, X. L. Wang, S. Parida, K. Wang, M. Seo, and
J. Weissmiiller, Nano Lett. 10, 187 (2010).

[33] C. Cheng, J. Weissmiiller, and A. H. W. Ngan, Adv. Mater. 28,
5315 (2016).

[34] J. Weissmiiller and D. Kramer, Langmuir 21, 4592 (2005).

[35] C. Stenner, L.-H. Shao, N. Mameka, and J. Weissmiiller, Adv.
Funct. Mater. 26, 5174 (2016).

[36] F. T. Meehan, Proc. R. Soc. London A 115, 199 (1927).

[37] D. H. Bangham and N. Fakhoury, Nature (London) 122, 681
(1928).

[38] D. Yates, Proc. Phys. Soc. London, Sect. B 65, 80 (1952).

[39] C. H. Amberg and R. Mclntosh, Can. J. Chem. 30, 1012
(1952).

[40] B. Bering, O. Krasil’nikova, A. Sarakhov, V. Serpinskii, and
M. Dubinin, Bull. Acad. Sci. USSR, Div. Chem. Sci. 26, 2258
(1977).

[41] O. Krasil’nikova, B. Bering, V. Serpinskii, and M. Dubinin,
Russ. Chem. Bull. 26, 1099 (1977).

[42] C.Balzer, T. Wildhage, S. Braxmeier, G. Reichenauer, and J. P.
Olivier, Langmuir 27, 2553 (2011).

[43] C. Balzer, S. Braxmeier, A. V. Neimark, and G. Reichenauer,
Langmuir 31, 12512 (2015).

[44] P. Kowalczyk, C. Balzer, G. Reichenauer, A. P. Terzyk, P. A.
Gauden, and A. V. Neimark, Carbon 103, 263 (2016).

[45] J. Prass, D. Miiter, P. Fratzl, and O. Paris, Appl. Phys. Lett. 95,
083121 (2009).

[46] G. Y. Gor, O. Paris, J. Prass, P. A. Russo, M. M. L. Ribeiro
Carrott, and A. V. Neimark, Langmuir 29, 8601 (2013).

[47] P. Sharifi, B. Marmiroli, B. Sartori, F. Cacho-Nerin, J. Keckes,
H. Amenitsch, and O. Paris, Bioinspired, Biomimetic Nanobio-
mater. 3, 183 (2014).

[48] K. Schappert and R. Pelster, Europhys. Lett. 105, 56001
(2014).

[49] G. Dolino, D. Bellet, and C. Faivre, Phys. Rev. B 54, 17919
(1996).

[50] G. Y. Gor, L. Bertinetti, N. Bernstein, T. Hofmann, P. Fratzl,
and P. Huber, Appl. Phys. Lett. 106, 261901 (2015).

[51] H. S. Cho, H. Deng, K. Miyasaka, Z. Dong, M. Cho, A. V.
Neimark, J. K. Kang, O. M. Yaghi, and O. Terasaki, Nature
(London) 527, 503 (2015).

[52] S. Krause, V. Bon, 1. Senkovska, U. Stoeck, D. Wallacher, D.
M. Tobbens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert
et al., Nature (London) 532, 348 (2016).

[53] T. R. Beck, J. Phys. Chem. 73, 466 (1969).

[54] H. Ibach, Surf. Sci. Rep. 29, 195 (1997).

[55] W. Haiss, Rep. Prog. Phys. 64, 591 (2001).

[56] N. Vasiljevic, T. Trimble, N. Dimitrov, and K. Sieradzki,
Langmuir 20, 6639 (2004).

[57] M. Smetanin, R. N. Viswanath, D. Kramer, D. Beckmann, T.
Koch, L. A. Kibler, D. M. Kolb, and J. Weissmiiller, Langmuir
24, 8561 (2008).

[58] M. C. Lafouresse, U. Bertocci, and G. R. Stafford, J.
Electrochem. Soc. 160, H636 (2013).

[59] L. H. Shao, H. J. Jin, and J. Weissmiiller, in Nanoporous
Gold: From an Ancient Technology to a High-Tech Material,
RSC Nanoscience & Nanotechnology, Vol. 22, edited by A.
Wittstock, J. Biener, J. Erlebacher, and M. Bidumer (Royal
Society of Chemistry, Cambridge, UK, 2012), pp. 137-166.

[60] T.S. Jakubov and D. E. Mainwaring, Phys. Chem. Chem. Phys.
4, 5678 (2002).

[61] G. Y. Gor and A. V. Neimark, Langmuir 26, 13021 (2010).

[62] E. Ustinov and D. Do, Carbon 44, 2652 (2006).

[63] P. I. Ravikovitch and A. V. Neimark, Langmuir 22, 10864
(2000).

[64] G. W. Scherer, J. Am. Ceram. Soc. 69, 473 (1986).

