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Strain-induced variant selection in heterogeneous nucleation of α-Ti at screw dislocations in β-Ti
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Heterogeneous nucleation of the α to β phase transition at 〈1 1 1〉β -type screw dislocations in pure titanium
is examined through a combination of elasticity theory and molecular dynamics simulations using a modified
embedded atom method potential. These screw dislocations act as heterogeneous nucleation sites and increase
the α phase growth rate but also restrict the orientation of the α nuclei to certain directions, along which the strain
field of the dislocation aligns with the strain required to complete the Burgers transformation path. Simulations
and elasticity theory predict the same three α phase variants along the same preferential directions for α nucleus
growth in the early stages of transformation. Previous elasticity theory calculations indicate that this growth does
not result in the elastically preferred habit plane for the α nucleus. Molecular dynamics simulations on many-layer
supercells presented here show that large α plates will change their growth direction toward the predicted habit
plane, but this rotation is resisted by the line tension of the dislocation until the α precipitate detaches from the
dislocation.
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I. INTRODUCTION

Titanium alloys are of obvious technological importance
due to their often superior mechanical properties. These prop-
erties are engineered into the material through a variety of
alloying additions and processing routes. A key aspect of this
engineering is that Ti alloys have multiple phases accessible
at room temperature—the α-phase [hexagonal close packed
(hcp)], the β-phase [body centered cubic (bcc)], and the ω-
phase (simple hexagonal). Alloy engineering often exploits
these phase transitions (or seeks to suppress them) to improve
alloy properties and consequently the mechanisms by which
the phase transformations occur are of interest.

Nucleated phase transitions offer the opportunity to influ-
ence the kinetics of the phase transformation. More specif-
ically, first-order transitions can nucleate homogeneously
within a (nominally) translationally invariant system and they
can nucleate heterogeneously upon some defect within the
transforming system, the latter of which is often overwhelm-
ingly preferred. For example, suppression of heterogeneous
nucleation sites for solidification can lead to substantial su-
percooling of liquids. Thus, understanding the heterogeneous
nucleation paths available to the system can allow for control of
a first-order phase transformation of interest. In pure Ti, theβ to
α phase transition is expected to proceed via the well-known
Burgers path [1]. The Burgers path consists of both a strain
and shuffling of atoms, described in more detail in Sec. IV.
This path, however, involves overcoming an energy barrier,
and hence the transition is first-order.
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Due to the technological importance of α/β-Ti alloys, the α

to β and β to α transitions in Ti have been studied extensively
in experiment [2–11] as well as in phase field simulations
[12–14]. The consensus among these previous studies is that
the orientations of post-transformation α Ti grains are selected
by the Burgers relation. Several of the studies which employed
electron backscattering diffraction (EBSD) or x-ray diffraction
further concluded that there is selection among the possible
orientation variants resulting from the Burgers path [2–5]. In
particular, Gey et al. have shown that increasing the degree
of hot rolling in the β phase increases the degree of variant
selection and that the α variants preferentially selected are
linked to the most active slip systems in the parent β grain
[3]. Qiu et al. used anisotropic elasticity theory as well as
phase field simulations to show that the stress fields around
dislocations in the β phase interact with α nuclei, and that
this elastic interaction dominates the variant selection during
nucleation [12].

Here we present atomistic simulations of the β to α

transition around dislocations, with findings that are in good
agreement with the preceding experimental and phase field
work. In this paper, the influence of 〈1 1 1〉β-type screw
dislocations on the β to α transition in pure Ti is studied using
molecular dynamics (MD) employing an empirical potential.
Specifically, dislocations are introduced into the β-phase at
high temperatures. The system is then cooled to temperatures
below the β to α phase transition temperature, and allowed
to evolve. Given sufficient time, the system transforms to the
α-phase. The simulations thus enable the dynamics of the
transition to be studied in detail. Simulations are performed
at several temperatures and the nucleation and growth rates
calculated across the temperature range 1050 to 1250 K. Below
we show that the equilibrium α → β transition temperature is
approximately 1700 K. Hence, these temperatures represent a
substantial undercooling.
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In the simulations, the α phase initially nucleates from
the β phase as plates which have an edge terminated at a
dislocation core. In the very initial stages of nucleation, the
habit planes of these plates are determined by the stress field
of the dislocations. However, as the nuclei grow, their habit
plane shifts. Further, we find evidence of tentlike structures
and three-variant clusters as previously reported in experiment
and phase field simulations [6,11,12]. These atomic scale
simulations show that existing dislocation microstructures
have the potential to alter dramatically the β to α transition
kinetics and morphologies.

In the following, these results are presented in more de-
tail. In Sec. II we introduce the various methods employed,
including calculation of the β to α transition temperature by
non-equilibrium thermodynamic integration. In Sec. III, we
illustrate the predictions of our elasticity theory modeling and
the results of our MD simulations of the β to α phase transition.
Next we discuss the implications of these results within the
context of the known Burgers path and elasticity theory in
Sec. IV. Finally, the conclusions are presented.

II. METHODS

A. MEAM potential validation

Molecular dynamics calculations were performed using
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) [15]. For our simulations of titanium, the modified
embedded atom method (MEAM) potential for titanium of
Hennig et al. [16] was used. The titanium potential was ana-
lyzed to determine its β to α phase transition boundary. Using
a nonequilibrium thermodynamic integration technique [17],
the free energies of β- and α-phases can be calculated with
small errors for a range of relevant temperatures at which the
phases are at least metastable. The free energies of both phases
were determined from 1200 K to 2000 K at zero pressure. All
simulations employed 1 fs timesteps.

Determining the nonequilibrium free energies of the phases
required three steps. First we found the spring constants for
harmonic approximations to the β and α phases within an
NPT ensemble with a Nosé-Hoover barostat and Langevin
thermostat at zero pressure and 1200 K, averaged over 10 ps.
For an equiaxed cell with ∼40 000 atoms we found the spring

constants to be 1.36 eV/Å
2

for β and 2.17 eV/Å
2

for α.
The second step is integration along the Frenkel-Ladd path

[18] to find the free energy of each phase at the lower limit
of the temperature range of interest, for which we used a
NVT ensemble with a Langevin thermostat set to 1200 K.
The switching procedure took 20 ps and equilibrated for 4
ps. From this, the free energies at 1200 K for β and α phases
were determined to be −5.368 eV/atom and −5.379 eV/atom,
indicating that α is stable at this temperature.

Using these values as reference points, the remainder of
the nonequilibrium free energy curves were determined using
reversible scaling [19,20] of the MEAM potential in the third
step. Reversible scaling was done with a NPT ensemble with
a Nosé-Hoover barostat and a Langevin thermostat from 1200
to 2000 K. The forward and backward simulations were
100 ps. To ensure that a sufficiently large supercell was
used, the transition temperature was calculated for multiple

FIG. 1. (a) Free energies of the hcp and bcc phases calculated
using the reversible scaling method with the 30 × 30 × 30 bcc unit
supercell size. (b) Free energy difference corresponding to (a). (c)
Variation of the transition temperature with supercell size.

supercell sizes. β supercells with side lengths which were
multiples of 3 conventional bcc unit cells in the range 9 × 9 × 9
(1458 atoms) to 30 × 30 × 30 (54 000 atoms) were used.
For each size, a corresponding α supercell was chosen to be
approximately equiaxed and have a similar number of atoms
to the β supercells. The free-energy curves calculated for the
largest supercells are shown in Fig. 1(a) and yield a transition
temperature of 1694 K. The β to α transition temperature was
found to vary with supercell size, as shown in Fig. 1, but our
largest simulations indicate a value of ∼1700 K.

