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{101̄2}〈1̄011〉 twin is a prominent deformation mode in hexagonal close-packed materials. It is experimentally
observed that twin interfaces are not flat entities, but characterized by kink pairs (KPs) of diverse heights. It has
been shown that these kinks or facets delimit basal and prismatic planes. The nature of the defects constituting the
facets prescribes their properties, in terms of stability and mobility, which relates to twin growth. In this work, we
examine the basic features of such kinks in α-Ti from an atomistic modeling viewpoint. We analyze the response
of the system with KPs varying in width and height upon normal and shear stresses and under pure bending
conditions. We show that bending indeed modifies the interaction energy between kinks, which raises further
questions about the nature of the defects. We calculate the nucleation and migration energy barrier for the twin
depending on the applied shear stress, resulting in small values, which implies that small thermal energy suffices
to activate twin growth. We observe a crossover in the stable height of the KP depending on the applied stress and
its width: the wider the KP the higher the most stable. We have developed a twin thickening model that accounts
for the thermal KP nucleation and the propagation of the kinks. We show how the model compares satisfactorily
with molecular dynamics (MD) simulations. Finally, we have developed a kinetic Monte Carlo methodology to
study twin growth, with much less computational burden than MD, that is able to explore the growth rate under
a broader set of external conditions.

DOI: 10.1103/PhysRevMaterials.2.083603

I. INTRODUCTION

Twinning is a prominent deformation mechanism in metals
with hexagonal closed-packed (hcp) crystal symmetry. It pro-
vides an alternate deformation path to accommodate plasticity
along the c axis. As opposed to slip on either pyramidal I
or II systems, twinning induces a diffusionless transformation
leading to the generation of reoriented volumes within the
host crystal. In consequence, the effects of twinning on plastic
deformation are more diverse and complex than those of slip
alone. Over the past five decades or so, a vast body of literature
has been generated in order to infer the role of twinning in both
plastic deformation and microstructure evolution as well as the
process(es) leading to the activation of twinning [1–7].

In this vein, focus has been placed on characterizing
the nature of interfacial defects (i.e., disconnections, partial
disclinations) mediating both nucleation and thickening of
twin domains. With regards to the former and motivated by
correlations shown between twin transmission events across
grain boundaries and grain boundary character, a series of
atomistic simulations have revealed the process by which a
twin embryo can be formed at a grain boundary [8,9]. Further,
using continuum based simulations of the plastic relaxation
process in the neighborhood of twin domains, observations of
the sequential twinning process across twin boundaries could
be rationalized.

With regards to twin thickening, seminal contributions have
introduced a means to describe the nature of interfacial defect
mediating twin growth and diffusionless transformations in
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general. Using dichromatic patterns, it was shown that ad-
missible defects at twin boundaries can be described as dis-
connections [3,4]. These essentially correspond to line defects
inducing a net translation in the lattice with a translation vector
having components parallel to the twinning shear direction
(i.e., Burgers vector) and to the normal to the twinning plane.
Both transmission electron microscopy (TEM) observations
and atomistic simulations have then adopted this framework
to describe the nature of interfacial defects as well as potential
reactions between interfacial defects and bulk dislocations
present at twin interfaces. For example, it is experimentally
observed that among the several potential twin modes that
could be active, {101̄2}〈1̄011〉 twin is the most prominent in
hcp materials such as Mg, Ti, or Zr [2,10,11]. Atomistic based
quantifications of the activation barriers associated with the nu-
cleation of interfacial defects on different twinning planes and
simulations of the interaction between bulk dislocations and
twin interfaces have both provided for credible explanations of
the observed preference for {101̄2}〈1̄011〉 twinning [12–14].
More recently, and on the basis of atomistic simulations, it has
been argued that other defect types could be present at twin
interfaces. Among others, a series of recent studies adopting
a two-dimensional viewpoint constrained to the plane defined
by the twinning shear direction and normal to the twinning
plane, have revealed the existence of large facets (also called
kinks) placing face to face basal planes and prismatic planes
across the twin boundary (B/P or P/B interfaces) [7,15]. In
parallel to this, a series of publications have suggested that
these kinks, or other elementary defects at twin interfaces, are
best described as dipoles of partial disclinations [16,17]. The
rationale being that the reorientation of the lattice across the
{101̄2}〈1̄011〉 twin boundary leads to a net Frank vector of
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3.4◦. In the form of partial dipoles, these defects could induce
both a net translation of the lattice across the twin interface as
well as the necessary Frank vector. Trichromatic patterns were
then introduced to further substantiate these proposals [12].