[65] M. Vandamme, L. Brochard, B. Lecampion, and O. Coussy,
J. Mech. Phys. Solids 58, 1489 (2010).

[66] J. Weissmiiller, H. L. Duan, and D. Farkas, Acta Mater. 58, 1
(2010).

[67] G. Fraux and F.-X. Coudert, Chem. Commun. 53, 7211 (2017).

[68] L.-H. Shao, H.-J. Jin, R. N. Viswanath, and J. Weissmiiller,
Europhys. Lett. 89, 66001 (2010).

[69] G. Y. Gor and N. Bernstein, Langmuir 32, 5259 (2016).

[70] C. Balzer, R. Morak, M. Erko, C. Triantafillidis, N. Hiising,
G. Reichenauer, and O. Paris, Z. Phys. Chem. 229, 1189
(2015).

[71] A. Grosman, J. Puibasset, and E. Rolley, Europhys. Lett. 109,
56002 (2015).

086002-15


https://doi.org/10.1039/c3sm50861g
https://doi.org/10.1039/c3sm50861g
https://doi.org/10.1039/c3sm50861g
https://doi.org/10.1039/c3sm50861g
https://doi.org/10.1039/C5SM03140K
https://doi.org/10.1039/C5SM03140K
https://doi.org/10.1039/C5SM03140K
https://doi.org/10.1039/C5SM03140K
https://doi.org/10.1073/pnas.1601411113
https://doi.org/10.1073/pnas.1601411113
https://doi.org/10.1073/pnas.1601411113
https://doi.org/10.1073/pnas.1601411113
https://doi.org/10.1038/432690a
https://doi.org/10.1038/432690a
https://doi.org/10.1038/432690a
https://doi.org/10.1038/432690a
https://doi.org/10.1038/nature10779
https://doi.org/10.1038/nature10779
https://doi.org/10.1038/nature10779
https://doi.org/10.1038/nature10779
https://doi.org/10.1038/ncomms5293
https://doi.org/10.1038/ncomms5293
https://doi.org/10.1038/ncomms5293
https://doi.org/10.1038/ncomms5293
https://doi.org/10.3762/bjnano.7.56
https://doi.org/10.3762/bjnano.7.56
https://doi.org/10.3762/bjnano.7.56
https://doi.org/10.3762/bjnano.7.56
https://doi.org/10.1021/acsnano.6b04648
https://doi.org/10.1021/acsnano.6b04648
https://doi.org/10.1021/acsnano.6b04648
https://doi.org/10.1021/acsnano.6b04648
https://doi.org/10.1002/adma.201600117
https://doi.org/10.1002/adma.201600117
https://doi.org/10.1002/adma.201600117
https://doi.org/10.1002/adma.201600117
https://doi.org/10.1038/nmat2335
https://doi.org/10.1038/nmat2335
https://doi.org/10.1038/nmat2335
https://doi.org/10.1038/nmat2335
https://doi.org/10.1016/j.coal.2010.12.003
https://doi.org/10.1016/j.coal.2010.12.003
https://doi.org/10.1016/j.coal.2010.12.003
https://doi.org/10.1016/j.coal.2010.12.003
https://doi.org/10.1021/ef3001168
https://doi.org/10.1021/ef3001168
https://doi.org/10.1021/ef3001168
https://doi.org/10.1021/ef3001168
https://doi.org/10.1016/j.coal.2015.08.001
https://doi.org/10.1016/j.coal.2015.08.001
https://doi.org/10.1016/j.coal.2015.08.001
https://doi.org/10.1016/j.coal.2015.08.001
https://doi.org/10.1126/science.284.5418.1340
https://doi.org/10.1126/science.284.5418.1340
https://doi.org/10.1126/science.284.5418.1340
https://doi.org/10.1126/science.284.5418.1340
https://doi.org/10.1126/science.1168312
https://doi.org/10.1126/science.1168312
https://doi.org/10.1126/science.1168312
https://doi.org/10.1126/science.1168312
https://doi.org/10.1002/adma.201202289
https://doi.org/10.1002/adma.201202289
https://doi.org/10.1002/adma.201202289
https://doi.org/10.1002/adma.201202289
https://doi.org/10.1126/science.1081024
https://doi.org/10.1126/science.1081024
https://doi.org/10.1126/science.1081024
https://doi.org/10.1126/science.1081024
https://doi.org/10.1021/nl049927d
https://doi.org/10.1021/nl049927d
https://doi.org/10.1021/nl049927d
https://doi.org/10.1021/nl049927d
https://doi.org/10.1021/nl903262b
https://doi.org/10.1021/nl903262b
https://doi.org/10.1021/nl903262b
https://doi.org/10.1021/nl903262b
https://doi.org/10.1002/adma.201600286
https://doi.org/10.1002/adma.201600286
https://doi.org/10.1002/adma.201600286
https://doi.org/10.1002/adma.201600286
https://doi.org/10.1021/la047838a
https://doi.org/10.1021/la047838a
https://doi.org/10.1021/la047838a
https://doi.org/10.1021/la047838a
https://doi.org/10.1002/adfm.201600938
https://doi.org/10.1002/adfm.201600938
https://doi.org/10.1002/adfm.201600938
https://doi.org/10.1002/adfm.201600938
https://doi.org/10.1098/rspa.1927.0085
https://doi.org/10.1098/rspa.1927.0085
https://doi.org/10.1098/rspa.1927.0085
https://doi.org/10.1098/rspa.1927.0085
https://doi.org/10.1038/122681b0
https://doi.org/10.1038/122681b0
https://doi.org/10.1038/122681b0
https://doi.org/10.1038/122681b0
https://doi.org/10.1088/0370-1301/65/1/112
https://doi.org/10.1088/0370-1301/65/1/112
https://doi.org/10.1088/0370-1301/65/1/112
https://doi.org/10.1088/0370-1301/65/1/112
https://doi.org/10.1139/v52-121
https://doi.org/10.1139/v52-121
https://doi.org/10.1139/v52-121
https://doi.org/10.1139/v52-121
https://doi.org/10.1007/BF00958705
https://doi.org/10.1007/BF00958705
https://doi.org/10.1007/BF00958705
https://doi.org/10.1007/BF00958705
https://doi.org/10.1007/BF01152733