This value differs significantly from that given by Hennig
et al. (1250 K), the creators of this MEAM potential [16].
To verify the accuracy of our reversible scaling method
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calculation, we also performed a series of coexistence cal-
culations, where the interface between the two phases was
designed to be coherent and to reflect the elastic constants of
both phases at high temperature, such that it would minimally
influence phase evolution. In these calculations we begin with
a supercell containing half α and half β titanium, meeting at
an interface that satisfies the Burgers orientation relation. The
elastic energy of the combined system can be expressed as

E = Vα

2
Cα

ijklη
α
ij η

α
kl + Vβ

2
C

β

ijklη
β

ij η
β

kl, (1)

where Vα (Vβ) refers to the volume of the α (β) phase, Cα

(Cβ) corresponds to the elastic constants of the respective
phases in the given frame of reference, and ηα (ηβ) refers to the
strain applied to the given phase. By applying the constraint
that the lattice vectors parallel to the interface must match for
both phases, the supercell can be constructed by solving for
the strains ηα and ηβ . This can be expressed as a system of
equations of the following form:
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with aα
0 and a

β

0 being the equilibrium lattice parameters of the
α and β phases.

NPT-ensemble molecular dynamics simulations at tempera-
tures ranging from 1200 to 1800 K were performed using these
coexistence supercells containing 17 600 atoms. At tempera-
tures 1700 K and below, the supercell transformed entirely to α.
At temperatures 1712.5 K and above, the supercell transformed
entirely to β. This indicates a transition temperature slightly
above 1700 K, which is in excellent agreement our reversible
scaling calculations. This also agrees well with the value 1720
K recently calculated by Dickel et al. for this MEAM potential
[21].

The large difference between the temperature at which α

becomes the more stable phase (1700 K) and the temperature
at which β rapidly transforms to α homogeneously in very
small (432 atom) supercells (1250 K) highlights the usefulness
of nonequilibrium thermodynamic integration for potential
validation. The following sections detail simulations of the β to
α transition, which were performed at temperatures in the range
1050 K to 1400 K, well below the transition temperature for
this potential. Unfortunately the large difference between the
β to α transition temperature in this MEAM potential and that
of actual titanium (1155 K [22]) means the behavior at a given
temperature in our simulations cannot be directly compared to
that in experiment at the same temperature. Nevertheless, we

expect that the qualitative properties of the transition will be
well represented by the potential.

B. Dislocation supercell construction

For all dislocation calculations we use periodic screw
dislocation arrays arranged such that each dislocation has four
nearest-neighbor dislocations and is opposite in Burgers vector
direction to its nearest neighbors. These arrangements are
known as quadrupolar and minimize the elastic energy of a
periodic dislocation array due to cancellation of long-range
stress fields [23]. The line direction of all dislocations is
[1 1 1]β , and therefore the Burgers vectors for the screw
dislocations are ± a0

2 [1 1 1]β . Dislocation-containing supercells
are oriented such that [1 1 2̄]β is parallel to the x axis, the
line direction/Burgers vector [1 1 1]β is parallel to the y axis,
and [1̄ 1 0]β is parallel to the z axis. Supercell lattice vectors
are tilted to account for the distortion from the dislocations as
prescribed by Lehto and Öberg [24]. Initial displacements were
determined using the method of Daw [23], which yields good
starting points that account for elastic anisotropy while only
requiring lattice parameters and elastic constants as inputs.

The quadrupolar arrangement used in this paper had dislo-
cations of alternating sign on the (1̄ 1 0)β and (1 1 2̄)β planes
(i.e., along the x and z directions). The superlattice vectors
in these directions were 244 and 141 Å. For the majority of
the calculations presented the superlattice vector along the
dislocation line direction was 46 Å and the supercell contained
86 400 atoms.

Stabilization of the dislocations within the supercell proved
to be challenging. The positions produced from our linear
elasticity method resulted in nearly immediate annihilation of
the dislocations at any simulated temperature. Relaxation of
the positions at 0 K can often solve this type of issue, but the
bcc structure is not stable in pure Ti at 0 K. To get around these
issues, we scaled the lattice vectors and atomic coordinates to
those of tungsten, and relaxed the supercell to a force tolerance
of 10−4 eV/Å within a tungsten Finnis-Sinclair EAM potential
[25], for which bcc is the stable phase from 0 K to at least 1350
K. With the relaxed cell and still within the tungsten potential,
an NPT ensemble with a Nosé-Hoover barostat and Langevin
thermostat set at 0 pressure and 1350 K was used to achieve an
equilibrated state over 100 ps. This equilibrated configuration
was then scaled to the lattice parameters of titanium (estimated
via molecular dynamics without dislocations) and the atoms
converted to Ti.

Structural analysis of the dislocation cells before and after
transformation was performed using the OVITO software
package [26]. Chiefly the polyhedral template matching (PTM)
[27] tool was used to identify the local structure as well
as orientation at each atomic site. Averaging of the atomic
coordinates over 100 fs was performed within LAMMPS to
smooth thermal vibrations and allow for PTM calculation.

C. Calculation of elastic constants

The elastic constants at finite temperature were calculated
by first allowing the supercell to equilibrate at temperature in an
NPT ensemble for 100 ps. NVT ensembles were then simulated
for 100 ps for 24 separate deformations corresponding to the six
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TABLE I. Calculated elastic constants of β-Ti at finite temperatures within the MEAM potential and elastic constants measured in previous
experimental studies.

Temperature C11 (GPa) C12 (GPa) C44 (GPa) C ′ (GPa) AZ

1200 K 89.1 ± 0.6 81.0 ± 0.3 37.0 ± 0.7 4.1 ± 0.5 9.2 ± 0.8
1300 K 89.4 ± 0.7 79.9 ± 0.2 37.2 ± 0.3 4.7 ± 0.5 7.8 ± 0.6
1400 K 89.3 ± 0.5 78.5 ± 1.0 36.8 ± 0.1 5.4 ± 0.8 6.8 ± 0.7
1500 K 88.9 ± 1.1 77.4 ± 0.2 36.4 ± 0.4 5.6 ± 0.7 6.4 ± 0.6
1600 K 88.7 ± 0.7 76.7 ± 0.7 35.8 ± 0.1 6.0 ± 0.7 5.9 ± 0.5
1700 K 88.1 ± 0.8 75.6 ± 0.3 35.1 ± 0.4 6.3 ± 0.6 5.6 ± 0.4
1293 K [22] 134 110 36 12 3
1273 K [32] 99 85 33.6 7 4.8
1273 K [33] 97.7 82.7 37.5 7.5 5

unique strain components (ε11, ε22, ε33, ε23, ε13, ε12) at four
different magnitudes of strain each (ranging from strains of
−0.01 to 0.01). By fitting the line between the stress calculated
from the sum of the kinetic energy tensor and virial tensor [28]
with each strain component, all 21 unique elastic constants
could be determined. For more information on the calculation,
see Ref. [29].

The uncertainty associated with the above calculation was
approximated by first determining the correlation time of each
stress component for every applied strain. This was used
to estimate the error in stress using the bootstrap method
[30]. The error in the elastic constants was then estimated
by performing 100 linear fits between stress and strain com-
ponents corresponding to each elastic constant, where for
each fit the stresses were randomly generated to be within
the error range calculated for the specific stress component.
The elastic constant was then considered to be the mean of
these fittings with the error being the standard error of the
mean.

The elastic constants of β-Ti were calculated for tempera-
tures ranging from 1200 to 1700 K. At all temperatures consid-
ered the β phase was shown to be elastically stable. However,
C12 gradually approach C11 with decreasing temperature,
meaning that the shear modulus [C ′ = 1

2 (C11 − C12)] steadily
softened. This was associated with a consistent increase in
the Zener anisotropy (AZ = 2C44

C11−C12
) as shown in Table I and

resulted in a softening of the N -point phonon associated with
the Burgers transformation [1]. Ogi et al. found experimentally

that the elastic constants of β-Ti vary weakly with temperature
[31], which agrees well with our calculated elastic constants.