Despite these novel conceptual developments providing
a complementary approach to describe interfacial defects,
the core of those defects and their intrinsic dynamics are
scarcely studied. Yet, these issues likely provide a path towards
rationalizing the well-established experimental fact that twin
thickening is remarkably faster and, apparently, insensitive to
temperature in comparison to slip [18–20]. The present study
aims at rationalizing these observations.

The kinetics, path, and temperature dependence for twin
growth should be explicitly related to the very nature of the
defects characterizing these kinks. While a significant body of
work has been dedicated to the static analysis of interfacial
defect characters, to the authors knowledge limited work has
focused on the dynamics of interfacial defects. The present
study relies on the use of atomistic and kinetic Monte Carlo
(KMC) simulations to address three connected questions. First,
it is known that twin boundaries are not flat, and the shape
of twin boundaries makes it unlikely that the majority of
interfacial defects are emitted from grain boundaries. As such,
one expects twin thickening to be a two-step process whereby
twin kink pairs (KPs) first appear on the twin boundary and
then these newly generated interfacial defects migrate. Using
atomistic simulations and leveraging the capabilities offered
by the nudged-elastic band [21] (NEB) method to quantify
minimum energy pathways (MEP), the activation barriers for
KP nucleation and propagation are quantified. Based on this
two-step process, a rate model for twin growth is developed.
Second, while dichromatic patterns can reveal plausible inter-
facial defect types, the energetic cost associated with these can
only be obtained via atomistic simulations. The second part of
the study focuses on energetic considerations with the intent of
rationalizing the simultaneous presence of interfacial defects
of different character along the twin interface. Among others,
the effects of curvature on KPs is also quantified. Finally,
whilst anchoring the reasoning in the realm of transition state
theory, a first attempt is made to elucidate the apparent lack of
temperature sensitivity associated with twinning.

II. METHODOLOGY

Molecular static (MS) and molecular dynamics (MD) sim-
ulations have been performed with the LAMMPS code [22]
to analyze the energetic properties of a {101̄2}〈1̄011〉 twin
depending on its atomic structure and the boundary conditions.
We have also studied the MEP for the nucleation and the growth
of the twin KP. A fully periodic cell was built with directions
〈101̄0〉, 〈011̄1〉, and 〈01̄11〉 for the lower grain and 〈1̄010〉,
〈011̄1〉, and 〈011̄1̄〉 for the upper grain, which generates two
{101̄2} twin boundaries in the system. The dimensions of
this periodic cell were 0.29 × 34.8 × 45.8 nm3. Although
constrained to a quasi-two dimensional configuration, we shall
see how much can be learned on the system dynamics. We use
the first of the three embedded atom method (EAM) potentials
developed by Mendelev et al. [23] for α-Ti. Minimizations
were performed using a conjugate gradient algorithm with a
tolerance in forces of 10−4 eV/Å. To generate the KP (green

FIG. 1. Sketch of the sample orientation, twin KP (green), and
applied stresses and rotations used in this study.

area in Fig. 1), a region of the sample close to the twin and
in the upper grain was removed and filled with atoms with the
orientation of the lower grain, such that the number of atoms
remains constant. Both the height in z and the length in y of
the KP were varied to compute formation energies.

Two distinct sets of boundary conditions were used. First,
normal stresses were applied on the y and z directions (σyy

and σzz), and shear in yz (σyz), i.e., simulations were stress-
controlled. Second, to assess the role of curvature fields on the
nucleation and propagation of KPs, the sample was subjected
to pure bending in the yz plane (ωxz). In this case, the periodic
boundary conditions on y and z were dropped. A region of
atoms close to the sample edges normal to the y direction was
selected and displaced following uy = a + bz2. The displaced
atoms were allowed to relax in the x and z directions but not in
the y. Figure 2 shows the atomic structure of a KP of 6.9 nm in
width relaxed at zero pressure. Upon relaxation of the structure
the angle between basal planes in upper and lower grains results
in 86.2o, close to the theoretical 85.22o.

