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We present a complete set of chemo-structural descriptors to significantly extend the applicability of machine
learning (ML) in material screening and mapping the energy landscape for multicomponent systems. These
descriptors allow differentiating between structural prototypes, which is not possible using the commonly used
chemical-only descriptors. Specifically, we demonstrate that the combination of pairwise radial, nearest-neighbor,
bond-angle, dihedral-angle, and core-charge distributions plays an important role in predicting formation energies,
band gaps, static refractive indices, magnetic properties, and modulus of elasticity for three-dimensional materials
as well as exfoliation energies of two-dimensional (2D)-layered materials. The training data consist of 24 549
bulk and 616 monolayer materials taken from the JARVIS-DFT database. We obtained very accurate ML models
using a gradient-boosting algorithm. Then we use the trained models to discover exfoliable 2D-layered materials
satisfying specific property requirements. Additionally, we integrate our formation-energy ML model with a
genetic algorithm for structure search to verify if the ML model reproduces the density-functional-theory
convex hull. This verification establishes a more stringent evaluation metric for the ML model than what
is commonly used in data sciences. Our learned model is publicly available on the JARVIS-ML website
(https://www.ctcms.nist.gov/jarvisml), property predictions of generalized materials.
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I. INTRODUCTION

Machine learning has shown a great potential for rapid
screening and discovery of materials [1]. Application of
machine-learning methods to predict material properties has
started to gain importance in the last few years, especially
due to the emergence of publicly available databases [2–6]
and easily applied ML algorithms [7–9]. Chemical descriptors
based on elemental properties (for instance, the average of
electronegativity and ionization potentials in a compound)
have been successfully applied for various computational
discoveries such as alloy formation [10]. Nevertheless, this
approach is not suitable for modeling different structure
prototypes with the same composition because they ignore
structural information. Structural features have recently been
proposed based on a Coulomb matrix [11], partial radial
distribution function [12], Voronoi tessellation [13], Fourier
series [14], graph convolution networks [15], and several other
recent works [16–20]. However, none of these representations
explicitly include information such as bond angles and dihedral
angles, which have been proven to be very important during
traditional computational methods such as classical force fields
(FFs) [21], at least for the extended solids. Hence, we intro-
duced those descriptors in our machine-learning (ML) model.
Additionally, we are introducing charge-based descriptors,
inspired by the classical force-field community such as charge-
optimized many-body (COMB) potentials [22], reaction-force
fields (ReaxFF) [23], and assisted model building with energy
refinement (AMBER) [24]. We first introduce a set of classical
force-field-inspired descriptors (CFID). Then, we give a brief
overview of a gradient-boosting decision tree (GBDT) algo-
rithm and JARVIS-DFT database on which CFID is applied.

After that, we train two classification and 12 regression
models for materials properties. We use the regression models
to screen two-dimensional (2D)-layered materials based on
chemical complexity, energetics, and band gap. We verify the
machine-learning predictions with actual density-functional-
theory (DFT) calculations. Finally, we integrate a genetic
algorithm with a formation-energy machine-learning model
to generate all possible structures of a few selected systems.
The energy landscape in terms of a convex-hull plot from the
machine-learning model is in strong agreement with that from
the actual density-functional-theory calculations. This leads
to a computationally less expensive way to map the energy
landscape for multicomponent systems.