III. RESULTS

A. Elasticity theory analysis

The prediction of variant selection from elasticity theory is
not a new idea. Cahn used isotropic elasticity theory to analyze
the nucleation of second phases on dislocations [34], while
Thomas and Nutting proposed that the preferred variants to
nucleate from a dislocation are those that best accommodate
the strain field of a dislocation [35]. More recently, Qiu et al.
considered the variant selection of α precipitates nucleating
from both edge and screw dislocations in β-Ti using both
anisotropic elasticity theory and phase field modeling [12].
They found that during nucleation the preferred variants
are those with the most negative elastic interaction energy
associated with the strain field of the dislocation. However,
they saw that the most dominant variants in growth were those
for which the habit plane was oriented nearly parallel with the
dislocation line, an idea first proposed by Kelly and Nicholson
[36].

Here, only the preferential nucleation of variants on the dis-
location are considered. These variants will have the geometry
imposed by our few-layer supercells and therefore make for a
good point of comparison. This geometry also represents the
observations in the early stages of nucleation in our many-layer
supercells. As a result, an approach similar to Thomas and

TABLE II. List of the 12 unique variants for the Burgers orientation between the α and β precipitates [1,39].

Variant Plane relation Direction relations

V1 (1 1 0)β ‖ (0 0 0 1)α [1̄ 1 1̄]β ‖ [1 1 2̄ 0]α [1̄ 1 2]β ‖ [1̄ 1 0 0]α
V2 (1 1 0)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [1̄ 1 2̄]β ‖ [1̄ 1 0 0]α
V3 (1̄ 1 0)β ‖ (0 0 0 1)α [1 1 1̄]β ‖ [1 1 2̄ 0]α [1 1 2]β ‖ [1̄ 1 0 0]α
V4 (1̄ 1 0)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [1 1 2̄]β ‖ [1̄ 1 0 0]α
V5 (0 1 1)β ‖ (0 0 0 1)α [1̄ 1̄ 1]β ‖ [1 1 2̄ 0]α [2̄ 1 1̄]β ‖ [1̄ 1 0 0]α
V6 (0 1 1)β ‖ (0 0 0 1)α [1 1̄ 1]β ‖ [1 1 2̄ 0]α [2 1 1̄]β ‖ [1̄ 1 0 0]α
V7 (0 1̄ 1)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [2 1 1]β ‖ [1̄ 1 0 0]α
V8 (0 1̄ 1)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [2̄ 1 1]β ‖ [1̄ 1 0 0]α
V9 (1 0 1)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [1 2 1̄]β ‖ [1̄ 1 0 0]α
V10 (1 0 1)β ‖ (0 0 0 1)α [1̄ 1̄ 1]β ‖ [1 1 2̄ 0]α [1 2̄ 1̄]β ‖ [1̄ 1 0 0]α
V11 (1̄ 0 1)β ‖ (0 0 0 1)α [1 1̄ 1]β ‖ [1 1 2̄ 0]α [1 2 1]β ‖ [1̄ 1 0 0]α
V12 (1̄ 0 1)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [1 2̄ 1]β ‖ [1̄ 1 0 0]α
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Nutting’s proposed mechanism of variant selection is used in
an anisotropic elasticity model to identify the variants most
likely to nucleate from a screw dislocation in β-Ti, with the
strain field of the straight 〈1 1 1〉β-type dislocation generated
from continuum anisotropic linear elasticity theory [37].

1. Burgers transformation path

To understand the nucleation of the α phase from the β

phase at the screw dislocation core, a comparison has been
made of the strain field produced by such a dislocation with
the strain state necessary for the Burgers transformation [1].
The Burgers path consists of both a strain and shuffling of
atoms. The shuffling of atomic {1 1 0}β planes is associated
with the N -point phonon, while the transformation strain can
be represented as eigenstrains for the orientations a = 〈1 1 0〉β ,
b = 〈0 0 1〉β , and c = 〈1 1̄ 0〉β . The eigenstrains consist
of a compressive strain along 〈0 0 1〉β and a tensile strain
along 〈1 1 0〉β . The Burgers transformation results in the α/β

orientation relation {1 1 0}β ||(0 0 0 1)α (see Table II for all
variants).

The lattice parameter of β-Ti was found to be aβ = 3.32 Å
at 1200 K, while the lattice parameters for the α phase were
estimated to be aα = 2.97 Å and cα = 4.77 Å. The Lagrangian
strain is written in Einstein summation notation as

εjk = 1
2 (FmjFmk − δjk ). (3)

Here F is the deformation gradient, defined as Fmj = ∂xm

∂Xj

(x corresponds to the current configuration and X the reference
configuration), and δjk is the Kronecker delta function. Setting
the lattice vectors of the reference frame to be those defined
above, the transformation strain is

ε0 =
⎛
⎝0.101 0 0

0 −0.099 0
0 0 0.016

⎞
⎠. (4)

2. Dislocation-induced nucleation

To predict the variants that will nucleate on the dislocation
and the orientations along which they will grow, a comparison
was made between the strain associated with the Burgers
transformation path and the stress field resulting from a single
〈1 1 1〉β -type dislocation a distance rcore away from the
center of the dislocation, with rcore being an estimate for the
dislocation core radius using elasticity theory [38]. This was
done by calculating the elastic energy density, taking into
consideration the orientation of the α nucleus to the dislocation
as well as the orientation relationship between the β and α

phases. As shown in Table II, there exist 12 unique variants
associated with the Burgers transformation between the β and
α phases [1,39]. With respect to the nucleation of a general α

precipitate, there are six unique habit planes in the β phase for
which there are two unique variants. These two variants are
related by a π

2 rotation perpendicular to the habit plane. The
elastic interaction between an Eshelby inclusion with strain
equal to the Burgers transformation strain for variant n [Eq. (4)]
and the stress induced by a [1 1 1]β-type screw dislocation as a
function of angle θ around the dislocation (θ = 0 corresponds
to the direction [1 1 2̄]β and θ = π

2 to the direction [1 1̄ 0]β) can
be assessed by computing the energy density eint

n (θ ), following

FIG. 2. Plot of interaction energy density eint
n (θ ) with respect to

direction symbolized by the angle θ . The absolute minima occur at
π

2 , 7π

6 , and 11π

6 in agreement with molecular dynamics simulations.
θ = 0 corresponds to the direction [1 1 2̄]β and θ = π

2 to the direction
[1 1̄ 0]β .

Qiu et al. [12]:

eint
n (θ ) = −σij (θ )ε0

ij (Vn), (5)

where σ (θ ) is the stress induced by the screw dislocation at
radius rcore = 5.90 Å from the dislocation origin and ε0

ij (Vn)
is the Burgers transformation strain associated with the nth
variant.

Plotting all 12 unique variants (Fig. 2) it is apparent that
there is an absolute minimum value that is obtained by three
variants. The orientations at which a variant displays an
absolute minimum are: V4 near π

2 , V8 near 7π
6 , and V12

near 11π
6 . These are also the three variants that satisfy the

additional constraint proposed by Kelly and Nicholson [36]
that the Burgers vector in the β phase is contained by the
α habit plane (i.e., [1 1 1]β ‖ [1 1 2̄ 0]α). These three
variant and orientation pairs are the same as those along which
α precipitates are shown to nucleate in MD simulations. If
the sign of the dislocation Burgers vector is reversed in the
calculation the same three variants are found to be favored,
but with minima rotated by π , also in agreement with our
MD simulations. All inputs used for the dislocation strain
field calculation (aβ, C11, C12, C44) were calculated for β-Ti
at 1200 K. See Sec. II for further details. Similar behavior is
predicted over a wide range of elastic constant values, which
indicates that this variant selection is not peculiar to the MEAM
potential chosen.