III. RESULTS AND DISCUSSION

A. Kink pair formation and propagation process

We first focus on the generation of KPs from a perfect twin
interface. In this section the KP consists of a dipole of b2/2

disconnections separated by a distance w, which is varied. The

86.2o {1012}

B/P
2d = 0.35 nm

w = 6.9 nm

b

FIG. 2. Atomistic detail of the structure of the {101̄2} twin. Atoms
are colored according to their potential energy. The angle between
basal planes results in 86.2o. The KP is bounded by basal/prismatic
(B/P) interfaces. The distance between B/P interfaces is 6.9 nm.
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FIG. 3. Formation energy of the twin KPs depending on the
distance between the B/P kinks and the applied normal stress.

excess energy of formation, �Ef (w), of the system containing
these dipoles, in comparison with a domain of equal size
containing a perfectly flat twin boundary, can be expressed
as

�E
f

0 (w) = 2Ecore
b2/2 + Eint

b2/2(w), (1)

where Ecore
b2/2 and Eint

b2/2 denote the core energy of an individual
b2/2 disconnection and the elastic interaction energy between
the disconnections, respectively.

Figure 3 presents the formation energy (�E = EKP −
EFLAT, with EKP the energy of the system with the KP and
EFLAT the energy of the system with a flat twin boundary) at
zero pressure and applying stresses σyy = −1 GPa or σzz =
−1 GPa (compressive stresses). We observe that the formation
energy is fairly independent of these boundary conditions.

Following MacKain et al. [24], we could estimate the
interaction energy assuming the presence of a dislocation
dipole, which neglecting image interactions is given by

�Eint
b2/2(w) = 1

4π
κb2 ln

(
w

rc

)
, (2)

and therefore

�E
f

0 (w) = 1

4π
κb2 ln

(
w

rc

)
+ 2Ecore

b2/2, (3)

where κ is a constant that depends on the elastic constants and
the disconnection orientation [24,25], b is the dislocation Burg-
ers vector, equal to b2/2 in this case with b2/2 = 0.05624 nm,
w is the distance between kinks and rc is a minimum critical
radius. Fitting this relation to the atomistic data at zero stress
we estimate κ = 154.6 GPa, rc = 0.23 nm and a core energy
per unit length of Ecore

b2/2 = 0.188 eV/nm.
Figure 4 shows the results when σyz shear stress is applied.

The figure displays the formation energy of the KP depending
on the separation between B/P interfaces. In this case, a
significant variation in the energy is observed as a function
of the applied stress. A maximum in some of the formation
energy curves is observed, beyond which the KP will tend to
grow to lower the system energy. When stress is applied, an
extra energy term needs to be considered in the expression of
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FIG. 4. Formation energy of the twin KP depending on the
distance between the B/P kinks and the applied shear stress.

the formation energy as the work done by the external forces
in the nucleation process, such that

�Ef (w, σyz) = 1

4π
κb2 ln

(
w

rc

)
+ 2Ecore

b2/2 − σyzbw. (4)

The values obtained through this elastic approach are also
presented in Fig. 4 as solid black lines. The slight discrepancies,
mostly at high stresses, are due to two main reasons: (i) the
image effects appearing in the atomistic simulations and not
considered in the elastic solution and (ii) the fact that the nature
of the defect does not have purely dislocation character (as we
shall see later), which might add extra terms in the work done
to nucleate the KP.

Figure 5(a) shows the MEP for a KP of 1.39 nm in width to
nucleate from a flat twin boundary depending on the applied
shear stress. The first saddle point is the Peierls barrier for
nucleation, that clearly depends on stress. The second barrier
is the Peierls energy barrier for the kink to glide. For stresses
lower than σyz = −1.2 GPa, the barrier from the nucleated
configuration back to the flat twin interface is lower than
the barrier for the twin to grow, which indicates that those
configurations are unstable and the KP will tend to shrink. On
the other hand, for σyz = −1.2 GPa, we observe the opposite
trend, which will lead to the preferential growth of the KP.
Figure 5(b) shows the Peierls barriers for nucleation as a
function of applied stress. We have expanded the activation
enthalpy in terms of an activation potential energy and a linear
relation on the stress, �H = �E − σyzva . The data given by
the NEB calculations show a quadratic relation of �H with
stress. If we assume that va does not depend on stress, we have

∂�H

∂σyz

= ∂�E

∂σyz

− va = βσyz − va. (5)

