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Machine learning the band gap properties of kesterite I2-II-IV-V4 quaternary compounds
for photovoltaics applications
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Kesterite I2-II-IV-V4 semiconductors are promising solar absorbers for photovoltaics applications. The band
gap and its character, either direct or indirect, are fundamental properties determining photovoltaic-device
efficiency. We use a combination of accurate first-principles calculations and machine learning to predict the
properties of the band gap for a large number of kesterite I2-II-IV-V4 semiconductors. In determining the
magnitude of the fundamental gap, we compare results for a number of machine-learning models, and achieve a
root mean squared error as low as 283 meV; the best results are achieved using support-vector regression with a
radial-bias kernel. This error is well within the uncertainty of even the most advanced first-principles methods for
calculating semiconductor band gaps. Predicting the direct-indirect property of the band gap is more challenging.
After significant feature engineering, we are able to train a classifier that predicts the nature of the band gap
with an accuracy of 89% using logistic regression. Using these trained models, the band gap properties of 1568
kesterite I2-II-IV-V4 compounds are predicted. We find 717 compounds with band gaps in the range 0.5–2.5 eV
that can potentially act as solar absorbers and 242 materials with a band gap in the “optimum range” of 1.2–1.8 eV.
The stability of these 242 compounds is assessed by calculating the energy above hull using the Materials Project
database, and the band gaps are verified using hybrid functional calculations; in the end, we identify 25 compounds
that are expected to be synthesizable and have a band gap in the range 1.2–1.8 eV—most of which are previously
unexplored. These results will be useful in the materials engineering of efficient photovoltaic devices.
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I. INTRODUCTION

Quaternary I2-II-IV-VI4 semiconductors offer a unique
opportunity in materials engineering due to the vast design
space [1,2]. The different cation-anion combinations exhibit
band gaps spanning the visible spectrum. This tunability in the
band gap upon cation and anion mutation has led to intense
interest in these materials for applications as solar absorbers
for photovoltaic devices [3–5].

For photovoltaics applications, the band gap is a fun-
damental property determining efficiency, with band gaps
around 1.5 eV being the most efficient solar absorbers [6].
Moreover, the direct-indirect character of the band gap is
of a fundamental importance: while direct gap materials
are typically stronger absorbers than indirect materials, they
may also have shorter photocarrier lifetimes and suffer from
carrier recombination [7]. Given the complex design space of
I2-II-IV-VI4 compounds, it becomes difficult to characterize all
of the possible cation-anion combinations, both theoretically
and experimentally. There exists multiple possibilities for both
the cation ordering, including kesterite and stannite, as well as
the crystal symmetry, since the geometry may be derived from
either the zinc blende or wurtzite phase [8]; consequently, there
are thousands if not tens of thousands of possible I2-II-IV-VI4

materials.
From a theoretical perspective, the calculation of semicon-

ductor band gaps within traditional density functional theory
(DFT) suffers from the well-known underestimation error
[9]. This can be overcome with more accurate theoretical

approaches such as screened hybrid functionals [10] or many-
body perturbation theory (GW ) [11]. However, these are far
more computationally expensive, and therefore are difficult to
implement on a large set of materials. Indeed, the available
large databases of semiconductor band gaps mostly rely on
traditional DFT calculations within the generalized-gradient
approximation (GGA) [12–14].

One possible approach to overcome this challenge is to use
machine learning to generate or improve predictions [15,16].
By performing accurate high-level first-principles calculations
on a subset of I2-II-IV-VI4 compounds, the results can be used
to train a machine-learning model to predict the properties of
the remaining materials in the design space. Lee et al. used
machine learning to predict the band gaps of 156 AX binary
compounds using element-specific descriptors including the
band gap from low-level DFT calculations, achieving a root
mean squared error (RMSE) of 180 meV with support-vector
regression [17]. Pilania et al. used kernel-ridge regression to
predict the band gaps of 1306 double perovskites and achieved
a RMSE of 80 meV using a 16-dimensional set of element-
specific descriptors [18]. Ward et al. proposed a large set of
140 universal descriptors to predict band gaps from a very large
data set, and identified new possible solar absorbers [19]; it was
also found that model accuracy was improved by partitioning
the data set into groups of similar materials, suggesting that
machine-learning predictions would work best on isostructural
and isoelectronic materials. To the best of our knowledge,
classification of band gaps as either direct or indirect has not
been attempted from a machine-learning perspective.
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FIG. 1. Zinc-blende-based kesterite structure for a I2-II-IV-VI4

compound. The cations with valence I (c-I), II (c-II), and IV (c-IV)
are indicated by blue, red, and green spheres, respectively. The anion
has a valence VI (a-VI) and is indicated by a yellow sphere.