B. Few-layer supercell molecular dynamics

We begin with a β supercell with 16 layers along the
dislocation line (86 400 atoms). Molecular dynamics sim-
ulations starting with both a reference undeformed super-
cell and a stabilized titanium supercell containing two dis-
locations were performed with an NPT ensemble using a
Nosé-Hoover barostat and Langevin thermostat at zero pres-
sure and temperatures of 1050, 1200, 1225, 1250, 1275,
1300, 1350, and 1400 K. For each cell at each tempera-
ture ten independently-seeded simulations 500 ps in length
were performed, for a total of 160 simulations in this
group.

A typical simulation result is shown in Fig. 3. The visu-
alization presented is from OVITO. PTM was used first to
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FIG. 3. Nucleation and growth of the α phase (colored atoms)
from the β phase (black) at 1225 K viewed in the plane perpendicular
to the dislocation line direction. Coloring is by PTM as described
above. White atoms have no identified structure in PTM within
the RMSD cutoff of 0.09 and correspond to dislocations, grain
boundaries, or point defects. (a) 0 ps, initial dislocation cell; (b) 20
ps, initial nucleation of α phase at each dislocation; (c) 40 ps, growth
of primary nuclei and formation of a secondary nucleus adjacent to
the right-hand nucleus; (d) 60 ps, continued growth and formation
of secondary nucleus complementary to the primary and previous
secondary nuclei; (e) 80 ps, completed growth of fine-grained α; (f)
500 ps, coarsening has occurred and removed all high-energy grain
boundaries.

identify a local crystal structure at each atom, using a root-
mean-squared deviation (RMSD) cutoff of 0.09 (i.e., atoms
above this threshhold are identified as “other” and colored
white). The atoms found to be bcc are then colored black. For
the atoms identified as hcp, the coloring is by the y-component
of the orientation identified by PTM. This is very useful for
distinguishing the α variants. An undocumented bonus-feature
of PTM exists for the hcp crystal structure. Because there are
two basis atoms in hcp, two slightly different orientations are
identified within the same grain, alternating on adjacent basal
planes. This leads to a striped appearance in our visualizations
that allows us to easily identify basal planes. In this color
scheme variant 4 appears blue, variant 8 is yellow-green, and
variant 12 is red.

Examining all trials, we see three dominant variants (V4,
V8, and V12) of α grains, in agreement with our elasticity
theory prediction. The angles at which these variants appear
are also in agreement with our prediction. Examples of all
orientations are shown in Fig. 4. It is worth noting that because
the two dislocations have oppositely signed Burgers vectors,
the direction in which each variant nucleates is rotated by π

when considering the right-hand dislocation (Burgers vector
into page) versus the left-hand dislocation (Burgers vector out
of page). Due to concerns about the validity of the MEAM
potential employed stemming from its incorrect transition
temperature, a limited set of calculations of this same type
were also performed using the MEAM potential due to Dickel
et al. [21]. Exactly the same variant selection behavior was

FIG. 4. Examples of all three dominant orientations nucleating on
both the left-hand and right-hand dislocations. Coloring is by PTM
as described above.

found within this more recent potential, in agreement with the
predictions presented here.

Using PTM through OVITO, we can extract both phase
and orientation information over time rapidly from all our
simulations. Figure 5 shows the fraction of atoms identified
as belonging to each variant type for the same simulation as
shown in Fig. 3. At approximately 50 ps the primary V8 nuclei
form, followed quickly by secondary nuclei of the other two
dominant variants. Transformation to α is complete at 100 ps.
Following this, growth of V12 grains at the expense of V4 leads
to the coarse structure seen in Fig. 3(f).

Taking the total fraction of hcp atoms we fit the growth to
the following Avrami-type equation [40–42]:

0 t < thet

αmax

(
1 − exp −

(
t − thet

τ

)3
)

+ N0 t � thet
(6)

to find the characteristic growth time (τ ). This fit is shown for
our example simulation in Fig. 6. In our fit, we allow also fit
the nucleation time before rapid growth begins, which yields
a good estimate of the time to heterogeneous nucleation (thet).
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FIG. 5. Atom fraction of α V4, V8, V12, and other (i.e., hcp atoms
not matching any of the three dominant variants) for the simulation
at 1225 K shown in Fig. 3.

αmax is the (known) maximum fraction of the supercell which
is transformed to α (0.5% to 5% of the supercell is identified
as having no phase or remaining β after transformation). N0 is
a small offset allowed in the fit, and was less than 10−5 in all
samples.

In our simulations starting from the configuration contain-
ing dislocations we observe a transformation to α in all trials
at temperatures 1250 K and below. At 1275 K we observed
two trials transform, while the other eight remained in the β

phase. At temperatures 1300 K and above all trials remained
in the β phase. The results of our fits for all simulations at
1050, 1200, 1225, and 1250 K are summarized in Table III.
When simulations were started from the configuration without
dislocations, transformation was only observed at 1050 K,
demonstrating the necessity of heterogeneous nucleation sites
to induce transformation.

From the simulations of the supercell without dislocations
we measure thom, the homogeneous equivalent to thet. At
1050 K, thom was 91.8 ± 51.0 ps, which is both much longer
and much more varied than the heterogeneous case at the same
temperature. This demonstrates the potency of the dislocation
lines as heterogeneous nucleation sites. In fact, the nucleation
behavior without dislocations at 1050 K is similar to that with
dislocations at 1250 K. In terms of growth rate, τ at 1050 K

FIG. 6. Avrami equation fit (black line) to α phase nucleation and
growth data (blue points) for the simulation at 1225 K shown in Fig. 3.

TABLE III. Heterogeneous nucleation time thet and transforma-
tion characteristic time τ from Avrami equation fits to data from
simulations containing dislocations.

Temperature 1050 K 1200 K 1225 K 1250 K

thet (ps) 1.95 ± 0.86 18.5 ± 3.7 36.4 ± 14.0 104.3 ± 30.0
τ (ps) 8.3 ± 1.0 16.2 ± 1.8 20.3 ± 2.3 22.5 ± 1.6

without dislocations was 9.1 ± 1.2 ps, which is similar to but
a bit slower than the rate with dislocations. This indicates that
the strain from the dislocation may provide a boost to the α

phase growth rate.

C. Many-layer supercell molecular dynamics

Following the procedure detailed in Sec. II for stabilizing
dislocations in high temperature β-Ti, we created a new
supercell with 256 layers along the dislocation line direction
and the same area on the face normal to this direction as used
previously, with a total of 1 382 400 atoms. This supercell
is much longer along the line direction (737 Å) than the
separation between the dislocations (183 Å). Nucleation of the
α phase in this supercell was observed in two molecular dy-
namics simulations at 1250 K with NPT ensemble configured
as described previously. Early in this process it is apparent that
various small protonuclei form, fail to reach critical radius,
and disappear. These nucleate with the same orientations as
observed in the shorter supercells but do not span the entire
length of the simulation cell. It is also noteworthy that while
all three possible orientations are sometimes present on the
same dislocation line, they were not observed at the same
point along the line at the same time. This is likely due to the
elastic field around a nucleus making formation of a nearby
nucleus of differing orientation on the dislocation line less
favorable.