From the fit we obtain a value of β = 4.42 ×
10−5 nm3 nm−1 MPa−1 and an activation volume va =
0.051 nm3 nm−1, values given per unit length of the KP in
the x direction (see Fig. 1). A linear approximation neglecting
the quadratic term (β ≈ 0) is also shown in the figure. Note
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FIG. 5. (a) Potential energy barrier (Peierls potential) for the
nucleation and growth of a twin KP depending on the applied shear
stress. (b) Nucleation barrier with respect to applied stress in absolute
value. NEB data fitted with a quadratic relation, �H = �E − σyzva ,
where �E is the potential energy barrier that depends on stress, and
va is an activation volume. The dashed line is a linear fit to the data
valid at low stress.

that the NEB calculations were performed at constant volume,
once the desired stress was reached. We have not observed
any noticeable deviation in the target stresses during these
simulations.

B. Nature and coexistence of interfacial defects

The second point of interest concerns the defect configu-
rations that could coexist at twin interfaces. To this end, we
have studied the effect of the KP height in the formation
energy. Figure 6(a) shows the formation energy, where we
observe that for low KP widths the higher the KP the larger the
formation energy, and therefore, less energetically favorable.
More interestingly, we note a crossover in the curves for
different heights. The configuration with a KP of height 0.7 nm
becomes more favorable than the 0.35 nm at around a width
of ∼5.5 nm. The configuration with a KP of 1.05 nm becomes
more stable than the 0.35 nm KP at around∼6 nm. We have also
tested a height of 1.39 nm with a KP width of 8.3 nm. It is found
that the 1.39 nm high KP is more stable than the original 0.35
nm KP but less favorable than 0.7 and 1.05 nm. Furthermore,
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FIG. 6. (a) Formation energy depending on KP height and width
at aσyz = −1.2 GPa. (b) and (c) Atomistic structure of a KP of 4.86 nm
in width and 1.05 nm in height. B/P stands for basal/prismatic and
TB for twin boundary. Atoms are colored according to their potential
energy.

we also note that there is a crossover between the 0.7 nm height
and the 1.05 nm. The latter becomes more stable at around∼7.5
nm. These results imply that an optimal height-to-width ratio
exists. As a general trend, the larger the width the higher the
most stable KP. This relationship between height and width
might be a plausible explanation to the experimental results in
which different heights larger than the minimal 0.35 nm are
observed. Also note that this relationship will depend on the
applied stress. Our results indicate that the larger the stress
the shorter the width required for the crossover to take place.
Figures 6(b) and 6(c) show the atomic configuration of a KP of
height 1.05 nm and width of 4.86 nm. The atoms are colored
according to their potential energy. We observe that one of the
B/P interfaces is flat (on the left), while the other shows a step,
i.e., a twin boundary (TB) between B/P kinks (on the right,
hereafter rugged configuration).

To gain further understanding on the structure of the B/P
kink, we have perturbed the rugged configuration at σyz =
−1.2 GPa with the goal of taking the system to a nearby
minimum. We have selected a region around the rugged
configuration and randomly displaced the enclosed atoms sam-
pling uniformly from [−0.5 : 0.5] Å. Once the atomic positions
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FIG. 7. Minimum energy path at a σyz = −1.2 GPa from the
rugged configuration originally found to (a) flat B/P interface and (b)
two-step interface. The rectangle in the initial atomic configuration
shows the region where the atoms were randomly displaced. Atoms
are colored according to their potential energy with the same scale as
in Fig. 6.

are perturbed, the system is minimized again with the same
settings as originally. A total of one hundred perturbations
were tested and three main final configurations were found:
the initial rugged configuration, a flat configuration and a
two-step configuration, as shown in the insets of Fig. 7. Once
we have the new structures, we have analyzed the MEP through
NEB calculations. Figure 7 shows the results, with Fig. 7(a)
presenting the MEP to go from the rugged configuration to
the flat configuration and Fig. 7(b) depicts the path between
the rugged and two-step configurations. First, we readily see
[Fig. 7(a)] that the energy of the rugged configuration and the
flat interface is virtually the same (less than 1.7 meV/nm).
Second, the energy barrier between both configurations is
extremely small (0.075 eV/nm) and therefore, both configu-
rations will coexist at equal probabilities at finite temperature.
The flat kink is usually related to the existence of a disclination
dipole, while the stepped configuration is usually associated
to the presence of a disconnection. These calculations show
that both configurations are comparable in energy. On the
other hand, the transition from the rugged configuration to the
two-step configuration shows a slight reduction in energy of
about 0.26 eV/nm, with a somehow larger activation energy,
still of only 0.17 eV/nm. This last two-step configuration
(disconnectionlike) is therefore the most stable among the ones
that we have found.