https://doi.org/10.1007/BF01152733
https://doi.org/10.1007/BF01152733
https://doi.org/10.1007/BF01152733
https://doi.org/10.1021/la104469u
https://doi.org/10.1021/la104469u
https://doi.org/10.1021/la104469u
https://doi.org/10.1021/la104469u
https://doi.org/10.1021/acs.langmuir.5b03184
https://doi.org/10.1021/acs.langmuir.5b03184
https://doi.org/10.1021/acs.langmuir.5b03184
https://doi.org/10.1021/acs.langmuir.5b03184
https://doi.org/10.1016/j.carbon.2016.02.080
https://doi.org/10.1016/j.carbon.2016.02.080
https://doi.org/10.1016/j.carbon.2016.02.080
https://doi.org/10.1016/j.carbon.2016.02.080
https://doi.org/10.1063/1.3213564
https://doi.org/10.1063/1.3213564
https://doi.org/10.1063/1.3213564
https://doi.org/10.1063/1.3213564
https://doi.org/10.1021/la401513n
https://doi.org/10.1021/la401513n
https://doi.org/10.1021/la401513n
https://doi.org/10.1021/la401513n
https://doi.org/10.1680/bbn.14.00017
https://doi.org/10.1680/bbn.14.00017
https://doi.org/10.1680/bbn.14.00017
https://doi.org/10.1680/bbn.14.00017
https://doi.org/10.1209/0295-5075/105/56001
https://doi.org/10.1209/0295-5075/105/56001
https://doi.org/10.1209/0295-5075/105/56001
https://doi.org/10.1209/0295-5075/105/56001
https://doi.org/10.1103/PhysRevB.54.17919
https://doi.org/10.1103/PhysRevB.54.17919
https://doi.org/10.1103/PhysRevB.54.17919
https://doi.org/10.1103/PhysRevB.54.17919
https://doi.org/10.1063/1.4923240
https://doi.org/10.1063/1.4923240
https://doi.org/10.1063/1.4923240
https://doi.org/10.1063/1.4923240
https://doi.org/10.1038/nature15734
https://doi.org/10.1038/nature15734
https://doi.org/10.1038/nature15734
https://doi.org/10.1038/nature15734
https://doi.org/10.1038/nature17430
https://doi.org/10.1038/nature17430
https://doi.org/10.1038/nature17430
https://doi.org/10.1038/nature17430
https://doi.org/10.1021/j100722a045
https://doi.org/10.1021/j100722a045
https://doi.org/10.1021/j100722a045
https://doi.org/10.1021/j100722a045
https://doi.org/10.1016/S0167-5729(97)00010-1
https://doi.org/10.1016/S0167-5729(97)00010-1
https://doi.org/10.1016/S0167-5729(97)00010-1
https://doi.org/10.1016/S0167-5729(97)00010-1
https://doi.org/10.1088/0034-4885/64/5/201
https://doi.org/10.1088/0034-4885/64/5/201
https://doi.org/10.1088/0034-4885/64/5/201
https://doi.org/10.1088/0034-4885/64/5/201
https://doi.org/10.1021/la049632f
https://doi.org/10.1021/la049632f
https://doi.org/10.1021/la049632f
https://doi.org/10.1021/la049632f
https://doi.org/10.1021/la704067z
https://doi.org/10.1021/la704067z
https://doi.org/10.1021/la704067z
https://doi.org/10.1021/la704067z
https://doi.org/10.1149/2.003310jes
https://doi.org/10.1149/2.003310jes
https://doi.org/10.1149/2.003310jes
https://doi.org/10.1149/2.003310jes
https://doi.org/10.1039/b206883d
https://doi.org/10.1039/b206883d
https://doi.org/10.1039/b206883d
https://doi.org/10.1039/b206883d
https://doi.org/10.1021/la1019247
https://doi.org/10.1021/la1019247
https://doi.org/10.1021/la1019247
https://doi.org/10.1021/la1019247
https://doi.org/10.1016/j.carbon.2006.04.015
https://doi.org/10.1016/j.carbon.2006.04.015
https://doi.org/10.1016/j.carbon.2006.04.015
https://doi.org/10.1016/j.carbon.2006.04.015
https://doi.org/10.1021/la061092u
https://doi.org/10.1021/la061092u
https://doi.org/10.1021/la061092u
https://doi.org/10.1021/la061092u
https://doi.org/10.1111/j.1151-2916.1986.tb07448.x
https://doi.org/10.1111/j.1151-2916.1986.tb07448.x
https://doi.org/10.1111/j.1151-2916.1986.tb07448.x
https://doi.org/10.1111/j.1151-2916.1986.tb07448.x
https://doi.org/10.1016/j.jmps.2010.07.014
https://doi.org/10.1016/j.jmps.2010.07.014
https://doi.org/10.1016/j.jmps.2010.07.014
https://doi.org/10.1016/j.jmps.2010.07.014
https://doi.org/10.1016/j.actamat.2009.08.008
https://doi.org/10.1016/j.actamat.2009.08.008
https://doi.org/10.1016/j.actamat.2009.08.008
https://doi.org/10.1016/j.actamat.2009.08.008
https://doi.org/10.1039/C7CC03306K
https://doi.org/10.1039/C7CC03306K
https://doi.org/10.1039/C7CC03306K
https://doi.org/10.1039/C7CC03306K
https://doi.org/10.1209/0295-5075/89/66001
https://doi.org/10.1209/0295-5075/89/66001
https://doi.org/10.1209/0295-5075/89/66001
https://doi.org/10.1209/0295-5075/89/66001
https://doi.org/10.1021/acs.langmuir.6b00923
https://doi.org/10.1021/acs.langmuir.6b00923
https://doi.org/10.1021/acs.langmuir.6b00923
https://doi.org/10.1021/acs.langmuir.6b00923
https://doi.org/10.1515/zpch-2014-0542
https://doi.org/10.1515/zpch-2014-0542
https://doi.org/10.1515/zpch-2014-0542
https://doi.org/10.1515/zpch-2014-0542
https://doi.org/10.1209/0295-5075/109/56002
https://doi.org/10.1209/0295-5075/109/56002
https://doi.org/10.1209/0295-5075/109/56002
https://doi.org/10.1209/0295-5075/109/56002