While we were not able to conduct enough simulations
to facilitate a detailed statistical analysis, it is clear that the
nucleation rate (of supercritical nuclei) in the long supercells
is lower than in the short supercell at the same temperature.
Fitting to the Avrami equation yields nucleation times of 134
and 139 ps for the two samples, which are both approximately
one standard deviation longer than for the few-layer supercell
at the same temperature. The characteristic growth times were
37.9 and 30.8 ps, which indicates much slower growth than in
the short supercells. In the short supercell, once a protonucleus
is formed it need not grow very far before it runs into its
own image through a periodic boundary and at this point
its length becomes effectively infinite. When the superlattice
vector along the line direction is larger than the critical nucleus
size, the nuclei exist for much longer before this occurs. During
this stage the surface energy due to the nucleus surfaces normal
to the dislocation line direction increase the energy of the
nucleus. Furthermore, as a nucleus grows along the dislocation
line it must compete with nuclei of other orientations that it
encounters, as it is unfavorable for two nuclei of differing
orientations to exist in the same region of the dislocation line
at the same time. This progression can be observed in Fig. 7
[43].
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FIG. 7. Front view of nucleation and growth of the α-phase from
β (atoms removed) at 1250 K along the [111]β screw dislocation
lines in the supercell which is 737 Å in length. Atom coloring is by
PTM as described previously. (a) Configuration 40 ps into simulation,
shows single nucleus on left-hand dislocation and a number of smaller
nuclei on the right-hand dislocation. These occupy different segments
of the line in the direction into the page. (b) Post-transformation
microstructure 210 ps into simulation. The somewhat columnar
structure is similar to that found in the few-layer supercells, though
not all grains completely fill the length of the supercell.

IV. DISCUSSION

A. Nucleation times and transformation rates

The increase in time to a successful α nucleation event with
increasing temperature is significant. Over the range 1200 to
1250 K the increase is 5×. However, the change in this time
with respect to supercell length is small. In the many-layer
supercells, the time to form a supercritical nucleus is slightly
longer than in the few-layer supercells. Probably this is due
to competition between two factors: (1) there is 16× more
dislocation line length on which to form a nucleus, which ought
to increase the rate, and (2) the size of a supercritical nucleus is
larger, because the nuclei do not immediately cross the periodic
boundaries and contact themselves.

In the few-layer supercells, growth rates drop consistently
as temperature increases due to the lower driving force to
form α. The growth rate in the many-layer supercell is much
slower. This results from competition between neighboring
nuclei with different orientations on the same dislocation
line, as well as the increase in surface area of the nuclei
due to their curved edges before they completely fill the
supercell. It also appears that there is little growth of the nuclei
while they change in habit plane and pull away from parts
of the dislocation. In fact, there is some local shrinkage of
supercritical nuclei where they pull away from the dislocation
line.

The success of Eq. (6) in fitting the nucleation and growth
data (as shown in Fig. 6) is mildly surprising, as the model was
derived to represent homogeneous nucleation and growth at
a constant rate. In our simulations (other than that without
dislocations at 1050 K) the observed nucleation is plainly
heterogeneous on the dislocation lines. However, nucleation
does not end there. Strain-induced nucleation of secondary
grains adjacent to the primary grains allows the growth to
continue at a greater rate than if only primary nucleation on
the dislocation lines occurred. However, this is still not truly
homogeneous nucleation because it is induced only within
a range (approximately 30 Å) of existing nuclei. However,
these secondary nuclei induce more secondary nuclei to
form, and thus can spread the α phase rapidly. Therefore,
while primary nucleation is heterogeneous on dislocation
lines only, secondary nucleation events occur throughout the
supercell.

B. Habit plane analysis

In the few-layer geometry the length of the supercell along
the dislocation line direction is as short as possible (without
altering the transition temperature significantly, see Fig. 1) so
that the separation between the dislocations can be maximized
within resource limitations. This effectively fixes the line
direction of the dislocations, which is generally acceptable
because the line direction has been chosen to be one known
to be common in the material. In the case of phase nucleation
along the dislocation in Ti this also imposes the undesirable
condition that the habit plane of the nucleus contains the chosen
line direction. However, there is no a priori reason to expect
the elastically preferred habit plane to be perpendicular to the
〈1 1 1〉β family of directions, and in fact there is evidence to
suggest that it is not. Kashchenko and Chashchina predicted
from elasticity theory that for pure Ti this habit plane should be
{1̄ 1.5356 1̄}β [44], and Morris et al. made a similar prediction
in a titanium alloy [45]. This habit plane normal is clearly
not perpendicular to the dislocation line direction [1 1 1]β ,
unlike the {1̄ 2 1̄}β habit plane observed in the few-layer
simulations.

In the many-layer supercells, as in the few-layer supercells,
the precipitates are platelike and begin with {1̄ 2 1̄}β type habit
planes [see Fig. 7(a)]. However, in the longer cells most of
these plates change growth direction to alter the habit plane
during growth of the supercritical nuclei, gliding portions of the
dislocations with them (as done by one of the plates in Fig. 8).
This shifts the habit plane from {1̄ 2 1̄}β to approximately
{1̄ 1.61 1̄}β before the transformation proceeds too far to
allow habit plane identification. This rotation is toward the
direction predicted by elasticity theory calculations [44,45]
but still limited by the periodic boundary conditions. Because
the dislocation line must be periodic, a section of it glides
to connect the twisted line to its image [see Fig. 8(b)], and
the energy associated with this increase in line length resists
the rotation caused by the precipitate. At the slipped segment
the precipitate detaches from the dislocation line, forming a
curved edge. We anticipate that if the supercell were infinitely
long the precipitate would rotate all the way into the habit plane
predicted by elasticity theory.
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FIG. 8. Bottom view of nucleation and growth of the α phase
from β (atoms removed) at 1250 K along the [111]β screw dislocation
lines in the supercell, which is 737 Å in length. Atom coloring is by
PTM as described previously. (a) Configuration 40 ps into simulation,
shows single nucleus on left-hand dislocation and a number of smaller
nuclei on the right-hand dislocation. (b) 150 ps into simulation. This
view most clearly shows the change of habit plane by the left-hand
nucleus, and how this leads to detachment of part of the nucleus from
the dislocation line.

C. Post-transformation microstructure

After the transformation is complete the resulting mi-
crostructure is necessarily nano-grained, due to the supercell
size. In our few-layer simulations all primary α grains have the
orientation relationship [1 1 1]β ‖ [1 1 2̄ 0]α maintained along
the short axis of the supercell parallel to the dislocation line.
Initially, many secondary α grains are nucleated, and a very
small fraction of these do not share this orientation relation (see
“Other” data in Fig. 5). However, during growth all of those
without this relationship eventually are consumed by grains
of the three dominant variants (V4, V8, V12). Further, many
grains of these dominant variants are also consumed by others
during coarsening after the transformation to α is complete.

We characterize boundaries between different grains by the
angle between c axes ([0 0 0 1]α directions) in the adjacent
grains and the angle the grain boundary makes with both c

axes. Due to the constrained supercell geometry, all rotations
are about the [1 1 2̄ 0]α axis. We find only three distinguishable
orientations of the basal plane and five grain boundary types in
the few-layer supercells, which we will describe in descending
order of occurrence.