In the present paper, we study I2-II-IV-VI4 semiconductors
in the zinc-blende-based kesterite structure. This provides the
opportunity to study a large number of materials systems that
are both isostructural and isoelectronic. We consider 1568
possible cation-anion combinations, and perform accurate
hybrid functional calculations for the band gaps on a randomly
selected subset of 200 materials; these results are then used to
train various machine-learning models. Using support-vector
regression with a radial bias kernel, we are able to predict
the magnitude of the fundamental gap with a RMSE of
283 meV, using only three simple, element-specific descriptors
per element in the compound. We find that classification of
these materials as direct or indirect semiconductors is more
challenging. After substantial feature engineering, we train
a classifier with an accuracy of 89% using logistic regres-
sion. The trained models are used to predict the band gap
properties for all 1568 compounds, and to identify potential
solar absorbers; these results will be useful in the design
and engineering of kesterite I2-II-IV-VI4 semiconductors for
photovoltaics applications.

II. METHODOLOGY

A. Materials systems

The kesterite structure is derived via cation mutation of the
II-VI binary zinc blende phase, and is shown in Fig. 1. For
the I2-II-IV-VI4 compounds, we consider the following: I =
Li, Na, K, Rb, Cs, Cu, Ag; II = Be, Mg, Ca, Sr, Ba, Zn, Cd,
Hg; IV = C, Si, Ge, Sn, Ti, Zr, Hf; VI = O, S, Se, Te. This
provides a total of 1568 compounds. While a number of these
compounds will not be thermodynamically stable, they are still
useful in training the machine-learning models. We randomly
select a subset of 200 materials, and calculate their band gap
properties.

B. First-principles calculations

Our calculations are performed in the Vienna Ab initio
Simulation Package (VASP) [20], using density functional
theory (DFT) within the generalized Kohn-Sham scheme [21].
The valence electrons are separated from the core by use of
projector augmented wave (PAW) potentials [22].

The lattice parameters and the internal ionic coordinates
are determined by a full relaxation of the cell using the PBEsol
functional [23]; PBEsol has been shown to give highly accurate
geometries for zinc blende semiconductors [24]. Once the
geometry has been determined, we perform a fixed-point cal-
culation of the band gap using the screened hybrid functional of
Heyd, Scuseria, and Ernzerhof (HSE) [25,26]. In this approach,
the short-range exchange potential is calculated by mixing a
fraction of nonlocal Hartree-Fock exchange with the GGA
of Perdew, Burke, and Ernzerhof (PBE) [27]. The long-range
exchange potential and the correlation potential are calculated

with PBE. The screening parameter is set to 0.2 Å
−1

and the
mixing parameter to α = 0.25. The HSE functional provides
highly accurate semiconductor band gaps when compared to
traditional DFT [10]. For the stability analysis in Sec. III C, we
use the PBE functional in the formation enthalpy calculations
to be more consistent with the Materials Project database [13].

The kesterite phase has an eight-atom body-centered tetrag-
onal (BCT) primitive cell. For the geometry relaxation within
PBEsol, an 8 × 8 × 8 Monkhorst-Pack k-point grid is used for
integrations over the Brillouin zone [28]. For determination of
the band gap within HSE, we perform a full calculation along
the high-symmetry path in the BCT Brillouin zone [29]. We use
a plane wave cutoff of 400 eV for the sulfides, selenides, and
tellurides, and 500 eV for the oxides. For the selenides and
tellurides, the spin-orbit splitting (�SO) at the valence band
maximum is neglected; however, the splitting only affects the
band gap by �SO/3, and therefore we expect an error less than
100 meV in most cases [30].

C. Machine-learning models

1. Regression

The magnitude of the band gap can be predicted using a
number of regression models. Regression aims to determine
a relationship between the features of each compound, called
descriptors (discussed below), and the band gap of the material.
We present the key feature of each model below.

