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Real-space pseudopotential method for calculating magnetocrystalline anisotropy
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We present a real-space pseudopotential method for calculating magnetocrystalline anisotropy within relativis-
tic density-functional theory. The spin-orbit interaction, a fundamental origin of magnetocrystalline anisotropy, is
incorporated with norm-conserving pseudopotentials expressed on a real-space grid. We demonstrate the utility
of our method by calculating the magnetocrystalline anisotropy constant, K1, of YCo5, which is a prototype
compound with large K1. Our calculated K1 agrees with previous theoretical work. We show that our formalism
also works for describing magnetocrystalline anisotropy in other transition-metal compounds, such as Mn2Ga
and FeNi, which have modest values for K1. Our real-space pseudopotential method is well suited for a parallel
computing environment and is an efficacious approach to solving the relativistic Kohn-Sham equations, which
include spin-orbit effects as well as noncollinear magnetism.
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I. INTRODUCTION

Spin-orbit interactions, a relativistic effect that couples the
spin and orbital components of the magnetic moments, induce
rich physical phenomena in condensed matter systems. Among
the magnetic phenomena arising from the spin-orbit coupling,
magnetocrystalline anisotropy is of growing interest in recent
years [1]. In particular, high magnetocrystalline anisotropy
is an excellent source for yielding large magnetic coercivity,
which is a favorable property for permanent magnet materials.

In the presence of the spin-orbit interactions, there are
energetically favorable (“easy”) and unfavorable (“hard”)
directions for the magnetization, �M . Suppose a material
has an uniaxial magnetic anisotropy; the magnetocrystalline
anisotropy energy can be expressed, to the first order, by

E(θ ) = K1V sin2 θ, (1)

where θ is the angle between magnetization �M and the
easy axis, and V is the volume of a system. The coefficient
K1 is called the magnetocrystalline anisotropy constant. For
tetragonal or hexagonal crystal structures, the magnetocrys-
talline anisotropy energy can also be given by the total-energy
difference between the systems magnetized along the easy and
hard axes:

Ea = E( �M ⊥ �z) − E( �M ‖ �z), (2)

with �z being the easy axis.
Computing the magnetic anisotropy energy Ea from first

principles is difficult. A relativistic generalization [2,3] of
density-functional theory (DFT) [4,5] makes it possible to
describe the spin-orbit effects. However, additional compli-
cated terms in the formalism lead to intense computations.
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Moreover, the magnetic anisotropy energy Ea is typically
of the order of 1 meV per formula unit, requiring high
numerical accuracy. Two popular DFT codes, VASP [6,7] and
QUANTUM ESPRESSO [8], can run in a “spin-orbit mode” using a
plane-wave basis to solve the relativistic Kohn-Sham equation
[9–11]. An alternative approach for solving the relativistic
Kohn-Sham equation is a real-space method [12,13], which is
simple to implement and is well suited for a parallel computing
environment, owing to a reduction in global communications
such as fast Fourier transforms.

We present a real-space implementation of the rela-
tivistic DFT for describing magnetocrystalline anisotropy
from first principles. Our real-space approach employs a
norm-conserving pseudopotential to incorporate the spin-
orbit effects, which are crucial to yielding magnetocrystalline
anisotropy. We demonstrate our method by applying it to
three prototype compounds including YCo5. Our results are
in good agreement with previous calculations. We also show
the efficiency of parallelization schemes used in our real-space
DFT code PARSEC.

II. METHODOLOGY

A. Real-space formalism

A real-space formalism can be used to calculate the total
energy of a material that is magnetized along the easy (hard)
axis. In the presence of spin-orbit coupling, the Hamiltonian
can be written as [2,3]

Ĥ = H0Î + Ĥ SO + B̂xc · �σ . (3)

The first term represents the Hamiltonian in a standard spin-
polarized case. In atomic units (e = m = h̄ = 1), we can write
this Hamlitonian as

H0 = −∇2

2
+ Vion + VH + Vxc, (4)
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where Vion is the ionic pseudopotential. We use norm-
conserving pseudopotentials in a separable form [14,15]. VH is
the Hartree potential. Vxc is the exchange-correlation potential.

The second term Ĥ SO accounts for spin-orbit interac-
tions, which are also based on norm-conserving pseudopoten-
tials [16,17].

The third term of Eq. (3), B̂xc is the magnetic exchange-
correlation potential, which is given by functional derivative
of the exchange-correlation energy functional Exc with respect
to the spin density, �m(�r ):

B̂xc = δExc[n, �m]

δ �m , (5)

where n(�r ) is the electronic charge density.
We use a Kohn-Sham two-component spinor wave function

��n�k (�r ) with band index n and wave vector �k. In Eq. (3), Î is a
2 × 2 identity matrix and �σ is a vector of the Pauli matrices.