The most common boundary (type 1) has [0 0 0 1]α
directions at an angle of π

3 , with the boundary at π
6 to each,

and the boundary is a plane of mirror symmetry. This finding
is consistent with previous experiment [6,11] and phase field
simulations [12]. Type 2 is a boundary (stacking fault) at which

the hcp stacking changes (ABA|B|CBC). In this type there is
no difference in angle between the [0 0 0 1]α directions, and
both [0 0 0 1]α directions make an angle of π

2 with the grain
boundary. These appear as green lines in the PTM images due
to the local structure in the boundary layer being identified as
fcc. Type 3 boundaries have c axes at π

3 as in type 1, but the
boundary itself is perpendicular with the c axis on one side
of the boundary. Type 3 boundaries are asymmetric and tend
to be shorter and broader (i.e., more atoms are identified as
in the boundary rather than either of the neighboring grains),
indicating that its energy is somewhat higher than the previous
two types. The last two observed grain boundaries are much
less common than the first three. In type 4 the c axes meet at a
2π
3 angle, with the grain boundary at π

3 to each. In type 5, the
adjacent grains differ by stacking rather than angle as in type
2, but both c axes meet the grain boundary at a π

6 angle.
Examining the simulation trajectories during the grain

growth stage, we see that the commonly observed type 1 grain
boundaries often form when a new grain nucleates only a
few atomic spacings from an existing α grain [see Figs. 3(b)
and 3(c)]. This nucleation is apparently accommodated by the
stress in the β grain resulting from the nearby α-β interface.
Further, it is common to see two nearby α grains with π

3
difference in orientation induce the nucleation of a grain
oriented to form π

3 angles with both [see Fig. 3(d)]. This results
in structures similar to the tents seen by Balachandran et al. in
EBSD [11] as well as Qiu et al. in in phase field simulations
[12].

After coarsening is complete typically only type 1 bound-
aries between distinguishable orientations, type 2 boundaries
(stacking faults) within grains, and some geometrically nec-
essary type 5 boundaries, which connect the type 2 stacking
faults, remain. In many cases coarsening results in only two
large grains surviving [see Fig. 3(f)], while as many as 30 grains
might exist at some point during a simulation.

In the many-layer supercells when the transformation is
near completion the same types of grain boundaries are
observed as in the few-layer supercells [see Fig. 7(b)], with
a similar columnar structure. Again the dominant boundary is
the symmetric type 1 and the type 2 is the next most common.
A large triple junction of symmetric π

3 boundaries has been
observed to form when two grains grow into each other and
induce a third grain to nucleate, as similarly observed in the
short supercells. This in some cases creates tentlike structures
formed when these three grains grow inwards toward the triple
junction, a process shown in Fig. 9. Nearly all grain boundaries
are parallel to the original dislocation line direction, though
type 2 boundaries are formed at a π

3 angle to the dominant
grain boundary direction towards the end of the grain growth
process.

V. CONCLUSION

We examined nucleation of the β to α phase transition
at 〈1 1 1〉β -type screw dislocations in pure titanium through
a combination of molecular dynamics simulations using a
modified embedded atom method potential and elasticity
theory analysis. Both methods predict the same three α variants
and preferential directions for α nucleus growth in the early
stages of transformation, corresponding to orientations spaced
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FIG. 9. Sections showing growth of two grains of the α phase
from β (atoms removed) which nucleated on dislocation lines in
the supercell which is 737 Å in length. Atom coloring is by PTM
as described previously. (a) The two original grains growing from
the dislocations with 2π

3 orientation difference have intersected and
formed a type 1 grain boundary. (b) The nucleation of a third grain
with complementary orientation is induced by the strain around the
original two grains. (c) The three grains have grown until they form a
tent structure with three type 1 grain boundaries. (d) Side view of the
same structure, without sectioning. This clearly shows the tent shape
of the colony.

uniformly about the 〈1 1 1〉β axis at angles θ = π
2 , θ = 7π

6 , and
θ = 11π

6 from the 〈2̄ 1 1〉β axis perpendicular to the dislocation.
These directions are preferred because the strain field resulting
from the dislocation aligns best with the transformation strain
required for the Burgers path that takes the β phase to the α

phase and result in habit planes that contain the dislocation
line.

We have demonstrated the tendency of the α precipitate
to rotate towards the elastically preferred habit plane when
the simulation supercell is large enough to accommodate
such a rotation. This rotation is still apparently resisted by
lengthening of the remaining dislocation, to which the α

precipitate remains bound by a favorable surface energy term.
Finally, we examine the post-transformation α microstructure
and find it to be dominated by three orientation relationships
between neighboring grains.

This work demonstrates the role of the strain field around
〈1 1 1〉β-type screw dislocations in providing heterogeneous
nucleation sites for the α phase, and thus provides a link
between initial dislocation density in the β phase and post-
transformation microstructure that could prove useful to the en-
gineering of titanium alloys. These findings match those from
experimental and phase-field simulation literature on the same
system. In addition, these findings extend those deduced from
phase-field simulations by enabling the time scales associated
with nucleation to be explored directly. Within molecular
dynamics simulations, the processes determining nucleation
rates are allowed to evolve at the atomic scale. Moreover, the
molecular dynamics simulations allow for the motion of the
dislocation that accommodates the habit plane shift after nucle-
ation. This demonstrates the potential of molecular dynamics
simulations for studying variant selection in solid-solid phase
transitions.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with Profes-
sor Dallas Trinkle about the MEAM potential for titanium used
in the simulations presented, as well as with Dr. Rodrigo Freitas
and Prof. Mark Asta about the thermodynamic integration
method. M.P., J.L., and D.C.C. gratefully acknowledge funding
from the U.S. Office of Naval Research under Grant No.
N00014-16-1-2304. This research used the Savio computa-
tional cluster resource provided by the Berkeley Research
Computing program at the University of California, Berkeley
(supported by the UC Berkeley Chancellor, Vice Chancellor
for Research, and Chief Information Officer). I.S.W. gratefully
acknowledges funding from the U.S. Office of Naval Research
under Grant No. N00014-16-1-3124.

[1] W. G. Burgers, On the process of transition of the cubic-
body-centered modification into the hexagonal-close-packed
modification of zirconium, Physica 1, 561 (1933).

[2] N. Gey, M. Humbert, M. J. Philippe, and Y. Combres, Inves-
tigation of the α- and β-texture evolution of hot rolled Ti-64
products, Mater. Sci. Eng. A 219, 80 (1996).

[3] N. Gey, M. Humbert, M. J. Philippe, and Y. Combres, Modeling
the transformation texture of Ti-64 sheets after rolling in the
β-field, Mater. Sci. Eng. A 230, 68 (1997).

[4] Z. S. Zhu, J. L. Gu, R. Y. Liu, N. P. Chen, and M. G. Yan, Variant
selection and its effect on phase transformation textures in cold
rolled titanium sheet, Mater. Sci. Eng. A 280, 199 (2000).

[5] N. Gey and M. Humbert, Characterization of the variant selection
occurring during the α → β → α phase transformations of a
cold rolled titanium sheet, Acta Mater. 50, 277 (2002).

[6] S. C. Wang, M. Aindow, and M. J. Starink, Effect of self-
accommodation on α/α boundary populations in pure titanium,
Acta Mater. 51, 2485 (2003).