GOR, HUBER, AND WEISSMULLER

PHYSICAL REVIEW MATERIALS 2, 086002 (2018)

[72] E. Rolley, N. Garroum, and A. Grosman, Phys. Rev. B 95,
064106 (2017).

[73] J. Walton, D. Tildesley, J. Rowlinson, and J. Henderson, Mol.
Phys. 48, 1357 (1983).

[74] B. Coasne, Y. Long, and K. Gubbins, Mol. Simul. 40, 721
(2014).

[75] P. B. Balbuena, D. Berry, and K. E. Gubbins, J. Phys. Chem.
97,937 (1993).

[76] G.Y. Gor and N. Bernstein, Phys. Chem. Chem. Phys. 18,9788
(2016).

[77] C. Balzer, A. M. Waag, S. Gehret, G. Reichenauer, R. Morak,
L. Ludescher, O. Paris, F. Putz, M. Elsaesser, N. Hiising et al.,
Langmuir 33, 5592 (2017).

[78] T. Horikawa, D. D. Do, and D. Nicholson, Adv. Colloid
Interface Sci. 169, 40 (2011).

[79] P. A. Monson, Microporous Mesoporous Mater. 160, 47 (2012).

[80] M. Thommes and K. A. Cychosz, Adsorption 20, 233 (2014).

[81] D. Kramer and J. Weissmiiller, Surf. Sci. 601, 3042 (2007).

[82] J. W. Cahn, Thermodynamics of Solid and Fluid Surfaces
(ASM, Metals Park, Ohio, 1978), pp. 3-23.

[83] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics
for Finite Element Analysis (Cambridge University Press,
Cambridge, 2008).

[84] M. Gurtin and A. I. Murdoch, Arch. Ration. Mech. Anal. 57,
291 (1975).