Linear and support-vector regression. Consider a linear
function y = 〈ω, x〉 + b, where ω and x are vectors and 〈., .〉
denotes a dot product; for a set of features xi and outcomes yi ,
an ordinary least squares regression will attempt to fit ω and
b to minimize the sum of squares

∑
i [yi − (〈ω, xi〉 + b)]2.

Support-vector regression introduces the concept of a margin
ε, and attempts to fit a curve such that all of the points
lie within the margin. Support-vector regression also favors
curve “flatness,” by reducing the sensitivity to outliers. The
problem of support-vector regression is typically written in
the following way [31]:

minimize : ||ω2||,
subject to : |yi − (〈ω, xi〉 + b)| � ε. (1)
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Here, minimizing ||ω2|| maximizes the flatness in the curve.
In many cases, it is not possible to fit a curve such that
|yi − (〈ω, xi〉 + b)| � ε, and therefore additional parameters
are introduced to construct a so-called “soft margin.” There is
a trade-off between the softness in the margin and the flatness
in the curve that is determined by a constant known as the C

parameter, and this must be tuned to optimize predictions.
In addition to linear support-vector machines, a nonlinear

transformation may be applied on the feature space by the so-
called “kernel trick.” We implement support-vector regression
with a radial bias function. For two data points x and x ′, this
function is defined as follows:

R(x, x ′) = exp(−γ ||x − x ′||). (2)

The parameter γ determines how quickly R decays with the
distance between x and x ′ in the feature space; γ can be tuned
to optimize predictions.

Tree-based methods. The most simple tree-based regression
is a decision tree regressor [32]. For a set of inputs xi and
outcomes yi , the decision tree will split regions in the feature
space into two groups, R1 and R2, having mean outcomes ŷ1

and ŷ2, in such a way that minimizes the residual sum squared
(RSS),

RSS =
∑
i∈R1

(yi − ŷ1)2 +
∑
i∈R2

(yi − ŷ2)2. (3)

After the initial split, the tree will continue to make further
optimum splits in the feature space until some convergence
criteria is met, and the remaining unsplit groups Rt are called
terminal nodes, or leaves. The total function to minimize for
the decision tree regressor (DTR) is the following,

DTR =
T∑

t=1

∑
i∈Rt

(yi − ŷt )
2 + γ T , (4)

where T is the number of terminal nodes and ŷt is the mean
of all yi in Rt . The second term γ T is a penalty that prevents
overfitting for more complex trees.

Decision trees are computationally efficient and easy to
interpret, however often suffer from over fitting and inaccurate
predictions. Ensemble-tree based methods are typically used
to overcome the shortcomings of simple decision trees. One
such method is the random forest regressor [33]. Random forest
regression works using the technique of bootstrap aggregating,
in which a random subset of xi and yi are chosen to train a
decision tree; this process is repeated to fit many trees, and
then predictions can be made by averaging the results from
the ensemble of regression trees. The number of randomly
selected decision trees to be fitted is a parameter that is
typically tuned to optimize predictions. Another ensemble
method is the gradient-boosted regression tree [34]. Boosting
is a technique in which many individual decision trees are
trained sequentially; each tree is trained from the residuals
of the previous tree, as defined by Eq. (4). In this way, the
new tree that is added to the ensemble is the one that best
minimizes the residuals. Ensemble methods such as random
forest and boosting typically correct for overfitting, and reduce
the sensitivity to noise in the training set.

2. Classification

We train a binary direct-indirect band gap classifier using
logistic regression. In this approach, the model can predict the
probability of a binary outcome, and makes predictions on the
outcome by determining which is more likely. The logistic
function L(x) is an S-shaped curved that varies smoothly
between zero and 1; L(x) takes the vector of features x, and
if L(x) < 0.5, the classifier will predict a binary outcome
of zero; when L(x) > 0.5, the classifier predicts a binary
outcome of 1. Similar to linear regression, which attempts to
fit the optimum coefficients for the linear equation 〈ω, x〉 +
b, logistic regression is fit by optimizing the coefficients
in L(x),

L(x) = 1

1 + exp[−(〈ω, x〉 + b)]
, (5)

by minimizing the number of incorrect classifications on the
training data. In the present study, the binary outcomes are
direct-indirect rather than 0-1.