II. CLASSICAL FORCE-FIELD-INSPIRED
DESCRIPTORS (CFID)

We focus on the development of structural descriptors such
as radial distribution function, nearest-neighbor distribution,
and angle and dihedral distributions, and we combine them
with chemical descriptors, such as averages of chemical
properties of constituent elements and the average of atomic
radial charge (such as COMB/ReaxFF formalisms), to produce
a complete set of generalized classical force-field-inspired
descriptors (CFID). The radial distribution function (RDF) and
neighbor distribution function are calculated for each material
up to 10 Å distance. Bond-angle distribution functions (ADF)
are calculated for “global” nearest neighbors (ADF-a) and
for “absolute” second neighbor (ADF-b). For multicomponent
systems, we define “global nearest-neighbor distance” as the
distance that includes at least one pair interaction for each
combination of the species (AA, AB, and BB for an AB system,
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FIG. 1. Different components of classical force-field-inspired descriptors (CFID) for Si diamond structure. (a) Average radial-charge density
distribution of constituent elements, (b) total radial distribution function of the crystal structure, (c) total angle distribution function up to the
first-nearest neighbor, (d) total dihedral-angle distribution up to the first-nearest neighbor, and (e) average chemical properties of constituent
elements. The nearest-neighbor distribution was obtained like the RDF.

for instance). Conversely, the “absolute second-neighbor dis-
tance” only includes the first two shells of neighbors, irrespec-
tive of their species type. Dihedral-angle distribution functions
(DDF) are included to capture four-body effects and are only
calculated for the global first neighbors. We assume that the
interatomic interactions are important only up to four-body
terms, and higher-order contributions are negligibly small. For
every single element, we obtained the atomic radial charge
distribution from 0 to 10 Å from the pseudopotential library
[25]. The average of the charge distributions for all constituent
elements in a system gives a fixed-length descriptor for the
material. A pictorial representation of the CFID descriptors
used here is given in Fig. 1. A full list of chemical features
is given in Table S1 of the Supplemental Material [26]. We
also take the sum, difference, product, and quotient of these
properties leading to additional chemical descriptors. We cover
82 elements in the periodic table for chemical descriptors. The
total number of descriptors found by combining the structural
and chemical descriptors is 1557. It is to be noted that the CFID
is independent of using primitive, conventional, or supercell
structures of a material, and hence it provides great advantage
over many conventional methods such as the Coulomb matrix
where primitive structure must be used for representing a
material [27].

III. TRAINING DATA AND ALGORITHM

For model training, we use our publicly available JARVIS-
DFT database [5] which (at the time of writing) con-
sists of 24 549 bulk and 616 monolayer 2D materials with

24 549 formation energies, 22 404 OptB88vdW (OPT), 10 499
TBmBJ (MBJ) band gaps and static dielectric constants [28],
10 954 bulk and shear modulus [29], and 616 exfoliation
energies for 2D-layered materials. The database consists of
multispecies materials up to 6 components, 201 space groups,
and 7 crystal systems. Moreover, the dataset covers 1.5% unary,
26% binary, 56% ternary, 13% quaternary, 2% quinary, and 1%
senary compounds. The number of atoms in the simulation
cell ranges from 1 to 96. To visualize the descriptor data, we
perform t-distributed stochastic neighbor embedding (t-SNE)
[30]. The t-SNE reveals local structure in high-dimensional
data, placing points in the low-dimensional visualization close
to each other with high probability if they have similar high-
dimensional feature vectors. Results obtained with complete
CFID descriptors for all the materials in our dataset are shown
in Fig. 2(a); the marker colors indicate the crystal system
of each material. These plots clearly demonstrate that our
database is well dispersed and that the data are not biased in
favor of a particular type of material. Additionally, materials
with similar chemical descriptors tend to be correlated in terms
of crystal structure as well. We also visualize the range of target
property data. An example of formation energy is shown in
Fig. 2(b). Clearly, the data is more centered around −4 to
2 eV/atom. Target property distributions of other properties
are given in the Supplemental Material (Fig. S1 [26]).

