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Spin density stabilization of local distortions induced by a monovacancy in δ-Pu
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Density functional theory calculations elucidate crystallographic and electronic structural responses of the fcc
delta phase of plutonium (δ-Pu) to point defects. Discussed in this paper are responses that vary from a defect
exhibiting a local structural instability common in fcc metals to an unusual defect structure that mimics properties
similar to the monoclinic α phase. In the prior case, the existence of a self-vacancy when ionic relaxation is allowed
induces in the fcc lattice a local tetragonal instability in nearest-neighbor atoms, slight electronic charge increase,
and a spin-density decrease. However, in the latter case, after ionic relaxation, the defect is not recognizable as
the structure of a vacant site common to many simple fcc metals, but is a complex extended defect involving
neighboring atoms to collectively exhibit loss of lattice symmetry through formation of short Pu-Pu bonds and
associated narrow bands at the Fermi energy. Partial density of states (PDOS) indicates that these narrow bands
form as spectral weighting from the less energetic 6d electronic states is shifted to the 5f electronic states by
means of the spin density, which occupies states at the Fermi energy. The PDOS of a 5f system exhibiting narrow
bands at the Fermi energy is associated with the formation of an unusual defect structure in the lattice.

DOI: 10.1103/PhysRevMaterials.2.085005

I. INTRODUCTION

Knowledge of point defects in crystalline materials, includ-
ing formation energies and migration energies, has historically
originated in irradiation studies of thermodynamics, lattice
structure, and electronic structure experiments. In cryogenic
temperature experiments, the irradiation induces a cascade of
defects, including vacancy-interstitial pairs (known as Frenkel
pairs) and aggregates of the same, resulting in point defect
damage in the lattice, which are quenched and thus accumu-
lated, as there is insufficient thermal energy to assist in lattice
recovery. For most materials, the final fate of these defects
may be recombination/annihilation of the pair or it may be the
evolution of more complex defected structures. This depends
on important kinetic parameters such as temperature, time,
exposure dose, and dose rate. Therefore, controlling temper-
ature conditions enables restraints of the kinetic reactions to
relatively long-term effects in the lattice, where exploring the
origins lies in instantaneous processes. In many experimental
studies, cryogenic irradiation damage accumulation is typi-
cally followed by isochronal annealing studies (i.e., methodical
annealing with ever-increasing temperatures), which monitor
the evolution of various point defect populations thermally
driven to become further complicated structures (e.g., vacancy
clusters) or to dissociate and annihilate as the material seeks
recovery of the lattice towards a state that is relatively close to
the perfect lattice [1].

For most metallic elements, external irradiation experi-
ments form the basis of understanding the formation and
recovery of point defects. In plutonium (Pu), the most common
are produced via a roughly 5-MeV α-decay process. For Pu
crystalline solids, the α-decay process introduces damage to
the crystal lattice and is largely associated with the approxi-
mately 86-keV recoil energy of the ejected uranium atom. The
resultant cascade of defects has been calculated via molecular

dynamics to have a maximum of over 4000 equivalent Frenkel
pairs that stabilize after recombination-annihilation within
40 ps to a remaining 2000 Frenkel pairs [2–4].

Much of our knowledge about the primary damage state
in irradiated materials comes from molecular dynamics sim-
ulations. To date, there has not been an ab initio developed
interatomic potential for Pu. Molecular dynamics modelers
have employed modified embedded atom method (MEAM)
interatomic potentials fitted to only a limited number of
experimental data values, such as lattice constants and elastic
constants [5]. The MEAM potential has undergone further
parametrization to compare to experimental results for stacking
fault energy and elastic constants, but there still exists some
discrepancy between the theoretical and experimental results
[6,7]. Therefore, in order to improve atomistic modeling capa-
bilities and extend the timeframe of damage kinetic evolution
further in Pu, one must examine with more fundamental
approaches, such as electronic structure calculations of the
properties of defects that can both aid in understanding the
behavior of radiation-induced defects as well as provide crucial
information for improving interatomic potentials.