[7] D. Bhattacharyya, G. B. Viswanathan, Robb Denkenberger, D.
Furrer, and Hamish L. Fraser, The role of crystallographic and
geometrical relationships between α and β phases in an α/β

titanium alloy, Acta Mater. 51, 4679 (2003).
[8] I. Lonardelli, N. Gey, H.-R. Wenk, M. Humbert, S. C. Vogel,

and L. Lutterotti, In situ observation of texture evolution

083606-10

https://doi.org/10.1016/S0031-8914(34)80244-3
https://doi.org/10.1016/S0031-8914(34)80244-3
https://doi.org/10.1016/S0031-8914(34)80244-3
https://doi.org/10.1016/S0031-8914(34)80244-3
https://doi.org/10.1016/S0921-5093(96)10388-9
https://doi.org/10.1016/S0921-5093(96)10388-9
https://doi.org/10.1016/S0921-5093(96)10388-9
https://doi.org/10.1016/S0921-5093(96)10388-9
https://doi.org/10.1016/S0921-5093(97)80111-6
https://doi.org/10.1016/S0921-5093(97)80111-6
https://doi.org/10.1016/S0921-5093(97)80111-6
https://doi.org/10.1016/S0921-5093(97)80111-6
https://doi.org/10.1016/S0921-5093(99)00666-8
https://doi.org/10.1016/S0921-5093(99)00666-8
https://doi.org/10.1016/S0921-5093(99)00666-8
https://doi.org/10.1016/S0921-5093(99)00666-8
https://doi.org/10.1016/S1359-6454(01)00351-2
https://doi.org/10.1016/S1359-6454(01)00351-2
https://doi.org/10.1016/S1359-6454(01)00351-2
https://doi.org/10.1016/S1359-6454(01)00351-2
https://doi.org/10.1016/S1359-6454(03)00035-1
https://doi.org/10.1016/S1359-6454(03)00035-1
https://doi.org/10.1016/S1359-6454(03)00035-1
https://doi.org/10.1016/S1359-6454(03)00035-1
https://doi.org/10.1016/S1359-6454(03)00179-4
https://doi.org/10.1016/S1359-6454(03)00179-4
https://doi.org/10.1016/S1359-6454(03)00179-4
https://doi.org/10.1016/S1359-6454(03)00179-4


STRAIN-INDUCED VARIANT SELECTION IN … PHYSICAL REVIEW MATERIALS 2, 083606 (2018)

during α → β and β → α phase transformations in titanium
alloys investigated by neutron diffraction, Acta Mater. 55, 5718
(2007).

[9] S. M. C. van Bohemen, A. Kamp, R. H. Petrov, L. A. I. Kestens,
and J. Sietsma, Nucleation and variant selection of secondary α

plates in a β Ti alloy, Acta Mater. 56, 5907 (2008).
[10] M. R. Daymond, R. A. Holt, S. Cai, P. Mosbrucker, and S. C.

Vogel, Texture inheritance and variant selection through an hcp-
bcc-hcp phase transformation, Acta Mater. 58, 4053 (2010).

[11] Shanoob Balachandran, Ankush Kashiwar, Abhik Choud-
hury, Dipankar Banerjee, Rongpei Shi, and Yunzhi Wang,
On variant distribution and coarsening behavior of the α

phase in a metastable β titanium alloy, Acta Mater. 106, 374
(2016).

[12] D. Qiu, R. Shi, D. Zhang, W. Lu, and Y. Wang, Variant selection
by dislocations during α precipitation in α/β titanium alloys,
Acta Mater. 88, 218 (2015).

[13] D. Qiu, R. Shi, P. Zhao, D. Zhang, W. Lu, and Y. Wang,
Effect of low-angle grain boundaries on morphology and variant
selection of grain boundary allotriomorphs and Widmanstätten
side-plates, Acta Mater. 112, 347 (2016).

[14] R. Shi, N. Zhou, S. R. Niezgoda, and Y. Wang, Microstructure
and transformation texture evolution during α precipitation in
polycrystalline α/β titanium alloys—A simulation study, Acta
Mater. 94, 224 (2015).

[15] Steve Plimpton, Fast parallel algorithms for short-range molec-
ular dynamics, J. Comput. Phys. 117, 1 (1995).

[16] R. G. Hennig, T. J. Lenosky, D. R. Trinkle, S. P. Rudin, and
J. W. Wilkins, Classical potential describes martensitic phase
transformations between the α, β, and ω titanium phases, Phys.
Rev. B 78, 054121 (2008).

[17] Rodrigo Freitas, Mark Asta, and Maurice De Koning, Nonequi-
librium free-energy calculation of solids using LAMMPS,
Comput. Mater. Sci. 112, 333 (2016).

[18] Daan Frenkel and Anthony J. C. Ladd, New Monte Carlo method
to compute the free energy of arbitrary solids. Application to the
fcc and hcp phases of hard spheres, J. Chem. Phys. 81, 3188
(1984).

[19] M. de Koning, A. Antonelli, and S. Yip, Optimized Free-Energy
Evaluation Using a Single Reversible-Scaling Simulation, Phys.
Rev. Lett. 83, 3973 (1999).

[20] Maurice de Koning, Alex Antonelli, and Sidney Yip, Single-
simulation determination of phase boundaries: A dynamic
Clausius-Clapeyron integration method, J. Chem. Phys. 115,
11025 (2001).

[21] D. Dickel, C. D. Barrett, R. L. Carino, M. I. Baskes, and M. F.
Horstemeyer, Mechanical instabilities in the modeling of phase
transitions of titanium, Modell. Simul. Mater. Sci. Eng. 26,
065002 (2018).

[22] W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H.
R. Schober, and G. Vogl, Phonon dispersion of the bcc phase
of group-iv metals. I. bcc titanium, Phys. Rev. B 43, 10933
(1991).

[23] Murray S. Daw, Elasticity effects in electronic structure calcu-
lations with periodic boundary conditions, Comput. Mater. Sci.
38, 293 (2006).

[24] Niklas Lehto and Sven Öberg, Effects of Dislocation Interac-
tions: Application to the Period-Doubled Core of the 90◦ Partial
in Silicon, Phys. Rev. Lett. 80, 5568 (1998).

[25] Seungwu Han, Luis A. Zepeda-Ruiz, Graeme J. Ackland,
Roberto Car, and David J. Srolovitz, Interatomic potential for
vanadium suitable for radiation damage simulations, J. Appl.
Phys. 93, 3328 (2003).

[26] Alexander Stukowski, Visualization and analysis of atom-
istic simulation data with OVITO—The Open Visualiza-
tion Tool, Modell. Simul. Mater. Sci. Eng. 18, 015012
(2010).

[27] Peter Mahler Larsen, Søren Schmidt, and Jakob Schiøtz, Ro-
bust structural identification via polyhedral template matching,
Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).

[28] Aidan P. Thompson, Steven J. Plimpton, and William Mattson,
General formulation of pressure and stress tensor for arbitrary
many-body interaction potentials under periodic boundary con-
ditions, J. Chem. Phys. 131, 154107 (2009).

[29] Daan Frenkel and Berend Smit, Understanding Molecular Sim-
ulation: From Algorithms to Applications, Vol. 1 (Academic
Press, San Diego, 2001), pp. 519–523.

[30] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in
Statistical Physics (Oxford University Press, New York, 1999),
pp. 69–70.

[31] Hirotsugu Ogi, Satoshi Kai, Hassel Ledbetter, Ryuichi Tarumi,
Masahiko Hirao, and Kazuki Takashima, Titanium’s high-
temperature elastic constants through the hcp-bcc phase trans-
formation, Acta Mater. 52, 2075 (2004).

[32] E. S. Fisher and D. Dever, The single crystal elastic moduli
of beta-titanium and titanium-chromium alloys, in The Science,
Technology, and Application of Titanium, edited by R. I. Jaffee
and N. E. Promisel (Pergamon, Oxford, UK, 1970), pp. 373–381.

[33] Massel Ledbetter, Hirotsugu Ogi, Satoshi Kai, Sudook Kim,
and Masahiko Hirao, Elastic constants of body-centered-
cubic titanium monocrystals, J. Appl. Phys. 95, 4642
(2004).

[34] J. W. Cahn, Nucleation on dislocations, Acta Metall. 5, 169
(1957).

[35] G. Thomas and J. Nutting, The Mechanism of Phase Transfor-
mations in Metals (Institute of Metals, London, 1956).

[36] A. Kelly and R. B. Nicholson, Precipitation hardening, Prog.
Mater. Sci. 10, 151 (1963).

[37] D. J. Bacon, D. M. Barnett, and Ronald Otto Scattergood,
Anisotropic continuum theory of lattice defects, Prog. Mater.
Sci. 23, 51 (1980).