Of the many ML algorithms available to date, only a small
fraction offers high interpretability. To enhance interpretability
of the ML models, we chose the gradient-boosting decision
tree (GBDT) method [25]. The GBDT method allows one
to obtain the feature importance for training which can be
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FIG. 2. Visualization of data and classification problems. (a) t-SNE plot, (b) histograms for formation energy distribution, (c) ROC curve
for metal/insulator classification, and (d) ROC curve for magnetic/nonmagnetic material classification.

used to interpret the guiding physics of a model. In this
work, we use two classifications and 12 independent regression
models with a gradient-boosting decision tree [9,31,32]. The
GBDT model takes the form of an ensemble of weak decision
tree models. Unlike common ensemble techniques such as
AdaBoost and random forests [32], the gradient-boosting
learning procedure consecutively fits new models to provide a
more accurate estimate of the response variables. The principal
idea behind this algorithm is to build the new base learners
to be maximally correlated with the negative gradient of the
loss function, associated with the whole ensemble. Suppose
there are N training examples: {(xi, yi )}N . Then, the GBDT
model estimates the function of future variable x by the linear
combination of the individual decision trees using

fm(x) =
M∑

m=1

T (x; θm), (1)

where T (x; θm) is the ith decision tree, θm is its parameters,
and M is the number of decision trees.

The GBDT algorithm calculates the final estimation in a
forward stagewise fashion. Suppose the initial model of x is
f0(x). Then the model in the m step can be obtained by the
following relation:

fm(x) = fm−1(x) + T (x; θm), (2)

where fm−1(x) is the model in the (m − 1) step. The parameter
θm is learned by the principle of empirical risk minimization
using

θ̂m = arg min
θm

N∑
i=1

L[yi, fm−1(x) + T (x; θm)], (3)

where L is the loss function. Because of the assumption of
linear additivity of the base function, we estimate the θm for
best fitting the residual L[yi, fm−1(x)].

The parameters of a decision tree model are used to partition
the space of input variables into homogeneous rectangular
areas by a tree-based rule system. Each tree split corresponds
to an if-then rule over some input variables. This structure
of a decision tree naturally models the interactions between
predictor variables. At each stage, parameters are chosen
to minimize the loss function of the previous model using
steepest descent. As a standard practice, we use train-test
split (90%:10%) [33,34], fivefold cross validation [10], and
examining learning curve (Fig. S2 in Supplemental Material
[26]) in applying the GBDT with CFID. The 10% independent
test set is never used in the hyperparameter optimization or
model training so that the model can be evaluated on them. We
performed fivefold cross validation on the 90% training set
to select model hyperparameters. During training, we use the
early stopping regularization technique to choose the number
of decision trees [T (x; θm)]: we grow the GBDT model by 10
trees at a time until the mean absolute error (MAE) on the
validation set converges. Then other hyperparameters such as
learning rate and the number of leaves of GBDT are optimized
via the random search of fivefold cross validation with the
optimal number of trees from the previous step. The optimized
model is used to produce the learning curve of the model to
check if the model can improve by the addition of data. Finally,
the feature importance of all the descriptors is obtained with
GBDT to interpret the importance of various descriptors in
training a model. Additionally, we provide a comparison of
learning curves for OPT and MBJ band-gap learning curves
in Fig. S3 (Supplemental Material [26]) [32]. We observe that
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TABLE I. Statistical summary of different regression models. We report the number of data points and mean absolute error (MAE) of
classical force-field-inspired descriptor (CFID) models on 10% held data, MAE of DFT predictions compared to experiments, and mean
absolute deviation (MAD) of the test data (DFT). The band gaps and refractive indices were obtained with OptB88vdW (OPT) and Tran-Blaha
modified Becke-Johnson potential (MBJ). All other quantities were obtained with OPT only.

Property No. Datapoints MAECFID-DFT MAEDFT-Exp MADDFT

Formation energy (eV/atom) 24 549 0.12 0.136 [13] 0.809
Exfoliation energy (meV/atom) 616 37.3 46.09
OPT band gap (eV) 22 404 0.32 1.33 [28] 1.046
MBJ band gap (eV) 10 499 0.44 0.51 [28] 1.603
Bulk modulus (GPa) 10 954 10.5 8.5–10.0 [29,36] 49.95
Shear modulus (GPa) 10 954 9.5 10.0 [29,36] 23.26
OPT-nx (no unit) 12 299 0.54 1.78 [28] 1.152
OPT-ny (no unit) 12 299 0.55 1.207
OPT-nz (no unit) 12 299 0.55 1.099
MBJ-nx (no unit) 6628 0.45 1.6 [28] 1.025
MBJ-ny (no unit) 6628 0.50 0.963
MBJ-nz (no unit) 6628 0.46 0.973