Why is Pu so unique? The nature of the 5f electrons of
elemental Pu strongly influences the internal energy, giving
rise to six allotropic phases at ambient pressure. Further, Pu
is unique among the actinides, known to lie at the boundary
of delocalized and localized electrons in the actinide series.
The significant 25% volume increase between the room-
temperature monoclinic α-phase and the high-temperature fcc
δ-phase has been hypothesized to be due to the presence of
magnetic moments [8]. In other actinide systems partially
filled 5f electronic valence bands are highly correlated with
conduction electron bands, with these correlations often man-
ifesting themselves as ordered, localized magnetic moments,
however not in δ-Pu. Stabilization of δ-Pu by substitutional
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gallium (Ga) is well known for its anomalous lack of mag-
netism [9]. Recent density functional theory (DFT) calcula-
tions revealed that the 6d electrons hybridized with the Ga
solute 4p electrons and Ga strongly desires a fully coordinated
nearest-neighbor (NN) shell (12 Pu atoms) that is locally con-
tracted [7,10]. The computational tools and capabilities of DFT
are well known to contribute to the theoretical understanding
necessary to interpret the behavior of defects in the δ-Pu lattice
[7], and elucidate some very intriguing behaviors that may
be related to experimental observations [11,12]. However, a
multiscale model would still be necessary to fully compare to
the length and timescales of experimental work.

Only recently have fluctuating magnetic moments been
observed in Ga stabilized δ-Pu via inelastic neutron scattering
and new questions regarding the correct theoretical model (i.e.,
density functional theory versus dynamical mean field theory)
necessary to realistically simulate δ-Pu have arisen [12–17].
Furthermore, McCall et al. has shown that radiation damage
does induce localized magnetic moments (∼0.05 μB/atom)
that are observed as large Pauli susceptibilities in δ-Pu,
which indicates narrow bands at the Fermi surface [18].
This temperature-dependent magnetic susceptibility arises
from self-damage without measurable distortion of conduction
bands. In time, δ-Pu susceptibility exhibits a contribution
changing proportionally to the number of α decays implying a
non-Fermi-liquid behavior and a disordered Kondo model from
disorder-driven interactions coupling local moments with the
conduction electrons.

Thus, there is clearly some correlation between defects and
the magnetic structure in Pu. In this paper, we use density
functional theory to examine the properties of one defect, the
monovacancy, in δ-Pu. We find that the ground-state structure
exhibits a reduced symmetry reconstruction, stabilized by the
local magnetic structure. This defect and the local distortion
exhibits a structure very different from that of typical fcc
metals, and this is most likely due to the physics underlying
the room-temperature α-phase stabilization.

II. COMPUTATIONAL METHODOLOGY

All calculations here were performed using the projector-
augmented-wave method [19] as implemented in the Vienna
Ab initio Simulation Package [20–23] and the Perdew-Burke-
Ernzerhof formulation to the generalized gradient approxi-
mation for the exchange-correlation functional [24,25]. We
employed a 3×3×3 fcc lattice supercell (108 inequivalent
Pu atoms) and a spin-polarized antiferromagnetic (AFM)
arrangement is applied to all Pu atoms within the cell. The
value for each atomic spin moment within the arrangement
is based upon a partially filled 5f (i.e., 5f 5) valence shell
as determined for AFM stabilized δ-Pu [8]. The partially filled
5f 5 shell agrees with experimental measurements such as elec-
tron energy-loss spectroscopy, photoemission spectroscopy,
and x-ray-absorption spectroscopy [26]. Although magnetism
of δ-Pu is complicated [9], and recent experimental and theo-
retical studies have given newfound information on this subject
[12–14], an AFM order provides comparable structural
properties to experimental data [10]. The strength of mag-
netism (AFM arrangement in particular) in the modeling of

the allotropic phases of Pu is in agreement with experimental
structural and energetic results, as it allows a continuity of elec-
tronic structure for these phases and the individual electronic
valence states composed of each phase of Pu [27]. It has also
been previously reported that a disordered magnetic structure
for δ-Pu will induce a more complex interaction field around
a Pu vacancy due to the variations of the local spin moment
[28]. This behavior is of fundamental importance to our study
of defects in Pu as it enables a reliable theoretical treatment of
these entities, as local perturbations from the defect allow the
system to undergo necessary local distortions for each defect
case within the δ phase. It has been computationally observed
that the addition of spin-orbit coupling (SOC) and orbital
polarization (OP) for δ-Pu decreases the spin moment for a Pu
atom from 5μB to 3.5μB which indicates that spin polarization
compensates for the physics related to SOC and OP corrections
[29]. Therefore, due to this previous finding and the challeng-
ing effort of modeling monovacancies in δ-Pu, we have chosen
not to include SOC and OP corrections in this paper.