We expand the Laplacian in real space using high-order
finite differences on an orthogonal, uniform grid:

∇2φ(x, y, z) = 1

h2

N∑
n=−N

Cn[φ(x + nh, y, z)

+ φ(x, y + nh, z) + φ(x, y, z + nh)], (6)

where h is the grid spacing and Cn are the coefficients for N th
order expansion.

The spin-orbit effects are included with norm-conserving
pseudopotentials [16,17]. The total ionic pseudopotential V ps

can be written as

V ps(r ) =
∑
l,m

|l, m〉[V ion
l (r ) + V SO

l (r ) �L · �S]〈l, m|, (7)

with the spherical harmonics |l, m〉 and the spin-orbit coupling
operators

�L · �S = L̂zŜz + 1

2
(L̂+Ŝ− + L̂−Ŝ+), (8)

where L̂± = L̂x ± iL̂y and Ŝ± = Ŝx ± iŜy . In a manner simi-
lar to the Kleinman-Bylander separation technique [14] for the
ionic component V ion

l , the spin-orbit component V SO
l can also

be decomposed into local and nonlocal parts [18]. With some
algebra [19], we obtain diagonal and off-diagonal blocks of
V ps, respectively:

V ps,nloc
σ,σ =

∑
l,m

ul,mu
†
l,m + 1

4

∑
l,m

[l(l + 1) − mσ ]vl,mv
†
l,m

+ 1

2

∑
l,m

mσ (vl,mu
†
l,m + ul,mv

†
l,m), (9)

and

V
ps,nloc
σ,σ ′ = 1

2

∑
l,m

√
l(l + 1) − m(m + σ ′)

×
(

−1

2
vl,m+σ ′v

†
l,m + vl,m+σ ′u

†
l,m + ul,m+σ ′v

†
l,m

)
.

(10)

Here, σ = 1 (up spin) or −1 (down spin), and ul,m (vl,m) is the
projected vector of the ionic (spin-orbit) pseudo wave function

expressed on a real-space grid. We note that σ ′ is not equal to σ

in Eq. (10). Owing to the presence of the magnetic exchange-
correlation term [20,21], the full Hamiltonian has additional
diagonal and off-diagonal blocks:

B̂xc · �σ =
(

Bz Bx − iBy

Bx + iBy −Bz

)
. (11)

We implemented the above formalism in our real-space pseu-
dopotential DFT code PARSEC [12,13,22].

We first perform scalar-relativistic (SR) [23] calculations
by neglecting the second term of Eq. (7). The SR solutions
along with an initial magnetization, �m0(�r ), are then used as
an initial guess for solving full Hamiltonian that includes the
spin-orbit interactions. With the self-consistent solution to the
full Hamiltonian, we obtain the total energy of a material with
magnetization along the easy or hard axis.

The Hamiltonian matrix remains sparse, making it fea-
sible to operate matrix-vector multiplications and diagonal-
izations even though matrix dimension is doubled due to
spinor representation. The PARSEC code is suitable for modern
many-processor computers as parallel algorithms based on
the standard MPI (message passing interface) scheme allow
efficient matrix-vector multiplications. The MPI paralleliza-
tion can also be done over the wave vector k points, which
is highly beneficial when the present method is applied to
crystalline materials. Iterations during a self-consistent field
loop are accelerated by using a Chebyshev subspace filtering
method, which emphasizes convergence of the charge density
as opposed to individual eigenfunctions [24–26]. We show the
efficiency of these parallelization schemes in Sec. III C.

A key aspect of real-space methods is the avoidance
of global communications such as fast Fourier transforms.
Another advantage of our real-space method is its flexibility
in handling different boundary conditions. In our formalism,
the generalized Kohn-Sham equations are solved on an equal
footing for various boundary conditions. Unlike plane-wave
DFT codes, such as VASP and QUANTUM ESPRESSO, our real-
space approach does not exploit a supercell technique. As
demonstrated in previous work [19,21], real-space methods
work well for confined systems as well as two-dimensional
materials, where spin-orbit effects and noncollinear magnetism
were tested separately. In Sec. III, we will show that our
real-space formalism that includes both the spin-orbit effects
and the spin density �m(�r ) works for crystalline materials as
well.