for similar data sizes, the MBJ band-gap ML model still has
higher MAEs than the OPT ML model. The learning curves in
Fig. S2 (Supplemental Material [26]) [35] can be used to
examine the training-size-dependent accuracies of various
models.

IV. MODEL PERFORMANCE AND INTERPRETATIONS

To apply the CFID descriptors, we tested metal/insulator
and magnetic/nonmagnetic classification problems. The per-
formance of the classification model is measured from the
area under the receiver operating characteristic (ROC) curve.
For metal/insulator and magnetic/nonmagnetic classification
problems, we obtained the area as 0.95 and 0.96, respectively
[Figs. 2(c) and 2(d)]. The results clearly show the successful
applications of CFID for material classifications. In addition to
predicting exact band-gap (Eg) values (using regression) and
then screen materials, we can simply classify materials into
metallic (Eg = 0) and nonmetallic (Eg > 0). Similar classifi-
cation can be applied for magnetic/nonmagnetic systems.

Next, we perform 12 independent regression tasks on the
above-mentioned properties. The mean absolute error (MAE)
results obtained from applying the models on the 10% held set
are shown in Table I. Because each property has different units
and in general a different variance, we also report the mean
absolute deviation (MAD) for each property to facilitate unbi-
ased comparison of the model performance between different
properties. The MAE and MAD values were computed as

MAE = 1

n

n∑
i=1

|xi − yi |, (4)

MAD = 1

n

n∑
i=1

|xi − x̄|, (5)

x̄ = 1

n

n∑
i=1

xi. (6)

For MAE calculations, xi represents the predicted ML data
and yi the DFT data for the ith sample. The MAD calculations
(MADDFT) are intended as a robust estimate of the DFT values.

While MAE shows the accuracy of the models, the MAD
helps one understand the statistical variability in the data.
Clearly, all the ML model uncertainties (MAECFID-DFT, δML)
are comparable to the experimental error of DFT predictions
(MAEDFT-Expt, δDFT). We assert that the MAEs obtained here
are acceptable for screening purposes. The ML MAE values do
not directly compare with DFT because the reference data for
DFT is experimental data, while the reference for ML models
is the DFT data. However, the MAEs can help identify the
range in predicted values: our CFID GBDT model fits the
DFT training data about as well as the DFT itself matches
experimental data. Also, assuming the error in DFT and ML to
be independent, the compound uncertainties can be given as

δ =
√(

δ2
ML + δ2

DFT

)
. (7)

Currently, there are several formation-energy ML models in
the literature [13,15] with MAE (δML) ranging from 0.039 to
0.25 eV/atom. We assume that the MAE should be independent
of different datasets because the structures originate from the
ICSD database. The MAE of our model (0.12 eV/atom) is in
the same range as all of those and its learning curve [shown in
Fig. 3(a)] clearly shows that the model can be further improved
by adding more data. We have achieved comparable ML-model
accuracy by incorporating additional domain knowledge (i.e.,
structural features in addition to chemical features).

Our band-gap model predictions for OPT (0.32 eV) are
better than MBJ (0.44 eV) mainly because of the number of
data points included during training (19 782 for OPT versus
9546 for MBJ). In both cases, metals and nonmetals were
included during training. In general, the MBJ ML model should
be preferred to predict band gaps because of the inherent
band-gap underestimation problem in OPT [28]. However, the
MAE of this model is slightly larger than the OPT one right
now because its training set is almost half. As we add more
data, we expect to decrease the MAE.