It has been determined that at this level of theory un-
alloyed δ-Pu is mechanically unstable at 0 K as observed
by an induced c/a tetragonal distortion [30,31]; however,
it is thermally stable above ambient temperatures and the
addition of Ga into the δ-Pu matrix will decrease the tetragonal
distortion [32]. According to x-ray-diffraction experimental
results at low temperatures, the cubic phase is retained for
stabilized δ-Pu bulk [33]; thus, for simplicity, all calculations
preserved the cubic symmetry (i.e., no tetragonal distortion
was imposed). Volume optimization of the cubic structure
yielded a lattice constant of 4.524 Å, a 2.5% difference from
the room-temperature experimental lattice constant (4.637 Å)
[34]. Results include relaxation of only the ions, including
ions located at the periodic boundary, while maintaining a
fixed volume of the structure at the theoretical lattice constant
of the perfect supercell. This “dilute limit” method mimics
the case of a defect in an “infinite” bulk system [35]; with
intentions of a large enough supercell there would be no lattice
distortions communicated through the supercell boundaries.
Computational parameters include a kinetic-energy plane-
wave cutoff of 500 eV, �-point k-point mesh, self-consistent
electronic relaxation energy convergence of 1×10−5 eV, and
ions that are relaxed until the Hellmann-Feynman force on each
ion is less than 0.01 eV/Å.

III. RESULTS

For this model of δ-Pu, lattice stability is extremely sensitive
to defects with just a small perturbation to the lattice, and
the fcc lattice may adopt local distortions. Some defects have
been calculated to induce short Pu-Pu bonds similar to the
room-temperature monoclinicα phase [7]. The model response
highlights the disruption of the AFM atomic spin moment used
to stabilize δ-Pu within DFT against the local spin moment
loss and the influence of magnetic exchange interactions [26].
In this framework, a classical monovacancy is defined as a
vacancy at a lattice site, which in most fcc materials will
cause a spherically symmetric local volume collapse around
the vacancy. Formation energies (Ef ) for a monovacancy are
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FIG. 1. Final relaxed structures for (a) tetragonal vacancy and (b)
monoclinic vacancy. Yellow Pu atoms are spin-up and red Pu atoms
are spin-down. Short Pu-Pu bonds are shown in black. Visualizations
are from VESTA [38].

calculated by

Ef = Emono − n − 1

n
Eδ−Pu (1)

where Emono is the total energy of the lattice with defect, n is
the number of Pu atoms in the supercell, and Eδ-Pu is the total
energy of a pure δ-Pu lattice with no defects.

In the dilute limit for δ-Pu, we have calculated that a mono-
vacancy exhibits a formation energy of 1.23 eV and causes the
nearest-neighbor atom shell to contract approximately 10.36%
[7]. Unsurprisingly, there is also no significant long-range
disorder observed in the lattice atoms. In Fig. 1(a), the removal
of a Pu atom that is spin down (red atom) breaks the symmetry
of the AFM arrangement along the [100] direction and the
total magnetization of the Pu ions in the supercell no longer
sums to 0 μB/atom but 0.047 μB/atom. Furthermore, vacancy
adjacent spin-down atoms exhibit a slight displacement toward
the vacant site collectively as a local tetragonal distortion
reminiscent of the AFM stabilized δ-Pu mechanical instability
against a lattice tetragonal distortion [24]. This tetragonal
distortion leads to four short bonds between NNs of length
3.048 Å all in the vertical plane containing the vacancy.
When compared against bonding out of a vertical plane of
length 4.524 Å, this gives a c/a axial ratio of 1.485, which
is nearly the c/a axial ratio of 1.5 resulting from mechanical
instability of the AFM structure observed in δ-Pu for other
DFT calculations as argued from its low shear elastic modulus
[26]. Although in most simple fcc metals, such as copper
and aluminum, the classical monovacancy with a spherical
distortion would be the ground state for a monovacancy [36], in
δ-Pu this is not the case. This type of monovacancy will hence
be known as a tetragonal vacancy. Freibert et al. discussed
the interpretation of historic bulk density, thermal expansion,
and x-ray-diffraction experimental data on stabilized δ-Pu
and considered that self-irradiation and mechanical damage
induced by point defects exhibit a tetragonal distortion [37].