To assess the disclination content of interfacial defects, we
have also analyzed the effect of pure bending on the formation
energy of the KP. Figure 8 shows the results for different
degrees of rotation, as imposed by the displacements uy =
a + b z2 and the atomic relaxations in the x and z directions.
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FIG. 8. Formation energy of the twin KP depending on the
distance between the B/P kinks and the applied curvature. For
comparison, the formation energies of the KP for σyz = −1.2 GPa
and σ = 0 GPa are also shown.

Upon relaxation the imposed normal strain εyy ≈ −0.024 in
the compressive side and εyy ≈ 0.029 in the tensile region. We
observe that these rotations modify the formation energy of the
kink, i.e., they do work when the KPs are nucleated, as in the
case of shear stress described in Eq. 4. However, contrary to the
shear stress, rotations do not lead to any apparent maximum
or change in sign of the formation energy by themselves,
i.e., there will not be spontaneous growth of the KP under
pure bending boundary conditions. The fact that indeed the
formation energy changes upon pure bending implies that
defects at the B/P interfaces are complex in nature probably
beyond simple disconnections since dislocations should not
interact with curvature.

As described above, the traditional description of a kink
involves a shear and a shuffle, which have been mapped to the
presence of a disconnection, characterized by a Burgers vector
and a step height. It has been recently shown that the interaction
field between kinks follows a logarithmic law as the one derived
from dislocation theory [24]. Our results shown in Figs. 3 and
4 also follow a logarithmic relation, which seems to imply
the presence of a dislocation dipole. However, the interaction
energy also follows a logarithmic-like function when curvature
is applied, with such energy depending on the curvature value
(see Fig. 8). This might indicate that disconnections might not
suffice to model kinks. Disclination dipoles should respond
to applied curvature, but the given relation to the curvature is
mainly unknown [26].

C. Consequences of kink pair nucleation events
on strain rate sensitivity

1. Twin thickening rate model

{101̄2}〈1̄011〉 twins thicken by the nucleation of a KP and
the propagation of the kinks upon the action of an external
stress (see Fig. 9). This model assumes that the probability
of nucleating KPs with the minimum height h is much larger
than any larger height. This process is analog to the thermally
activated glide of dislocations [27,28] and can be described as
follows.
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FIG. 9. Sketch showing the KP nucleation event in a twin thick-
ening process and the relevant parameters used in the derivation of
the twin thickening rate.

The total time for the twin to thicken by h is the time for
the KP to nucleate plus the time for the kinks to propagate half
their mean free path, t = tN + tP . In term of the rates, this total
time can be written as

t = 1

�N

+ 1

�P

= �N + �P

�N�P

, (6)

where �N is the number of nucleations per unit time and �P

is the rate for the kink to propagate until it annihilates with an
opposite kink. Hence the velocity for the twin to grow is

v = h

t
= h

�N�P

�N + �P

. (7)

In the framework of transition state theory (TST), the
nucleation rate can be written as

�N = ν0X(σ, T )

w∗(σ )
exp

(
−�G(σ, T )

kBT

)
, (8)

where ν0 is an attempt frequency, X(σ, T ) is the kink mean
free path, w∗(σ ) is the critical width of the KP and �G is
the activation Gibbs free energy. The critical width of the KP
is the maximum in the formation energy (Fig. 4) and can be
obtained differentiating Eq. 4 with respect to w and setting the
derivative to zero:

∂�Ef (w, σ )

∂w
= 1

4π
κb2 1

w
− σb = 0, (9)

thus the critical width is

w∗ = 1

4π

κb

σ
. (10)

Substituting in Eq. (8) results in

�N = 4πν0σX(σ, T )

κb
exp

(
−�G(σ, T )

kBT

)
. (11)

The dependence of the kink mean free path with the applied
stress and temperature is less clear and will be fitted from MD
simulations. There is in the literature a square root dependence
of X with stress [29], although no information could be found
about the dependence on temperature. We will fit a function
of the type X(σ, T ) ∝ f (σ )g(T ) to the MD data to obtain an
empirical relation valid for the system at hand.