3. Feature space

A number of different features have been proposed as
predictors for materials properties [17–19,35]. In the present
work, we first use a simple set of element-specific features.
For each of the elements in the I2-II-IV-VI4 compound,
the electronegativity, ionic radius, and row in the Periodic
Table are used; this gives 12 features total per compound.
This 12-dimensional feature space works extremely well for
predicting the magnitude of the band gap using regression
techniques. However, this set of features performed poorly
when implemented in the direct-indirect band gap classifier,
and we had to perform substantial feature engineering, as will
be discussed in Sec. III B.

III. RESULTS AND DISCUSSION

Of the 200 compounds studied, 16 either did not have a
band gap, or did not converge at some stage of the calculation;
these were excluded from the fitting. The band gaps of the
remaining 184 I2-II-IV-VI4 compounds are used to train
the machine-learning models. We first discuss determination of
the magnitude of the fundamental gap using regression models.
Next, we will discuss training of a classifier to determine the
direct-indirect character of the gap.

A. Band gap regressor

A number of regression models are used to fit the mag-
nitude of the band gap. Where appropriate we performed
feature normalization, and performed a search over any tun-
able parameters to optimize the regressor. The accuracy of
the model is determined using 10-fold cross validation. The
accuracy of the model is assessed by analyzing the root mean
squared error (RMSE), and the R2 coefficient of determina-
tion. The results for each regression model are presented in
Table I.

Linear regression, which is the simplest model considered,
gave a RMSE of 0.59 eV. This error is larger than desired.
Support-vector regression with a linear kernel gave almost the
same error. However, upon training a support-vector machine
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TABLE I. Root mean squared error (RMSE) and R2 value for
machine-learning models based on 10-fold cross validation. Results
are shown for linear regression, support-vector regression with a
linear (SVR-L) and radial bias function (SVR-R) kernel, decision
tree, random forest, and boosted regression tree (Boosted reg. tree).

Model R2 RMSE (eV)

Linear regression 0.796 0.590
SVR-L 0.789 0.592
SVR-RBF 0.957 0.283
Decision tree 0.823 0.492
Random forest 0.874 0.435
Boosted reg. tree 0.934 0.358

with a radial bias kernel, this error is greatly reduced; we find
a RMSE of only 0.283 meV, and R2 of 0.957, suggesting an
excellent fit.

For the regression-tree-based methods, as expected, the
simple decision tree gives the largest RMSE; the RMSE is
reduced for the random forest regressor. The boosted regres-
sion tree gave the smallest RMSE of the tree-based methods.
Boosting leads to a substantial improvement when compared
to the simple decision tree; the boosted regressor has a RMSE
of only 358 meV and R2 = 0.934.

For the best model (nonlinear support vector machine), we
plot the RMSE as a function of the training set size in Fig. 2.
To generate this plot, we performed n-fold cross validation,
where increasing n leads to an increase in the size of the
training set. When the training set size is 124 (threefold cross
validation, the RMSE is 336 meV; increasing the training set
size by over 30% to 167 (10-fold cross validation), the RMSE
is 283 meV.

The error of only 283 meV for the nonlinear support-vector
machine is sufficiently small to make the model predictive in
nature. This error is around the uncertainty in the band gaps for
high-level first-principles calculations. Hybrid functionals rely
on choosing a mixing parameter that affects the calculated gap,
whereas the results from non-self-consistent GW calculations
are sensitive to the choice of starting wave functions [36];
the error in the calculated gaps based on these approaches is
typically 0.1–0.3 eV. Therefore, our fitted model provides a

FIG. 2. For a nonlinear support vector machine, the root mean
squared error (RMSE) is plotted for the band gap predictions as a
function of training set size. The error bars represent the standard
deviations in the RMSE from n-fold cross validation.

FIG. 3. Machine-learning predictions based on a support-vector
regressor with a radial bias kernel. Predictions for the training set
(green) circles and test set (red circles) are compared with the HSE
calculated values (blue line).

degree of accuracy as good as the input band gaps calculated
from first principles.