With further relaxation of the ions and with a slight pertur-
bation of the surrounding atoms around the vacancy (an atom
slightly off the lattice site), a lower ground-state monovacancy
is discovered with a formation energy of 1.08 eV [Fig. 1(b)].
This is a 0.15 eV decrease in energy compared to the tetragonal
vacancy in the lattice. The distortion around the monovacancy
induces short Pu-Pu bonds where the participating Pu atoms
in these distortions form adjacent bonds to opposite spin
configurations, i.e., a short bond is formed between two Pu

atoms that are spin antiparallel. This response suggests the
formation of spin-antiparallel pairs, which brings the lattice
atoms surrounding the vacancy closer to a local nonmagnetic
configuration (net magnetic moment is 0.094 μB/atom), thus
forming a localized monoclinic structure within the δ matrix
[8]. Hence, this vacancy type will be known as a monoclinic
vacancy. The final ion relaxed configuration yields an increase
of the net magnetic moment for the Pu ions of 0.056 μB/atom,
where this increase is in both the 6d and 5f magnetic
contribution. The net total magnetic moment induced in the
supercell due to a vacancy is similar in magnitude to the McCall
et al. measured value of a magnetic moment of 0.05 μB/atom
that forms due to radiation damage [18].

To investigate the uniqueness between these two different
types of monovacancies, starting from a perfect lattice the
defect is introduced and after ionic relaxation the atomic
rearrangements produce a displacement field that provides
certain insights relevant to the underlying bonding symmetry of
these vacancies within the AFM stabilized δ-Pu. For example,
in many simple fcc metals, the displacement field in the lattice
surrounding a vacancy is spherical, and the radial displacement
component is proportional to 1/r2 (i.e., ur = δv

4πr2 ), while the
tangential components are both zero [39]. The proportionality
constant, δv, is a property of the defect and, in the case of
a vacancy, is the dilatation of the lattice on introduction of
the vacancy. However, in the case of fcc Pu, we find much
more complex displacement fields associated with vacancies
in general.

In Fig. 2 the displacement field in the computational cell
is shown in terms of vectors whose length and orientation is
defined by v = w[ux, uy, uz], where w is a scale factor, and
the origins of the vectors are at the initial atomic coordinates.
In this case the vacant site is at [0, 0, 0] corresponding to the
tetragonal vacancy case, and the scale factor is 10. It is fairly
clear that the displacement field is not uniformly spherical, but
instead consists of four large displacements in the yz plane
containing the vacancy and smaller displacements elsewhere.
The largest displacement vectors are directed at the vacant site.
Furthermore, the z components of the displacements of atoms
that are NNs of the vacancy in the yz planes containing the
vacancy and the two parallel adjacent planes are essentially
zero.

Many of the NN bond lengths in this model have decreased
although by a relatively small distance. Those displacements
associated with bonds that have decreased by more than 0.1 Å
are also shown in Fig. 2. Clearly, the largest decrease in NN
bond lengths is associated with atoms confined to the (100)
plane containing the vacancy, the same direction as the AFM
spin direction. None of the NN bond lengths decreased more
than 0.125 Å. The reason for our concern with the change in
NN bond lengths will become more evident in the next section
where we consider the monoclinic vacancy case. Finally, we
note that the displacement vectors nearest the vacant site have
the form [0, uy, ±uy] in the x = 0 plane, and [0, ±uy, 0]
or [0, 0, ±uy] in the adjacent parallel (100) planes. This
displacement field retains the fourfold symmetry around the
x axis and, therefore, corresponds to a displacement field of
tetragonal symmetry. The displacement field of the monoclinic
vacancy case, defined earlier, differs considerably from the
tetragonal vacancy case.
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FIG. 2. Top shows a vector field plot of the displacement vectors
after relaxation in the fcc Pu lattice containing a tetragonal vacancy
at [0, 0, 0]. The length of the vectors have been scaled by a factor of
10. Bottom shows displacement vectors associated with atoms whose
NN bond lengths have decreased by >0.1 Å. These vectors lie in the
(100) plane containing the vacant site and show that the displacement
field has tetragonal symmetry.