B. Computational details

We use a generalized-gradient approximation (GGA) func-
tional [27] for the exchange-correlation potential. The polyno-
mial order N of the finite-difference expansion is set to be 6.
A grid spacing of 0.3 a.u. (approximately 0.16 Å) is used. A
generalized Broyden method [28] is used for mixing old and
new potentials. Pseudopotentials are constructed with s/p/d

core radii (in a.u.) of 2.35/2.60/2.35 for Mn, 2.20/2.40/2.20
for Fe, 2.18/2.38/2.18 for Co, 2.18/2.38/2.18 for Ni, and
3.19/3.64/3.19 for Y. A partial core correction [29] is included
as well. The Monkhorst-Pack scheme [30] is used to generate
a k-point grid to perform Brillouin-zone integration.
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FIG. 1. Crystal structure of the YCo5 compound. Open and
decorated spheres represent Y and Co atoms, respectively. Two
inequivalent Wyckoff sites (2c and 3g) are indicated by different
decoration pattern.

III. RESULTS

A. YCo5

We demonstrate our real-space implementation by applying
our real-space method to YCo5. The crystal structure of YCo5,
shown in Fig. 1, is a CaCu5-type structure (P 6/mmm, space
group No. 191). The unit cell contains one Y atom at the origin,
two Co atoms at the 2c site [(1/3, 2/3, 0) and (2/3, 1/3, 0)],
and three Co atoms at the 3g site [(1/2, 0, 1/2), (0, 1/2, 1/2),
and (1/2, 1/2, 1/2)]. The lattice constant is a = 4.92 Å and
c/a = 0.80.

Figure 2 shows the convergence of the total magnetic
moment M and the magnetic anisotropy energy Ea of the
P 6/mmm YCo5 compound with respect to a k-point mesh. We
find that the magnetic anisotropy energy converges much more
slowly in comparison to the total magnetic moment. To achieve
a better convergence for both M and Ea of the P 6/mmm YCo5

compound requires a fine k-space resolution of 0.8 × 2π/a,
which corresponds to a k-point grid of 14 × 14 × 18.

In Table I, our real-space DFT results are compared with
previous calculations [31–33] as well as experiment [1]. The
calculated total magnetic moment, 7.13μB per YCo5, is in
good agreement with the previous theoretical values. A linear
muffin-tin orbital method within atomic-sphere approxima-
tion [31] (LMTO-ASA) gave 6.90μB per YCo5, and a full
potential version of a linear-augmented plane-wave (FLAPW)
method [32] yielded 7.06μB per YCo5. With the calculated
total magnetic moment, we estimate magnetic polarization
saturation μ0Ms to be 1.01 T, which is very close to the
experimental value. The easy magnetization axis for YCo5

in the P 6/mmm structure is correctly determined by the
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FIG. 2. Convergence of total magnetic moment M and magnetic
anisotropy energy Ea of the P 6/mmm YCo5 compound as a function
of a mesh size in reciprocal space. The values represent a k-point grid
for a particular resolution.

present real-space method. The calculated magnetic anisotropy
energy Ea of 1.38 meV per molecular unit of YCo5 is
approximately two times as large as the previous LDA-based
value [31]. The difference between the calculated Ea values
originates from a choice of exchange-correlation functional
as well as the different approaches to evaluate Ea: the force
theorem, a single-shot non-self-consistent calculation, is used
in Ref. [31], while we used the self-consistent total ener-
gies. Our GGA value is comparable to the previous GGA
result [32]. From the calculated Ea , we obtain the corre-
sponding K1 of 2.68 MJ/m3. Compared to the experimental
K1 of 6.5 MJ/m3, theory underestimates K1 by a factor of
about 2.

The underestimation of the magnetic anisotropy energy
Ea and the corresponding magnetocrystalline anisotropy con-
stant K1 by DFT-based methods has been reported in earlier
work [31]. Computing a more accurate K1 requires one to go
beyond the current approximations to the electron correlations,
as demonstrated by recent work [33,34]. For example, combi-
nation of the local-density approximation and the dynamical
mean-field theory (LDA + DMFT) is shown to give a more
accurate K1 value [33]. However, it remains challenging to
determine the strength of the on-site Coulomb interaction U

without ambiguity.

B. Mn2Ga and FeNi

We perform calculations for other compounds based on
3d transition metals. We choose Mn2Ga and FeNi as test
cases. These two compounds are among Mn- or Fe-based

TABLE I. Comparison of magnetic properties obtained for the P 6/mmm YCo5 compound: total magnetic moment M , magnetic polarization
saturation μ0Ms , magnetic anisotropy energy Ea , and magnetocrystalline anisotropy constant K1. Experimental values are also listed. The Ea

value given in parentheses is estimated from the experimental K1.