To visualize the accuracy of our band gap predictions, we
plot each predicted gap as a function of the calculated HSE
gap in Fig. 3, using the optimized support-vector machine with
a radial bias kernel. We partitioned the HSE-calculated band
gaps and features for the 184 compounds into a training and
test set; approximately 75% of the data points are used to train
the optimized machine learning model, and 25% are kept for
testing. Figure 3 shows that the model provides highly accurate
predictions for both the training and test set, when compared
to the HSE calculated values.

B. Direct-indirect classifier

Based on our HSE calculations, of the 184 gaps used for
fitting, 78 were found to be direct band gaps, and 108 were
indirect. The classifier is trained on the simple 12-dimensional
feature space that was used in regression. The model achieves
an accuracy score of 73%.

To provide better predictions, we preform feature engi-
neering. We attempted to construct differences, means, and
standard deviations from the features, as was implemented
previously [17]; however, this did not improve classifier per-
formance. Improved predictions were achieved by construct-
ing polynomial combinations of the original features in the
12-dimensional feature space. For second-order polynomial
combinations, the accuracy of the classifier is increased to 83%.
Using third-order polynomial features leads to a reduction in
the accuracy to 81%; increasing the degree of the polynomial
further led to a more dramatic reduction in classifier accuracy,
suggesting overfitting.

To address the issue of overfitting, while still having the
advantage of keeping some higher-order terms, we use the
feature-selection method with recursive feature extraction. In
this way, the high-dimensional polynomial feature space is
pruned to a small subset of features that have the highest
weighting in determining the outcome. Using feature ex-
traction by fitting the classifier with third-order polynomial
features, the accuracy score is increased to 89%; the optimum
number of features is 30. Our optimized binary classifier is
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TABLE II. Accuracy score for the direct-indirect classifier using
logistic regression. Results are shown for different models with varied
complexity in the feature space: (i) the simple 15-dimensional (15D)
feature space described in Sec. II C 3, (ii) second order polynomial
combinations (2nd PF) of the 15D set, (iii) third order polynomial
features (3rd PF), and (iv) third order polynomial features plus feature
extraction (3rd PF + FS).

Feature space Accuracy score

15D 73%
2nd PF 83%
3rd PF 81%
3rd PF + FS 89%

described by the following metrics for classification perfor-
mance: precision = 0.88; recall = 0.91; f 1 = 0.89. (See
Table II.)

C. Predicted results

1. Band gaps

With our fitted models, the band gaps of all 1568 materials
are predicted. In Fig. 4, the band gap distributions are presented
for the oxides, sulfides, selenides, and tellurides. Oxides
typically have larger band gaps with a mean band gap Eav

g =
3.82 eV; however, the distribution of the band gaps is over
a very wide energy range, with a standard deviation of σ =
1.47 eV. The trend moving down the Periodic Table for
the anions is for smaller band gaps and a more localized
distribution. For the tellurides, Eav

g = 1.78 eV and σ =
0.68 eV.

The direct-indirect predictions are shown in Fig. 5. Over all
materials studied, 70% are found to have indirect band gaps and
30% are direct-gap materials. The percentage of materials that
were direct or indirect was anion dependent; however, there
was no clear systematic trend.

FIG. 4. Violin plot for the predicted band gap distributions for
the oxides, sulfides, selenides, and tellurides. The width of each
distribution at a given energy indicates the number of materials with
a band gap around that energy.

FIG. 5. Direct-indirect distributions for the band gaps of the
oxides, sulfides, selenides, and tellurides.

Materials with a band gap in the range 0.5–2.5 eV are
suitable solar absorbers [6]; of the 1568 materials studied,
717 had a band gap in this range. For optimum photovoltaic
device performance, band gaps around 1.5 eV are optimum
[6]. We have identified 242 materials with a band gap in the
“optimum range” of 1.2–1.8 eV. The band gap properties of
all 1568 kesterite I2-II-IV-VI4 compounds are tabulated in the
Supplemental Material [37].

2. Material stability

In order to guide further experimental and theoretical work,
we have also assessed the stability of the 242 compounds pre-
dicted to have band gaps in the optimum range of 1.2–1.8 eV.
The stability was assessed by computing the enthalpy of
formation for each compound, and calculating the energy of
decomposition into other phases. This was achieved by making
use of the Materials Project database [13], which contains the
enthalpies of formation for hundreds of thousands of materials.
In this way, we can determine whether a material is stable,
metastable, or not stable.