[85] M. E. Gurtin, J. Weissmiiller, and F. Larché, Philos. Mag. A
78, 1093 (1998).

[86] The use of Lagrangian coordinates implies that E is an “Euler
strain” and that S is a “second Piola-Kirchhoff stress”; see
Ref. [83] and discussion in Ref. [137].

[87] P. Miiller and A. Saul, Surf. Sci. Rep. 54, 157 (2004).

[88] P. Bak, Rep. Prog. Phys. 45, 587 (1982).

[89] J. P. Rabe and S. Buchholz, Science 253, 424 (1991).

[90] B. M. Ocko, O. M. Magnussen, J. X. Wang, and T. Wandlowski,
Phys. Rev. B 53, R7654(R) (1996).

[91] O. M. Magnussen, Chem. Rev. 102, 679 (2002).

[92] K. Tamura, J. X. Wang, R. R. Adzic, and B. M. Ocko, J. Phys.
Chem. B 108, 1992 (2004).

[93] G. R. Stafford and U. Bertocci, J. Phys. Chem. B 110, 15493
(2006).

[94] E. A. Ustinov, J. Chem. Phys. 142, 074701 (2015).

[95] A. J. Bard and L. R. Faulkner, Electrochemical Methods,
Fundamentals and Applications (Wiley, New York, 1980).

[96] P. Huber and K. Knorr, Phys. Rev. B 60, 12657 (1999).

[97] P. Huber, D. Wallacher, and K. Knorr, Phys. Rev. B 60, 12666
(1999).

[98] A. Henschel, P. Kumar, T. Hofmann, K. Knorr, and P. Huber,
Phys. Rev. E 79, 032601 (2009).

[99] D. Wallacher, R. Ackermann, P. Huber, M. Enderle, and
K. Knorr, Phys. Rev. B 64, 184203 (2001).

[100] S. Gruener and P. Huber, Phys. Rev. Lett. 103, 174501 (2009).

[101] A. V. Kityk, K. Knorr, and P. Huber, Phys. Rev. B 80, 035421
(2009).

[102] J. Martin, J. Maiz, J. Sacristan, and C. Mijangos, Polymer 53,
1149 (2012).

[103] J. N. Israelachvili and R. M. Pashley, Nature (London) 306,
249 (1983).

[104] A.Hodgson and S. Haq, Surf. Sci. Rep. 64, 381 (2009).

[105] The variation in y during adsorption in a porous solid includes
terms fde. Equation (13) neglects these terms. This is justified

inasmuch as the strain in capillary condensation scenarios
is in the order of 10™* or less, while surface stress is the
order of 1 N/m. The associated Ay is then in the order of
fe ~ 0.1 mN/m, considerably smaller than the direct effect of
adsorption. Compare strain values in our Fig. 6 and a previous
argument in the same sense in Sec. 3 of Ref. [138].

[106] S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc.
60, 309 (1938).

[107] R. N. Viswanath and J. Weissmiiller, Acta Mater. 61, 6301
(2013).

[108] Q. Deng and J. Weissmiiller, Langmuir 30, 10522 (2014).

[109] F. Weigend, J. Weissmiiller, and F. Evers, Small 2, 1497
(2006).

[110] J. Weissmiiller, Electrocapillarity of Solids and its Impact
on Heterogeneous Catalysis, Advances in Electrochemical
Science and Engineering (Wiley-VCH, Weinheim, Germany,
2013), pp. 163-220.

[111] J. M. Albina, C. Elsisser, J. Weissmiiller, P. Gumbsch, and Y.
Umeno, Phys. Rev. B 85, 125118 (2012).

[112] G. R. Stafford and U. Bertocci, J. Phys. Chem. C 113, 261
(2009).

[113] Q. Deng, V. Gopal, and J. Weissmiiller, Angew. Chem. 127,
13173 (2015).

[114] T. Bligaard, J. Ngrskov, S. Dahl, J. Matthiesen, C. Christensen,
and J. Sehested, J. Catal. 224, 206 (2004).

[115] S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and
Porosity (Academic, London, 1982).

[116] J. Weissmiiller and J. W. Cahn, Acta Mater. 45, 1899
(1997).

[117] The extended form of Eq. (33) was pointed out to one of the
authors (J. W.) in 1997 by M. E. Gurtin. A derivation is shown
in the Appendix.

[118] R. A. Toupin, Arch. Ration. Mech. Anal. 18, 83 (1965).

[119] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrick-
son, B. F. Chmelka, and G. D. Stucky, Science 279, 548
(1998).

[120] P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer,
G. D. Stucky, and B. F. Chmelka, Chem. Mater. 14, 3284
(2002).

[121] F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew.
Chem., Int. Ed. 45, 3216 (2006).