Figure 3 shows a vector field plot of the displacements for
the monoclinic vacancy field, with a magnification factor of 5.
The largest displacements are again associated with four atoms
that are NNs to the vacancy. However, these four atoms do not
lie in a single plane but rather form the corners of a tetrahedron
and the displacement vectors are considerably larger than in
Fig. 2, and are not directed toward the vacant site. Furthermore,
the bonds between the ten atoms surrounding the vacancy
(shown in red in Fig. 3) have reduced their NN distances
substantially and these ten atoms and their connecting bonds
are also shown in Fig. 3. The geometric arrangement of these
atoms has low symmetry, only one mirror plane, and, therefore,
possesses monoclinic symmetry.

The short NN bonds appearing as the blue connecting lines
in Fig. 3 have bond lengths ranging from 2.70 to 2.85 Å,
all considerably shorter than the 3.20 Å NN bond length in

FIG. 3. Vector field plot showing the displacement field surround-
ing the monoclinic vacancy (top). The magnification factor is 5. Ten
NN atoms surrounding the monoclinic vacancy are colored red and
the blue lines are bonds between these atoms where bond lengths are
in the range of 2.70 to 2.85 Å (bottom). Four of these atoms, in a
tetrahedral arrangement, have undergone the largest displacements.

the perfect fcc Pu lattice. Furthermore, these bond lengths
are comparable to the short NN bond lengths in α-Pu. In
the paper by Hirth et al. [40], a table of NN bond lengths
in α-Pu lists short bonds in the range of 2.60 to 2.80 Å.
The arrangement of atoms surrounding the vacant site in the
monoclinic vacancy case shown in Fig. 3 is consistent with both
the monoclinic symmetry and bond lengths characteristic of α-
Pu. The displacement field results above for the tetragonal and
monoclinic vacancy imply an anisotropic bond strength in the
nearest-neighbor atoms to the vacancies as revealed by these
low-symmetry distortions. The bonding strength for pure δ-Pu
(no defects) in the nearest-neighbor shell has been calculated
with DFT and SOC to be highly anisotropic, resulting in lower-
symmetry structures [41]. Even though our current calculations
do not include SOC, we are still able to detect low-symmetry
distortions associated with monovacancies, suggesting that
neglecting SOC for defect calculations in δ-Pu may give
qualitatively similar results.

To further understand the interrelated roles of magnetism
and electronic structure underlying these unique structures, the
5f and 6d densities of states are shown for the tetragonal and
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FIG. 4. Partial density of states of the 5f and 6d states for
spin-up (1NN-U) and spin-down (1NN-D) Pu atoms that are nearest-
neighbors and far (Lattice) from a tetragonal (left) and monoclinic
(right) Pu vacancy.

monoclinic monovacancies. To this point as seen in Fig. 4,
the total 5f PDOS are shown for a spin-up (1NN-U) and spin-
down (1NN-D) Pu atom that is nearest-neighbor distance to the
monovacancy, and a host lattice Pu atom that is noninteracting
with the vacancy (lattice). From the PDOS for the tetragonal
vacancy there is very little difference in the 5f and 6d states
between a Pu atom that is near or far from the vacancy, conclud-
ing that a vacancy does not affect any of the valence electronic
states. However, the PDOS for the monoclinic vacancy shows
that a 1NN-U Pu atom within the monoclinic structure shows
a 5f intensity increase right at the Fermi energy. Due to the
increase and shift of 5f states and the known strong 5f -6d

coupling in the actinides [42,43], there is a spectral shift of
the 6d states to decrease in intensity, thus uncoupling the
5f -6d states. Recovery of local lattice distortions due to a
defect has been postulated to occur by increasing the 5f -6d