As it was shown in Fig. 5, the enthalpy barriers for the kinks
to propagate are much smaller than the nucleation barrier. Thus
the kink propagation can be assumed to happen in a phonon
drag regime. In this regime, the propagation rate can be written
as

�P = 2vk

X(σ, T ) + w∗ ≈ 2vk

X(σ, T )
= 2bσ

X(σ, T )Bk

, (12)

where we assume X(σ ) 	 w∗. vk is the kink velocity, which
in the viscous regime can be written as vk = bσ

Bk
, where Bk is

a drag coefficient. Substituting the rates in the expression for
the growth velocity, we obtain

v = h

8πν0σ
κBk

exp
(
−�G(σ,T )

kBT

)
2b

X(σ,T )Bk
+ 4πν0X(σ,T )

κb
exp

(
−�G(σ,T )

kBT

) , (13)

which is a general expression for the thickening velocity of the
twin. The shear strain rate can then be obtained:

γ̇ = arctan

(
b

h

)
v

h
≈ vb

h2

= 8πbν0σ

hκBk

exp
(
−�G(σ,T )

kBT

)
2b

X(σ,T )Bk
+ 4πν0X(σ,T )

κb
exp

(
−�G(σ,T )

kBT

) . (14)

It is worth showing the limit at which the propagation rate is
much larger than the nucleation rate (�P 	 �N ). In this limit,
the total time for the twin to grow would be just the nucleation
time, t = tN = 1

�N
. Therefore the velocity of the twin can be

written as

v = h
4πν0σX(σ, T )

κb
exp

(
−�G(σ, T )

kBT

)
, (15)

and then the strain rate

γ̇ = 4πν0σX(σ, T )

κh
exp

(
−�G(σ, T )

kBT

)
, (16)

which is similar to the expression developed by Luque et al.
in Ref. [30]. Also important to highlight is the fact that
this expression is valid in three dimensions, provided that
geometric considerations are taken into account along with
the orientation dependence of the drag coefficient.

2. Molecular dynamics simulations

As mentioned above, MD simulations have been performed
to test the twin thickening model developed above and to find
specific parameters for the {101̄2}〈1̄011〉 twin in α-Ti. Hence
we have set up MD simulations in the NPT ensemble with
different levels of σyz and temperature and computed the shear
strain rate, which will be, in general, larger than in traditional
experimental tests due to the MD timescale limitation [31].

Assuming a Kocks relation for the activation Gibbs free
energy [32] �G(σ, T ) = �F [1 − ( σyz

σ 0
yz

)
p

]
q

and further con-

sidering p = q = 1, the functional form we have fitted from
MD results was the following:

γ̇ = K
σ (1+α)

yz

T δ
exp

⎛
⎝−

�F
[
1 −

(
σyz

σ 0
yz

)]
kBT

⎞
⎠, (17)

whereα and δ are fitting parameters coming from the functional
form of X(σ, T ), K is a constant depending just on material
parameters, �F is the Helmholtz free energy, and σ 0

yz is a
critical resolved shear stress that nullifies the activation barrier.
The results are shown in Fig. 10, where the dependence of the
shear strain rate with shear stress [Fig. 10(a)] and temperature
[Fig. 10(b)] are shown. Dots are MD results while lines are
best fits from Eq. (17) to the MD data. We observe that in both
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FIG. 10. Twin thickening rate depending on (a) shear stress, and
(b) temperature. (c) 2D map of the twin thickening rate as given by
MD simulations as a function of both temperature and stress.

cases the agreement is remarkable, validating the theoretical
model developed in the previous section. This means that the
�F can be assumed constant with respect to the applied stress,
which, in turn, implies that the activation volume is constant.
Hence we can write

−∂�G

∂σyz

= �F

σ 0
yz

= −∂�E

∂σyz

+ v∗
a + T

∂�S

∂σyz

, (18)

and therefore, assuming that the functional form of �H is
quadratic in σyz as given by the NEB calculations above,