[122] C. Kuster, B. Reinhardt, M. Froba, and D. Enke, Z. Anorg.
Allg. Chem. 640, 565 (2014).

[123] J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B.
Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin,
Science 312, 1034 (20006).

[124] V. Presser, M. Heon, and Y. Gogotsi, Adv. Funct. Mater. 21,
810 (2011).

[125] H. Masuda and K. Fukuda, Science 268, 1466 (1995).

[126] M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K.
Nielsch, J. Schilling, J. Choi, and U. Gosele, Science 296, 1997
(2002).

[127] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and
P. Schmuki, Angew. Chem., Int. Ed. 44, 7463 (2005).

[128] L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

[129] V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856
(1991).

[130] We have verified that similar conclusions would be obtained if
M were taken as pinned at the edge where W meets the outer
surface of the membrane.

086002-16


https://doi.org/10.1103/PhysRevB.95.064106
https://doi.org/10.1103/PhysRevB.95.064106
https://doi.org/10.1103/PhysRevB.95.064106
https://doi.org/10.1103/PhysRevB.95.064106
https://doi.org/10.1080/00268978300100971
https://doi.org/10.1080/00268978300100971
https://doi.org/10.1080/00268978300100971
https://doi.org/10.1080/00268978300100971
https://doi.org/10.1080/08927022.2013.829227
https://doi.org/10.1080/08927022.2013.829227
https://doi.org/10.1080/08927022.2013.829227
https://doi.org/10.1080/08927022.2013.829227
https://doi.org/10.1021/j100106a021
https://doi.org/10.1021/j100106a021
https://doi.org/10.1021/j100106a021
https://doi.org/10.1021/j100106a021
https://doi.org/10.1039/C6CP00051G
https://doi.org/10.1039/C6CP00051G
https://doi.org/10.1039/C6CP00051G
https://doi.org/10.1039/C6CP00051G
https://doi.org/10.1021/acs.langmuir.7b00468
https://doi.org/10.1021/acs.langmuir.7b00468
https://doi.org/10.1021/acs.langmuir.7b00468
https://doi.org/10.1021/acs.langmuir.7b00468
https://doi.org/10.1016/j.cis.2011.08.003
https://doi.org/10.1016/j.cis.2011.08.003
https://doi.org/10.1016/j.cis.2011.08.003
https://doi.org/10.1016/j.cis.2011.08.003
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1007/s10450-014-9606-z
https://doi.org/10.1007/s10450-014-9606-z
https://doi.org/10.1007/s10450-014-9606-z
https://doi.org/10.1007/s10450-014-9606-z
https://doi.org/10.1016/j.susc.2007.05.005
https://doi.org/10.1016/j.susc.2007.05.005
https://doi.org/10.1016/j.susc.2007.05.005
https://doi.org/10.1016/j.susc.2007.05.005
https://doi.org/10.1007/BF00261375
https://doi.org/10.1007/BF00261375
https://doi.org/10.1007/BF00261375
https://doi.org/10.1007/BF00261375
https://doi.org/10.1080/01418619808239977
https://doi.org/10.1080/01418619808239977
https://doi.org/10.1080/01418619808239977
https://doi.org/10.1080/01418619808239977
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1126/science.253.5018.424
https://doi.org/10.1126/science.253.5018.424
https://doi.org/10.1126/science.253.5018.424
https://doi.org/10.1126/science.253.5018.424
https://doi.org/10.1103/PhysRevB.53.R7654
https://doi.org/10.1103/PhysRevB.53.R7654
https://doi.org/10.1103/PhysRevB.53.R7654
https://doi.org/10.1103/PhysRevB.53.R7654
https://doi.org/10.1021/cr000069p
https://doi.org/10.1021/cr000069p
https://doi.org/10.1021/cr000069p
https://doi.org/10.1021/cr000069p
https://doi.org/10.1021/jp0368435
https://doi.org/10.1021/jp0368435
https://doi.org/10.1021/jp0368435
https://doi.org/10.1021/jp0368435
https://doi.org/10.1021/jp062689l
https://doi.org/10.1021/jp062689l
https://doi.org/10.1021/jp062689l
https://doi.org/10.1021/jp062689l
https://doi.org/10.1063/1.4908035
https://doi.org/10.1063/1.4908035
https://doi.org/10.1063/1.4908035
https://doi.org/10.1063/1.4908035
https://doi.org/10.1103/PhysRevB.60.12657
https://doi.org/10.1103/PhysRevB.60.12657
https://doi.org/10.1103/PhysRevB.60.12657
https://doi.org/10.1103/PhysRevB.60.12657
https://doi.org/10.1103/PhysRevB.60.12666
https://doi.org/10.1103/PhysRevB.60.12666
https://doi.org/10.1103/PhysRevB.60.12666
https://doi.org/10.1103/PhysRevB.60.12666
https://doi.org/10.1103/PhysRevE.79.032601
https://doi.org/10.1103/PhysRevE.79.032601
https://doi.org/10.1103/PhysRevE.79.032601