Of the 242 compounds, 25 were found to be the ground
state for that stoichiometry with respect to the Materials
Project database; i.e., these materials are expected to be stable.
An additional nine materials had an energy above hull of
<0.1 eV/atom, and are expected to be metastable [38]. We
therefore predict that 34 of these kesterites with a band gap in
the optimum range should be synthesizable.

3. Band gap verification

As a final step, we verify the machine-learned band gaps of
these 34 stable compounds using first-principles calculations
with the HSE functional. In the end, we find that 25 of these
materials actually had a band gap with optimum range of
1.2–1.8 eV. In Table III, the band gap properties for these
25 materials are presented. We indicate the magnitude of
the fundamental gap, as well as the direct-indirect character.
Materials that are the ground state for that stoichiometry are
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TABLE III. Predicted properties for materials with band gaps in
the “optimum range” of 1.2–1.8 eV. The magnitude of the fundamental
gap (Eg), and the direct-indirect (Dir./Indir.) character of the gap
are presented. The stability is also indicated; for materials that are
metastable, the energy above hull (per atom) is indicated.

Eg Energy above
Material (eV) Dir./Indir. hull (eV) Stability

Li2BeGeTe4 1.419 Direct 0 Stable
Li2BeSnTe4 1.611 Direct 0 Stable
Rb2BeSnTe4 1.692 Direct 0 Stable
Rb2HgTiSe4 1.751 Indirect 0 Stable
Cs2HgTiSe4 1.753 Indirect 0 Stable
Cu2BeSiTe4 1.251 Indirect 0 Stable
Cu2BeGeSe4 1.210 Indirect 0 Stable
Cu2MgSiTe4 1.272 Indirect 0 Stable
Cu2SrSiSe4 1.793 Indirect 0 Stable
Cu2ZnSiSe4 1.751 Direct 0 Stable
Cu2ZnSnS4 1.238 Direct 0 Stable
Cu2CdSiSe4 1.534 Direct 0 Stable
Ag2BeSiTe4 1.527 Indirect 0 Stable
Ag2BeGeSe4 1.489 Direct 0 Stable
Ag2MgSiTe4 1.591 Direct 0 Stable
Ag2MgGeSe4 1.322 Direct 0 Stable
Ag2SrSiTe4 1.543 Indirect 0 Stable
Ag2ZnSiSe4 1.787 Direct 0 Stable
Ag2CdSiSe4 1.640 Indirect 0 Stable
Ag2HgSiSe4 1.218 Direct 0 Stable
Cs2BeSnTe4 1.708 Direct 0.004 Metastable
Na2BeSnTe4 1.783 Direct 0.014 Metastable
Ag2SrSnSe4 1.272 Direct 0.018 Metastable
Ag2CaSiTe4 1.720 Direct 0.061 Metastable
Cu2BeSnS4 1.657 Direct 0.086 Metastable

indicated to have an energy above hull of 0 eV. For materials
that are metastable, the energy above hull is indicated.

The 25 materials presented in Table III are largely un-
explored. We encourage other researchers, both theoretical
and experimental, to use the results in this manuscript as a
guide in the materials engineering of kesterite I2-II-IV-VI4

semiconductors.

IV. CONCLUSIONS

We have determined the band gap properties of 1568
kesterite I2-II-IV-V4 semiconductors using a combination of
first-principles calculations and machine learning. By per-
forming explicit hybrid-functional calculations on a subset
of 200 compounds, we trained machine learning models to
predict the magnitude and character of the fundamental gap. A
trained machine learning regressor based on a support-vector
machine could predict the magnitude of the gap with a RMSE
of 283 meV; a direct-indirect classifier was fit using logistic
regression, and has an accuracy of 89%. Our predictions
identify 242 materials with a band gap in the optimum range
of 1.2-1.8 eV, and we expect that 34 of these materials are
synthesizable; 25 of these materials actually had a band gap
in the range of 1.2–1.8 eV, as verified using first-principles
calculations with the HSE functional. These results will be
useful in the materials engineering of solar absorbers for
photovoltaic devices.
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