∂�E

∂σyz

= T
∂�S

∂σyz

= β∗σyz, (19)

which implies that the functional form of the entropy can be
written as �S = 1

T
[ β∗

2 σ 2
yz + C1], where C1 is an integration

constant that equals zero. Moreover, to first order, we can
assume that the β obtained from the MS simulations is a
good approximation to β∗ (β∗ ≈ β). We can also conclude
that �G(σ, T ) does not depend on temperature, implying that
TST holds, although not its harmonic approximation (HTST).
Figure 10(c) shows a two-dimensional map with the rates as
obtained with MD that we shall compare with the KMC results
in the following, while Fig. 11 is a three-dimensional plot
showing the prediction from Eq. (17) compared to MD data.
The values of the fit are given in Table I. We note that the value
for α is small, which indicates that the dependence of the mean
free path between kinks depends only weakly on stress. On
the other hand, we find a large value of δ implying a strong
dependence on temperature. The fact that experimentally the
temperature sensitivity seems to be small [18] is probably
due to the fact that the effective activation barrier is low and
the exponential dependence dominates, which is the case in
the temperature range explored in this work. Unfortunately,
direct comparison with experiments is not straightforward
since they would include the twin nucleation rate, which is
not part of this study. Also worth mentioning is the value of
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FIG. 11. Comparison between the MD data (black dots) and
Eq. (17) (colored surface).

the activation barrier, �F = 0.886 eV/nm, which, although
close, is slightly larger than the value obtained using NEB
at zero stress (�Eσyz=0 = 0.721 eV/nm). The same applies
for the activation volume, in the case of fitting values to MD
data we obtain v∗

a = 0.077 nm3/nm, which compares to va =
0.051nm3/nm given by the NEB simulations. We note that the
values obtained from MD are averages over a different number
of mechanisms involved in the thickening process as opposed
to a single mechanism analyzed in the static calculations of
Sec. III A, which results in the observed deviations.

Using the values for�F ,v∗
a , andβ∗ shown in Table I, we can

plot �G and �H with respect to the stress, presented in Fig. 12.
The difference between the Gibbs free energy and the enthalpy
is related to the entropic factor, which is relatively small for the
range of stresses shown in the figure. This implies that the bias
expected from using HTST will be moderate, mostly at stress
lower than 300 MPa. We will take advantage of this fact for
the development of a KMC approach to study twin thickening
rates.

3. Object kinetic Monte Carlo model for twin growth

In order to quantify the respective and collective contribu-
tions of each interfacial defect (i.e., KP height) to the kinetics
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FIG. 12. �G and �H as a function of stress as given by the fit to
MD data.
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TABLE I. Fitted values of the parameters in Eq. (17) to MD data.

K (ps−1 MPa−1 nm−1) α δ �F (eV/nm) v∗
a (nm3/nm) β∗ (nm3/nm−1 MPa−1)

1.122 × 105 0.11 3.217 0.886 0.077 4.42 × 10−5

of twin thickening, a KMC framework has been developed.
The KMC algorithm solves for the dynamic evolution of
a given system provided that the rates of every possible
event are known. In that case, the KMC will result in the
correct time evolution for the model used, providing one
realization for the master equation [33–35]. We propose here
a rather simple physical model to study twin thickening in
two dimensions, sketched in Fig. 13. We first discretize the
twin boundary in small segments of length b2/2, inspired by,
for example, discrete dislocation dynamics algorithms [36,37].
Each segment has a rate to move forward (positive z’s) or
backward (negative z’s) and only one segment moves per
time step. These rates are calculated according to HTST by
the expression � = ν0 exp (−�E−σyzυa

kT
) = ν0 exp (−�H

kT
). The

�H is approximated through a pair interaction model by which
each segment interacts just with its first nearest neighbors,

�H = �H
(+/−)
0 (σ ) +

∑
n

gn(σ,�z)�z. (20)

�H
(+/−)
0 (σ ) is the enthalpy barrier for nucleation (or Peierls

barrier) of a minimum width KP from a flat interface as
given by NEB (see Fig. 5). The applied stress modifies the
energy landscape, altering both the barriers for the segment
to nucleate toward positive z′s and negative z′s (see Fig. 13).
The Peierls barrier upon migration forward [�H+

0 (σ )] is taken
as the one given by NEB, while the one for the direction
backwards has been obtained relying on a linear approximation
such that �H−

0 (σ ) = 2 �H0(0) − �H+
0 (σ ), with �H0(0) =

0.721 eV/nm the enthalpy barrier at zero stress. These nucle-
ation barriers will be taken as reference, and will be modified
depending on the position of the first nearest neighbor segments
to give the final enthalpy barrier for a given configuration. �z is
the distance between segments in the z direction and gn(σ,�z)
are the pair interactions that depend on the applied stress σ and
�z. These pair interactions have been fitted to reproduce the
barriers obtained with NEB along with the twin growth rate
obtained from MD. The values used in this study are shown
in Table II. The pre-exponential factor that better fits the MD
values is ν0 = 9.0 × 10−1 ps−1. The strain at each timestep is