hybridization, thus strengthening the bonds in fcc PuSc alloys
[44]. The spin projection of the 5f partial density of states
(Fig. 5) illustrates that the 5f state at the Fermi energy is due
to the spin components, which implies that the stabilization
of the monoclinic vacancy is not via electronic density, but
rather is spin-density dependent. Furthermore, the PDOS for a
1NN-U versus 1NN-D atom differs, where the 1NN-D PDOS
yields a similar PDOS to a Pu atom that is not interacting with
the defect (i.e., an atom in the perfect fcc lattice). This behavior
suggests that the supercell excess spin-up density local to the
vacancy must be adjusted to accommodate this heterogeneous
configuration and the system accomplishes this total-energy
minimization by exciting a local 5f state. This difference in
PDOS between the 1NN-U and 1NN-D atoms arises due to the
local bonding. The 1NN-U Pu atoms do not fully interact with
the lattice, as there only exist three long bonds (3.0–3.10 Å)
to surrounding lattice atoms, whereas the 1NN-D Pu atoms
are fully interacting with the existing NN shell as there are
nine long bonds ranging from the NN shell distance of 3.20 Å.
Comparing to α-Pu, there are eight nonequivalent atomic sites,
and these sites have varying short and long bonds. Site 8

FIG. 5. Spin projection of the 5f partial density of states for
spin-up (1NN-U) and spin-down (1NN-D) Pu atoms that are nearest-
neighbors and far (Lattice) from the monoclinic vacancy.

has 13 long bonds in the structure (3.19–3.71 Å) and three
short bonds (2.76–2.78 Å), while site 1 has five short bonds
(2.57–2.76 Å) and seven long bonds (3.21–3.71 Å) [40,45].
These sites in α-Pu have been calculated to have a more
localized and delocalized PDOS, respectively [46]. Thus, the
1NN-U Pu atoms have an increased spectral density at the
Fermi energy, because the bonds have increased beyond
the 3.20 Å NN distance for the δ-Pu lattice. This indicates that
the local configuration involving a monoclinic vacancy within
the δ matrix acts with α-like electronic properties as observed
within the broader context of AFM Pu allotropic models [27].

The relative charge density and spin-density differences
(�ρ) are plotted in Fig. 6 and show the spatial distribution
of the charge density and unpaired spin densities, respectively,

FIG. 6. Relative charge density difference and spin density differ-
ence for the tetragonal (top) and monoclinic (bottom) vacancy. Green
indicates charge or spin accumulation (positive) and blue is charge or

spin depletion (negative) with an isosurface level of 0.046 e−/Å
3

and

0.046 μB/Å
3
.
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TABLE I. Partial charges and spin magnetization for the eight
Pu atoms with short bonds participating in the monoclinic structure
around the vacancy and for the nonparticipating atoms (Lattice).

Charge (e−) Spin (μB)

Spin orientation Atom 5f 6d 5f 6d

Up 1 5.307 1.386 4.537 0.180
2 5.309 1.389 4.531 0.179
3 5.303 1.379 4.550 0.182
4 5.300 1.374 4.559 0.183

Down 5 5.356 1.545 −4.349 −0.139
6 5.355 1.546 −4.348 −0.140
7 5.349 1.534 −4.371 −0.143
8 5.352 1.541 −4.357 −0.142

Up Lattice 5.257 1.345 4.639 0.208
Down Lattice 5.257 1.349 −4.638 −0.208

in the relaxed structure. The equation used to calculate these
differences is

�ρ = ρtotal–ρlattice–ρspin-up–ρspin-dn (2)

where ρtotal is the total charge or spin density of the defective
lattice, ρlattice is the charge density or spin density of the
defective lattice without the nearest-neighbor spin-up and
spin-down atoms to the vacancy, and ρspin-up and ρspin-dn are the
charge density or spin density of the nearest-neighbor spin-up
and spin-down atoms to the vacancy, respectively.