We also demonstrate the applicability of ML models for
predicting static refractive indices and exfoliation energies.
The OPT and MBJ refractive index models were trained for
nonmetallic systems only because DFT methods generally do
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FIG. 3. Performance and interpretation of formation-energy ML model. (a) Learning curve, (b) ML prediction on 10% held samples, (c)
groupwise feature importance of descriptors, and (d) comparison of model performance by incrementally adding various structural descriptors.

not consider intraband optoelectronic transitions. Our MAE
for the refractive indices is between 0.45 to 0.55, depending
on the model (OPT or MBJ) and crystallographic direction.
We monitor the MAE during the learning curves as they
reach a plateau. Interestingly, we achieved a very accurate
refractive index model (reaching the plateau) with training
sets of the order of 103, while the models for all the other
examined quantities required training sets of the order of 104 to
achieve high accuracy. However, specific hyperparameter and
learning-curve dependence on a particular type of target data in
a ML model is beyond the scope of the present paper. Generally,
these axes are well defined from experiments (x-ray diffraction,
ellipsometry, and similar techniques), so the average of the
refractive indices in x-, y-, and z-crystallographic dimensions
can be compared to experimental data. Also, training on
individual refractive indices allows one to predict anisotropy
in optical property data. Our work proves that though having
a relatively smaller dataset, highly accurate ML models can
be obtained with CFID descriptors because of the chemo-
structural information. Generally, more data lead to more
accurate ML models, but we show that adding detailed domain
knowledge can also improve accuracy in the materials domain.
Additionally, the idea is to screen materials based on several
properties such as formation, energy, band gap, refractive
index, exfoliation energy, and magnetic moment, etc. with fast
ML models, which in regular DFT or other methods requires
separate calculations and hence ML can accelerate the process.

Recently, 4079 materials have been predicted to be layered
using the data-mining and lattice-constant approach [5,37].
Exfoliation energies are ultimately needed to computationally
confirm whether or not a material is exfoliable. A material
is considered exfoliable if its exfoliation energy is less than
200 meV/atom. As such DFT calculations are very expen-
sive, we only have 616 DFT-calculated exfoliation energies,

which makes for a very small training set. Our MAE for the
exfoliation-energy ML model is 37 meV/atom. Given that the
threshold for a material to be exfoliable is 200 meV/atom,
our MAE is reasonable for the initial screening of exfoliable
materials. Our bulk and shear modulus models have MAEs
that are comparable to DFT MAE (10 GPa) [29,36] and
previous ML models (9 and10 GPa) [38]. It is to be noted
that 2494 descriptors were used in the Isayev et al. [38] model,
while a comparable accuracy was achieved here with fewer
descriptors.

Next, we interpret our ML models using feature impor-
tance analysis for structural, chemical, and charge descriptors,
as shown in Fig. 3(c) for the case of formation energies.
Not surprisingly, the chemical features are found to be the
most important during training. Chemical descriptors such
as average of heat of fusion, boiling and melting point of
constituent elements, along with cell-size-based descriptors
such as packing fraction and density of the simulation cell play
a very important role in providing accurate models. Although
chemical descriptors are the major players in determining the
accurate model, RDF and ADF are also found to be very
important. Interestingly, the charge descriptors were found
to be the least important. Further analysis shows that radial
distribution function (6.8 Å bin, 5.5 Å bin), nearest neighbor
(5.5 Å bin), angle distribution (178◦, 68◦), and DDF (43◦
and 178◦) were found to be some of the most important
structural features of the formation-energy model. This is
intuitively tangible because angles such as 60◦ and 180◦ are
key in differentiating materials such as fcc and bcc crystals.
The RDF and NN contributions for 0 to 0.6 Å play the least
important role among all the RDF and nearest-neighbor (NN)
descriptors. This is also obvious as no bond length exists at
such small distances. We find that the number of unfilled
d and f orbital-based descriptors play important roles in
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classifying the magnetic/nonmagnetic nature of a material.
We have added feature importance of different models to
compare their importance in training different models in the
Supplemental Material [26]. We observe that quantities such as
formation energy, modulus of elasticity, and refractive index
are highly dependent on the density of the simulation cell,
RDF, ADF, and packing fraction, while quantities such as band
gap and magnetic moment are mainly dependent on chemical
property data, as seen by the top ten descriptors of each model
in SI. Based on the above argument, we claim that our models
can capture important physical insights of a problem though
they are primarily data driven.