[38] D. C. Chrzan, M. P. Sherburne, Y. Hanlumyuang, T. Li, and J. W.
Morris, Spreading of dislocation cores in elastically anisotropic
body-centered-cubic materials: The case of gum metal, Phys.
Rev. B 82, 184202 (2010).

[39] T. Furuhara, S. Takagi, H. Watanabe, and T. Maki, Crystallog-
raphy of grain boundary α precipitates in a β titanium alloy,
Metall. Mater. Trans. A 27, 1635 (1996).

[40] Melvin Avrami, Kinetics of phase change. I. General theory, J.
Chem. Phys. 7, 1103 (1939).

[41] Melvin Avrami, Kinetics of phase change. II. Transformation-
time relations for random distribution of nuclei, J. Chem. Phys.
8, 212 (1940).

[42] Melvin Avrami, Granulation, phase change, and microstruc-
ture kinetics of phase change, J. Chem. Phys. 9, 177
(1941).

[43] The full trajectory data is available via the UC Berkeley
Library Dash project under the same title as this article (or

083606-11

https://doi.org/10.1016/j.actamat.2007.06.017
https://doi.org/10.1016/j.actamat.2007.06.017
https://doi.org/10.1016/j.actamat.2007.06.017
https://doi.org/10.1016/j.actamat.2007.06.017
https://doi.org/10.1016/j.actamat.2008.08.016
https://doi.org/10.1016/j.actamat.2008.08.016
https://doi.org/10.1016/j.actamat.2008.08.016
https://doi.org/10.1016/j.actamat.2008.08.016
https://doi.org/10.1016/j.actamat.2010.03.012
https://doi.org/10.1016/j.actamat.2010.03.012
https://doi.org/10.1016/j.actamat.2010.03.012
https://doi.org/10.1016/j.actamat.2010.03.012
https://doi.org/10.1016/j.actamat.2016.01.023
https://doi.org/10.1016/j.actamat.2016.01.023
https://doi.org/10.1016/j.actamat.2016.01.023
https://doi.org/10.1016/j.actamat.2016.01.023
https://doi.org/10.1016/j.actamat.2014.12.044
https://doi.org/10.1016/j.actamat.2014.12.044
https://doi.org/10.1016/j.actamat.2014.12.044
https://doi.org/10.1016/j.actamat.2014.12.044
https://doi.org/10.1016/j.actamat.2016.04.033
https://doi.org/10.1016/j.actamat.2016.04.033
https://doi.org/10.1016/j.actamat.2016.04.033
https://doi.org/10.1016/j.actamat.2016.04.033
https://doi.org/10.1016/j.actamat.2015.04.050
https://doi.org/10.1016/j.actamat.2015.04.050
https://doi.org/10.1016/j.actamat.2015.04.050
https://doi.org/10.1016/j.actamat.2015.04.050
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevB.78.054121
https://doi.org/10.1103/PhysRevB.78.054121
https://doi.org/10.1103/PhysRevB.78.054121
https://doi.org/10.1103/PhysRevB.78.054121
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1063/1.448024
https://doi.org/10.1063/1.448024
https://doi.org/10.1063/1.448024
https://doi.org/10.1063/1.448024
https://doi.org/10.1103/PhysRevLett.83.3973
https://doi.org/10.1103/PhysRevLett.83.3973
https://doi.org/10.1103/PhysRevLett.83.3973
https://doi.org/10.1103/PhysRevLett.83.3973
https://doi.org/10.1063/1.1420486
https://doi.org/10.1063/1.1420486
https://doi.org/10.1063/1.1420486
https://doi.org/10.1063/1.1420486
https://doi.org/10.1088/1361-651X/aac95d
https://doi.org/10.1088/1361-651X/aac95d
https://doi.org/10.1088/1361-651X/aac95d
https://doi.org/10.1088/1361-651X/aac95d
https://doi.org/10.1103/PhysRevB.43.10933
https://doi.org/10.1103/PhysRevB.43.10933
https://doi.org/10.1103/PhysRevB.43.10933
https://doi.org/10.1103/PhysRevB.43.10933
https://doi.org/10.1016/j.commatsci.2006.02.009
https://doi.org/10.1016/j.commatsci.2006.02.009
https://doi.org/10.1016/j.commatsci.2006.02.009
https://doi.org/10.1016/j.commatsci.2006.02.009
https://doi.org/10.1103/PhysRevLett.80.5568
https://doi.org/10.1103/PhysRevLett.80.5568
https://doi.org/10.1103/PhysRevLett.80.5568
https://doi.org/10.1103/PhysRevLett.80.5568
https://doi.org/10.1063/1.1555275
https://doi.org/10.1063/1.1555275
https://doi.org/10.1063/1.1555275
https://doi.org/10.1063/1.1555275
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1016/j.actamat.2004.01.002
https://doi.org/10.1016/j.actamat.2004.01.002
https://doi.org/10.1016/j.actamat.2004.01.002
https://doi.org/10.1016/j.actamat.2004.01.002
https://doi.org/10.1063/1.1688445
https://doi.org/10.1063/1.1688445
https://doi.org/10.1063/1.1688445
https://doi.org/10.1063/1.1688445
https://doi.org/10.1016/0001-6160(57)90021-4
https://doi.org/10.1016/0001-6160(57)90021-4
https://doi.org/10.1016/0001-6160(57)90021-4
https://doi.org/10.1016/0001-6160(57)90021-4
https://doi.org/10.1016/0079-6425(63)90010-0
https://doi.org/10.1016/0079-6425(63)90010-0
https://doi.org/10.1016/0079-6425(63)90010-0
https://doi.org/10.1016/0079-6425(63)90010-0
https://doi.org/10.1016/0079-6425(80)90007-9
https://doi.org/10.1016/0079-6425(80)90007-9
https://doi.org/10.1016/0079-6425(80)90007-9
https://doi.org/10.1016/0079-6425(80)90007-9
https://doi.org/10.1103/PhysRevB.82.184202
https://doi.org/10.1103/PhysRevB.82.184202
https://doi.org/10.1103/PhysRevB.82.184202
https://doi.org/10.1103/PhysRevB.82.184202
https://doi.org/10.1007/BF02649821
https://doi.org/10.1007/BF02649821
https://doi.org/10.1007/BF02649821
https://doi.org/10.1007/BF02649821
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750872
https://doi.org/10.1063/1.1750872
https://doi.org/10.1063/1.1750872
https://doi.org/10.1063/1.1750872


POSCHMANN, LIN, GEERLINGS, WINTER, AND CHRZAN PHYSICAL REVIEW MATERIALS 2, 083606 (2018)

at https://doi.org/10.6078/D1QS94). The authors recommend
interested readers visualize the data using OVITO and applying
the polyhedral template matching modification, as we have done
to generate our figures.

[44] M. P. Kashchenko and V. G. Chashchina, Crystal
dynamics of the BCC-HCP martensitic transformation:

I. Controlling wave process, Phys. Met. Metallogr. 105,
537 (2008).

[45] J. W. Morris, Y. Hanlumyuang, M. Sherburne, E. Withey, D.
C. Chrzan, S. Kuramoto, Y. Hayashi, and M. Hara, Anomalous
transformation-induced deformation in 〈110〉 textured Gum
Metal, Acta Mater. 58, 3271 (2010).

083606-12

https://doi.org/10.6078/D1QS94
https://doi.org/10.1134/S0031918X08060021
https://doi.org/10.1134/S0031918X08060021
https://doi.org/10.1134/S0031918X08060021
https://doi.org/10.1134/S0031918X08060021
https://doi.org/10.1016/j.actamat.2010.02.001
https://doi.org/10.1016/j.actamat.2010.02.001
https://doi.org/10.1016/j.actamat.2010.02.001
https://doi.org/10.1016/j.actamat.2010.02.001