https://doi.org/10.1103/PhysRevE.79.032601
https://doi.org/10.1103/PhysRevB.64.184203
https://doi.org/10.1103/PhysRevB.64.184203
https://doi.org/10.1103/PhysRevB.64.184203
https://doi.org/10.1103/PhysRevB.64.184203
https://doi.org/10.1103/PhysRevLett.103.174501
https://doi.org/10.1103/PhysRevLett.103.174501
https://doi.org/10.1103/PhysRevLett.103.174501
https://doi.org/10.1103/PhysRevLett.103.174501
https://doi.org/10.1103/PhysRevB.80.035421
https://doi.org/10.1103/PhysRevB.80.035421
https://doi.org/10.1103/PhysRevB.80.035421
https://doi.org/10.1103/PhysRevB.80.035421
https://doi.org/10.1016/j.polymer.2012.01.028
https://doi.org/10.1016/j.polymer.2012.01.028
https://doi.org/10.1016/j.polymer.2012.01.028
https://doi.org/10.1016/j.polymer.2012.01.028
https://doi.org/10.1038/306249a0
https://doi.org/10.1038/306249a0
https://doi.org/10.1038/306249a0
https://doi.org/10.1038/306249a0
https://doi.org/10.1016/j.surfrep.2009.07.001
https://doi.org/10.1016/j.surfrep.2009.07.001
https://doi.org/10.1016/j.surfrep.2009.07.001
https://doi.org/10.1016/j.surfrep.2009.07.001
https://doi.org/10.1021/ja01269a023
https://doi.org/10.1021/ja01269a023
https://doi.org/10.1021/ja01269a023
https://doi.org/10.1021/ja01269a023
https://doi.org/10.1016/j.actamat.2013.07.013
https://doi.org/10.1016/j.actamat.2013.07.013
https://doi.org/10.1016/j.actamat.2013.07.013
https://doi.org/10.1016/j.actamat.2013.07.013
https://doi.org/10.1021/la501353g
https://doi.org/10.1021/la501353g
https://doi.org/10.1021/la501353g
https://doi.org/10.1021/la501353g
https://doi.org/10.1002/smll.200600232
https://doi.org/10.1002/smll.200600232
https://doi.org/10.1002/smll.200600232
https://doi.org/10.1002/smll.200600232
https://doi.org/10.1103/PhysRevB.85.125118
https://doi.org/10.1103/PhysRevB.85.125118
https://doi.org/10.1103/PhysRevB.85.125118
https://doi.org/10.1103/PhysRevB.85.125118
https://doi.org/10.1021/jp8080063
https://doi.org/10.1021/jp8080063
https://doi.org/10.1021/jp8080063
https://doi.org/10.1021/jp8080063
https://doi.org/10.1002/ange.201504715
https://doi.org/10.1002/ange.201504715
https://doi.org/10.1002/ange.201504715
https://doi.org/10.1002/ange.201504715
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/S1359-6454(96)00314-X
https://doi.org/10.1016/S1359-6454(96)00314-X
https://doi.org/10.1016/S1359-6454(96)00314-X
https://doi.org/10.1016/S1359-6454(96)00314-X
https://doi.org/10.1007/BF00282253
https://doi.org/10.1007/BF00282253
https://doi.org/10.1007/BF00282253
https://doi.org/10.1007/BF00282253
https://doi.org/10.1126/science.279.5350.548
https://doi.org/10.1126/science.279.5350.548
https://doi.org/10.1126/science.279.5350.548
https://doi.org/10.1126/science.279.5350.548
https://doi.org/10.1021/cm011209u
https://doi.org/10.1021/cm011209u
https://doi.org/10.1021/cm011209u
https://doi.org/10.1021/cm011209u
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/zaac.201300456
https://doi.org/10.1002/zaac.201300456
https://doi.org/10.1002/zaac.201300456
https://doi.org/10.1002/zaac.201300456
https://doi.org/10.1126/science.1126298
https://doi.org/10.1126/science.1126298
https://doi.org/10.1126/science.1126298
https://doi.org/10.1126/science.1126298
https://doi.org/10.1002/adfm.201002094
https://doi.org/10.1002/adfm.201002094
https://doi.org/10.1002/adfm.201002094
https://doi.org/10.1002/adfm.201002094
https://doi.org/10.1126/science.268.5216.1466
https://doi.org/10.1126/science.268.5216.1466
https://doi.org/10.1126/science.268.5216.1466
https://doi.org/10.1126/science.268.5216.1466
https://doi.org/10.1126/science.1071210
https://doi.org/10.1126/science.1071210
https://doi.org/10.1126/science.1071210
https://doi.org/10.1126/science.1071210
https://doi.org/10.1002/anie.200502781
https://doi.org/10.1002/anie.200502781
https://doi.org/10.1002/anie.200502781
https://doi.org/10.1002/anie.200502781
https://doi.org/10.1063/1.103561
https://doi.org/10.1063/1.103561
https://doi.org/10.1063/1.103561
https://doi.org/10.1063/1.103561
https://doi.org/10.1063/1.104512
https://doi.org/10.1063/1.104512
https://doi.org/10.1063/1.104512
https://doi.org/10.1063/1.104512

ELASTOCAPILLARITY IN NANOPORES: SORPTION ...