To quantify the effect of introducing structural descriptors,
we train four different formation-energy models by incre-
mentally adding structural descriptors: (a) average chemical
and charge descriptors (Chm) only, (b) Chm with RDF and
NN, (c) Chm with RDF, NN, and ADF, and (d) including
all the descriptors. The MAE of these models is shown
in Fig. 3(d). We observe that as we add more structural
descriptors, the MAE gradually decreases. The lower MAE
values clearly establish that there is indeed improvement due
to the introduction of structural descriptors. The trained model
parameters for each model were saved and can be used to
make predictions on arbitrary materials. An interactive web
app for predicting the formation energy and properties of
arbitrary materials based on the trained CFID GBDT mod-
els is available at https://www.ctcms.nist.gov/jarvisml/. The
training data and code for ML training are already available at
https://github.com/usnistgov/jarvis.

V. SCREENING OF 2D MATERIALS AND INTEGRATING
GENETIC ALGORITHM

As an application, we use the ML models to discover
semiconducting 2D-layered materials. We first obtain all the
2D materials predicted from the lattice-constant approach
[5] and the data-mining [37] approaches. This results in
4079 possible candidates. Only a few hundreds of them have
been computationally proven to be exfoliable to date because
exfoliation energy calculations in DFT are computationally
expensive. The above-mentioned approaches can be combined
with ML models to screen 2D-layered materials. For example,
using out trained ML models, we successively screen materials
to have MBJ band gaps in the range of 1.2 to 3 eV, then negative
formation energies, and lastly exfoliation energies less than
200 meV/atom. This procedure quickly narrows down the
options to 482. At this point, we chose structures with the
number of unique atom types less than 3 (to lessen complexity
in future experimental synthesis), which resulted in 65 can-
didates. Some of the materials identified by this screening
procedure were CuI (JVASP-5164), Mo2O5 (JVASP-9660),
and InS (JVASP-3414). To validate, we calculated exfoliation
energy for CuI using DFT (as an example case) on bulk- and
single-layer counterparts and found the exfoliation energy to be
80.0 meV/atom, which confirmed that it should be exfoliable
2D materials. However, we found that for InS and Mo2O5, the
DFT exfoliation energy was 250 and 207 meV/atom, which is
not too high from the 200 meV/atom cutoff. We have already
found several other iodide, oxide, and chalcogenide materials
using the lattice-constant criteria [5]. These examples show

that the DFT application, in series, of the ML models for
various physical properties can significantly accelerate the
search for new materials for technological applications.