Γ +

Γ -

i
i-1 i+1

b2/2 Δz
z

y

FIG. 13. Discretization model used in the KMC simulations. The
twin segments are shown in read, each of length b2/2. The rates
for segment i to go forward (�+) or backwards (�−) depend on
the position of the segment i and its first nearest neighbors, (i − 1
and i + 1). The hoping length of the segments in the z direction is
normalized to 2d{101̄2}.

calculated as εyz = b2/2 〈�z〉/Lz and the slope of the strain
with respect to time is taken as the strain rate.

The efficiency of this model allows us to explore different
external conditions without much computational burden. Fol-
lowing this methodology we have computed the twin growth
rate for stresses ranging from 100 to 500 MPa and temperatures
from 100 to 700 K. Figure 14(a) shows a map of the rates
obtained, which are indeed comparable to the ones obtained
from MD simulations [see Fig. 10(c)]. We note that the rates
are monotonic with low and high rates at low and high
temperatures and stresses, respectively. At high temperatures
and stresses, the validity of HTST starts to be questionable
and thus the actual rates might differ from those obtained with
our KMC model. Nevertheless, the results should provide an
estimate of the orders of magnitude expected under a set of
external conditions.

Finally, the use of the KMC method allows one to assess
the morphology of the interface between the twin and parent
domains as a function of temperature and stress. Figure 14(b)
shows an example at a shear stress σyz = 100 MPa, where
the interface elements are plotted for 300 and 700 K. We
note that the interface is rougher at 700 K with larger kinks
corresponding to B/P interfaces. Although admittedly limited,
mostly due to the lack of long-range interactions, the results
from the KMC approach follow the same trends as the MD
data, Figs. 10(c) and 14(a).

IV. CONCLUSIONS

In this work, we have analyzed in detail the properties
of the B/P interfaces forming a kink pair (KP) of growing
{101̄2}〈1̄011〉 twins in α-Ti. Using atomistic modeling, it was
observed that the interaction energy between kinks follows a
logarithmic law and varies with applied shear stress, but not
with normal stress. The core energy of b2/2 disconnections
was calculated and found to be Ecore

b2/2 = 0.188 eV/nm. Pure
bending seems to do work when curvature is applied to
the system, which lowers the formation energy and raises
questions about the nature of the interface defects at the kinks.
We found that the stability of the KPs depends on their width

TABLE II. �H+
0 (σ ) and �H−

0 (σ ) in eV (for a kink length of
0.295 nm) and the interaction parameters gn(σ, �z) in eV/2d{101̄2}.
2 · · · and −2 · · · stands for the fact that the value is the same for
�z � 2 and �z � −2, respectively. Shear stresses in MPa are given
in the first column.

σ �H+
0 (σ ) �H−

0 (σ ) g(σ, 1) g(σ, 2 · · · ) g(σ,−1) g(σ,−2 · · · )

100 0.204 0.222 −0.194 −0.110 0.177 0.101
150 0.197 0.229 −0.201 −0.113 0.172 0.098
200 0.195 0.231 −0.201 −0.114 0.172 0.097
500 0.176 0.250 −0.150 −0.119 0.154 0.087
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FIG. 14. (a) Strain rate map as obtained with the KMC model for
different stress and temperature conditions. (b) Snapshots of the twin
interfaces at σyz = 100 MPa and 300 (red) and 700 K (blue) to show
the different roughness depending on the temperature.

and height for a given shear stress: the further apart the kinks the
higher the most stable KP. We have developed a twin thickening
model based on thermally activated glide descriptions that

reduces to a previous model available in the literature [30]
when the kink propagation rate is much larger than the
nucleation rate. We have tested the theoretical expressions with
results from MD simulations with satisfactory agreement. We
note that transition state theory (TST) holds in the studied
stress range. However, its harmonic approximation deviates
slightly from the TST rates beyond intermediate stresses (�
200 MPa). Finally, we have developed a kinetic Monte Carlo
model to study twin growth that allows us to analyze diverse
external conditions without much computational burden. The
theoretical results obtained in this work imply a high mobility
of the B/P interfaces and therefore a large twin growth rate,
which correlates qualitatively with experimental observations.
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