PHYSICAL REVIEW MATERIALS 2, 086002 (2018)

[131] Our BET surface area slightly differs from the value
203.0 m?/g reported in Ref. [77], since we had to use a wider
pressure range for fitting the BET parameters.

[132] Values of ['B- at the interface of liquid nitrogen with silica,
for use with Eq. (26), are not known. We have inspected the
density data, based on grand canonical Monte Carlo simulation
for another simple fluid, argon, in cylindrical silica pores, in
which the fluid-fluid and solid-fluid interactions are represented
by the Lennard-Jones potential [139]. The decrease in the mean
density of the liquid with diminishing pore radius suggests
a negative superficial excess of matter, about f‘FL =—-1.7x
10~° mol/m? or —0.12 dense-packed atomic monolayers. In
view of Eq. (26), and applied to the numerical example of
Fig. 6, this would imply a decrease in f by 0.75 mJ/m? between
capillary condensation and saturation. That variation is small
compared to the variation of the capillary terms of Fig. 6(a) and
so the effect may be neglected in our example.

[133] The estimates of ¢ on graphene are based on data for adsorption
enthalpy versus strain in Ref. [140] along with a thermody-

namic Maxwell relation that links that data to ¢ (see Ref. [141])
and, hence, to ¢.

[134] G. Giinther, J. Prass, O. Paris, and M. Schoen, Phys. Rev. Lett.
101, 086104 (2008).

[135] J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz,
Phys. Rev. Lett. 71, 1216 (1993).

[136] V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V.
Kityk, Phys. Rev. B 67, 144105 (2003).

[137] B. A. M. Elsner, S. Miiller, S. Bargmann, and J. Weissmiiller,
Acta Mater. 124, 468 (2017).

[138] J. Lipkowski, W. Schmickler, D. M. Kolb, and R. Parsons, J.
Electroanal. Chem. 452, 193 (1998).

[139] C. D. Dobrzanski, M. A. Maximov, and G. Y. Gor, J. Chem.
Phys. 148, 054503 (2018).

[140] D. Dutta, B. C. Wood, S. Y. Bhide, K. G. Ayappa,
and S. Narasimhan, J. Phys. Chem. C 118, 7741
(2014).

[141] J. Weissmiiller, Nat. Catal. 1, 238 (2018).

086002-17


https://doi.org/10.1103/PhysRevLett.101.086104
https://doi.org/10.1103/PhysRevLett.101.086104
https://doi.org/10.1103/PhysRevLett.101.086104
https://doi.org/10.1103/PhysRevLett.101.086104
https://doi.org/10.1103/PhysRevLett.71.1216
https://doi.org/10.1103/PhysRevLett.71.1216
https://doi.org/10.1103/PhysRevLett.71.1216
https://doi.org/10.1103/PhysRevLett.71.1216
https://doi.org/10.1103/PhysRevB.67.144105
https://doi.org/10.1103/PhysRevB.67.144105
https://doi.org/10.1103/PhysRevB.67.144105
https://doi.org/10.1103/PhysRevB.67.144105
https://doi.org/10.1016/j.actamat.2016.10.066
https://doi.org/10.1016/j.actamat.2016.10.066
https://doi.org/10.1016/j.actamat.2016.10.066
https://doi.org/10.1016/j.actamat.2016.10.066
https://doi.org/10.1016/S0022-0728(98)00136-3
https://doi.org/10.1016/S0022-0728(98)00136-3
https://doi.org/10.1016/S0022-0728(98)00136-3
https://doi.org/10.1016/S0022-0728(98)00136-3
https://doi.org/10.1063/1.5008490
https://doi.org/10.1063/1.5008490
https://doi.org/10.1063/1.5008490
https://doi.org/10.1063/1.5008490
https://doi.org/10.1021/jp411338a
https://doi.org/10.1021/jp411338a
https://doi.org/10.1021/jp411338a
https://doi.org/10.1021/jp411338a
https://doi.org/10.1038/s41929-018-0061-1
https://doi.org/10.1038/s41929-018-0061-1
https://doi.org/10.1038/s41929-018-0061-1
https://doi.org/10.1038/s41929-018-0061-1