Lastly, we feel it is important to point out that although the
accuracy metrics presented in Table I are compelling from a
data science perspective, the metrics may not be sufficient for
materials science applications, as there are many physical con-
straints that should be satisfied as well. The most important of
them is the identification of the correct ground-state structure.
For instance, a face-centered-cubic (fcc) Cu should be ground
state among all the possible combinations/rearrangement of
Cu atoms. To include this metric in our models, we integrate
our ML model with a genetic algorithm (GA) search [39,40]
to produce a large number of possible structures. In the Cu
example, we start with Cu structure prototypes such as fcc,
body-centered-cubic (bcc) Cu and let it evolve using GA.
After 5000 structure evaluations, we found only one phase
of Cu in the ML prediction to be more stable than fcc Cu.
This phase turns out to be the metastable tetragonal Cu phase
(space group I4/mmm) shown in Fig. S4 of the Supplemental
Material [26]. The tetragonal structure was also observed
during the Bain-path study of a Cu system [41]. We carried out
DFT calculation on this structure and found that the structure
was only 0.01 eV/atom higher in energy than the fcc phase.
This energy difference value lies much below the MAE of
our ML formation-energy model, and therefore validates the
applicability of our ML approach. Such a GA search is not
feasible in ML models with only chemical descriptors. We
did a similar search for an Mo-S system as well. We used the
known prototypes of Mo-S systems as parents and produced
offspring structures using GA. Our goal was to check if the
ML models find the same ground-state structure as DFT.
The GA allows the opportunity to predict the ground-state
structure by just calculating the energy of different offspring
structures without calculating the forces on atoms or explicitly
performing structure relaxations. The 2H-MoS2 structure is
known to be the ground state for the Mo-S system [35,42]
and this structure was indeed found to be the most stable one
during the GA search, as shown in Fig. 4(a). In addition, the
ML model also identified different Mo-S configurations as
stable structures. These structures were MoS29, MoS27, Mo29S,
and Mo21S. A snapshot of Mo21S is shown in Fig. S5 of the
Supplemental Material [26]. We carried out similar searches
for W-S and Mo-W-S systems. We found that the 2H-WS2

structure is indeed stable [43] in the ML-model-based convex-
hull plot, as shown in Fig. 4(b). High-W and high-S containing
structures (W29S, WS20, W22S, W28S, and W21S) were also
observed in a W-S convex-hull plot similar to the Mo-S system.
The stable and unstable structures are denoted with blue and
red spheres, respectively. The Mo-W-S convex-hull diagram
in Fig. 4(c) shows the applicability of a ML and GA combined
model to map the energy space of a multicomponent system
as well. The ML-based GA method is quite inexpensive due to
the fast-formation-energy ML model.

It is to be noted that classical force fields (such as COMB
[44] and ReaxFF [45]) are also prone to finding unphysical
metastable structures during GA search. Also, using the current
methodology it is possible to map the energy landscape
of all possible multicomponent systems of 82 elements, as
mentioned above. For FF training, this would be unfeasible
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FIG. 4. Convex-hull plot using machine-learning formation-energy model as the energy calculator in genetic algorithm. (a) Mo-S system,
(b) W-S system, and (c) Mo-W-S system.

because of high-dimensional chemical combinations. After the
GA with the ML model, DFT calculations should be carried
out only on low-energy structures to reduce computational
cost as an application. The ML-screened and DFT-validated
structures can then be used in a higher-scale modeling method
such as computer coupling of phase diagrams (CALPHAD)
[46]. Most importantly, phase-space mapping such as with the
GA search cannot be performed with the chemical descriptors
only because it does not have any insight on the crystal
structure. This shows an excellent field of application for our
formation-energy ML model.

VI. CONCLUSION

In conclusion, we have introduced a complete set of chemo-
structural descriptors and applied it to learning a wide variety of
material properties, obtaining very high accuracy while train-
ing on a relatively small dataset for multicomponent systems.
Although in this work the ML models were trained on specific
properties, the same descriptors can be used for any other
physical property as well. We have demonstrated the appli-
cation of ML in materials to screen exfoliable semiconducting
materials with specific requirements (such as energy gap),

which can drastically expedite material discovery. Integration
with the evolutionary search algorithm (GA) opens a paradigm
for the accelerated investigation of high-dimensional structure
and energy landscape. It also helps us understand the gap
between the conventional data-science and materials-specific
application of ML techniques. We envision that ML can be
used as a prescreening tool for DFT; DFT is often used
as a screening tool for experiments. The genetic algorithm
test for a formation-energy model shows some unphysical
structures, but those are also encountered in classical force
fields. However, compared to the intensive training process
involved in conventional FFs, the present methodology should
be preferred. The learned model parameters and the computa-
tional framework are distributed publicly on the web as they
can play a significant role in advancing the application of ML
techniques to material science.
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