Method M (μB/YCo5) μ0Ms (T) Ea (meV/YCo5) K1 (MJ/m3)

Real-space DFT, GGA (PARSEC) 7.13 1.01 1.38 2.68
LMTO–ASA, LDA [31] 6.90 0.97 0.60 1.16
FLAPW, GGA (WIEN97) [32] 7.06 1.00 1.63 3.16
Experiment [1] 1.06 (3.4) 6.5
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(a) (b)

FIG. 3. Crystal structures of (a) D022-type Mn2Ga and (b) L10-
type FeNi. In Mn2Ga, Mn atoms (decorated spheres) are located on
the faces of the unit cell, while Ga atoms (open spheres) are at the
corner and at the body center of the unit cell.

rare-earth-free materials with a potential to provide sufficient
magnetic anisotropy and magnetization [1].

Mn2Ga has an Al3Ti-type tetragonal D022 structure
(I4/mmm, space group No. 139) as shown in Fig. 3(a). In
spite of its small magnetization, Mn2Ga provides moderate
magnetocrystalline anisotropy of 2.35 MJ/m3, leading to good
coercivity without rare-earth elements [36–38]. We used the
experimental lattice constant of a = 3.905 and c = 7.193 Å.

FeNi is one of the ordered L10 binary alloys. Its crys-
tal structure (P 4/mmm, space group No. 123) arises from
tetragonal distortion of a perfect fcc structure, as illustrated in
Fig. 3(b). FeNi exhibits high magnetization associated with Fe,
while its magnetocrystalline anisotropy is as low as 0.7 MJ/m3

in a single crystalline film [39]. We used the experimental
lattice constant of a = 3.93 and c = 3.56 Å.

We perform these calculations with a fine momentum-
space resolution of 0.625 × 2π/a to ensure convergence.
This resolution corresponds to a k-point grid of 16 × 16 × 8
(16 × 16 × 16) for Mn2Ga (FeNi).
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Figure 4 compares the magnetocrystalline anisotropy con-
stants K1 calculated by our real-space method (PARSEC) and by
other approaches [31–33,35] with experimentally determined
K1 for the FeNi, Mn2Ga, and YCo5 compounds. Our K1 value
for FeNi is consistent with the previous GGA-based value
using the VASP code [35]. Again, K1 for FeNi and Mn2Ga
is underestimated by a factor of 2–3, which is quite similar to
the case of YCo5.

C. Parallelization

We show the efficiency of parallelization schemes imple-
mented in our real-space code PARSEC. Example calculations
on YCo5 were performed on Stampede2, the flagship su-
percomputer at the Texas Advanced Computing Center [40],
where “SKX” compute nodes are equipped with two 24-core
Intel Xeon Platinum 8160 (“Skylake”) processors, a total of 48
CPU cores per node. Stampede2 also hosts “KNL” compute
nodes that feature 68-core Intel Xeon Phi 7250 (“Knights
Landing”) processors.

The number of iterations needed to achieve self-consistency
varies with a k-point grid used. To make a fair comparison, we
measured computational time spent for the first 20 steps that
include Chebyshev-Davidson diagonalization at the first step
and subsequent subspace filtering steps. Figure 5 shows the
results on example YCo5 calculations, where 576 irreducible
k points, generated from a 12 × 12 × 16 k-point grid, can
be computed in parallel. In PARSEC, grid points can also be
distributed through out processors, forming an additional layer
of parallelization. In sending and receiving the data between
neighboring processors, we utilize a nonblocking mechanism
(the MPI_IALLREDUCE routine) in order to hide latency due
to communications. It it evident in Fig. 5 that computational
time drops linearly with respect to k-point division as well
as grid-point division. Computational cost scales linearly on
both SKX and KNL nodes with up to thousands of CPU cores,
indicating transferability of our code on different computing
architectures.

084411-4



REAL-SPACE PSEUDOPOTENTIAL METHOD FOR … PHYSICAL REVIEW MATERIALS 2, 084411 (2018)

IV. SUMMARY

We describe a real-space pseudopotential method for cal-
culating the magnetic anisotropy of a material. Our real-space
code (PARSEC) is used to solve the electronic structure using
pseudopotentials constructed with density-functional theory.
PARSEC is explicitly designed for an efficient implementation
on a parallel computing system. We successfully applied the
code to prototypical compounds—YCo5, Mn2Ga, and FeNi—
yielding an accurate magnetization and a magnetocrystalline
anisotropy constant consistent with other density-functional
methods.
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