From the charge density difference there is noticeable
charge buildup between the bonds in the monoclinic structure
versus the tetragonal vacancy. One Pu atom that has NN bond
length of 2.99 Å also exhibits the onset of charge buildup with
a NN Pu atom within the local distortion, even though the
bond length is greater than our defined short bond length, but
less than the NN bond length in the δ lattice. Table I shows
the calculated partial charges and spin for the individual Pu
atoms that are in the local distortion. The average Pu atom
in the cell (that is not participating in the local distortion
around the vacancy) has a partial 5f and 6d charge of 5.257e−
and 1.347e−, respectively, and for the partial 5f and 6d spin
magnitude of 4.639μB and 0.208μB, respectively. These values
are nearly the same as in the perfect fcc lattice where the partial
5f and 6d charges are 5.265e− and 1.352e−, respectively,
and the partial 5f and 6d spin magnitudes are 4.638μB and
0.202μB, respectively. Comparing these numbers to the atoms
in the local distortion of the monoclinic vacancy (Table I), there
is more of an increase in the 5f -6d partial charge density,
but there is a net increase in positive magnetization for the
1NN-D atoms, which overall decreases the magnitude of the
magnetization. This is shown in the spin-density difference plot
(Fig. 6, bottom) as there is an accumulation of spin density
for the 1NN-D atoms and depletion of spin density for the
1NN-U Pu atoms lowers the magnitude of the magnetization.
The decrease in the spin moment magnitude for the atoms in the
monoclinic distortion also agrees well with the fact that atoms
in α-Pu have relatively smaller spin moment magnitudes than
atoms in δ-Pu [27]. This interplay between the 5f -6d spatial
and spin wave-function densities reveals the implicit nature of
electronic correlations in this hybridized system.

For the tetragonal vacancy this is not the case as the spin-
density difference plot (Fig. 6, top) indicates that there is a
collective loss of magnetization from the 1NN-U atoms within
the interstitial region between lattice sites. Only the four 1NN-
D atoms that participate in the tetragonal distortion (discussed
above) have a slight relative local decrease or absolute increase
in the 5f spin-density magnetization to −4.577μB, but overall
the partial charge and spin are similar to the perfect lattice.

IV. DISCUSSION

For the dilute limit of a monovacancy in δ-Pu, the DFT
calculated tetragonal vacancy appears to acquire its form from
the mechanical instability of the AFM structure and low shear
elastic modulus of the δ-Pu lattice. When taken in addition
to the absence of impact to the 5f and 6d states between a
Pu atom that is near or far from the vacancy, this response
once again suggests that the sustained fcc metallic behavior of
the atoms involved in this defect even after ionic relaxation.
However, this interplay between the 5f -6d states influences
not only the local charge density but also the spin density,
thus facilitating the stabilization of the local distortion around
the vacancy becoming evident. In the case of the monoclinic
vacancy, the 5f -6d states influences on the local charge density
and the spin density are obvious. An increase in the d character
in a spin-down atom allows for further coupling with the 5f

states, which in turn decreases the d character in a spin-up
Pu atom followed by a decoupling of the 5f states, enabling
a shift towards the Fermi energy. The collective increase of
the charge density, the decrease of the magnitude of the spin
density, and the decrease of bond lengths in the monoclinic
structure imply an attractive interaction within the structure,
which strongly suggests covalency. Covalency in α-Pu has
been postulated due to the measured high shear/bulk moduli
ratio and low Poisson ratio [47,48]. This observation has been
explained by the variation of interatomic distances resulting
in a simultaneously delocalized/localized nature of the eight
nonequivalent sites. The complicated nature of the α structure
exhibits a dependence on directional bonding that weakens
with increasing electron correlations, a Peierls distortion for the
low-symmetry crystal structure, and possibly a magnetically
frustrated system [46,49,50], but further studies are needed to
fully understand α-Pu. All in all, the monovacancy induces
local distortions that resemble low-symmetry Pu-phases in the
fcc δ matrix.

V. CONCLUSIONS

In conclusion, the complexity of 5f electrons in Pu and
radiation damage is still unexplored territory, highlighted by
this study of the existence of local displacements that depart
markedly from those typical of a vacancy in other simple
fcc metals. We have calculated a ground-state structure for
a monovacancy that has local distortions of Pu short bonds
that only bind with antiparallel spins, comparable to the α

phase. This structure is stabilized by the shifting of spin density
of the 5f electrons, thus emphasizing the interplay between
atomic spin moments as an additional degree of freedom
that correspondingly influences charge density valence state
composition. This energy minimization pathway has been
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extremely advantageous to our study of defects in Pu as it
has allowed the system to adopt locally the low-symmetry
ground-state structure of Pu. Our understanding of defects
in Pu is still in an exploratory phase, and as we begin to
calculate interesting and unusual point defects we may begin to
revolutionize a newfound understanding of radiation damage
in Pu materials.
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