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Self-consistent modeling of anisotropic interfaces and missing orientations:
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Highly anisotropic interfaces play an important role in the development of material microstructure. Using the
diffusive atomistic phase-field crystal (PFC) formalism, we determine the capability of the model to quantitatively
describe these interfaces. Specifically, we coarse grain the PFC model to attain both its complex amplitude
formulation and its corresponding phase-field limit. Using this latter formulation, in one-dimensional calculations,
we determine the surface energy and the properties of the Wulff shape. We find that the model can yield Wulff
shapes with missing orientations, the transition to missing orientations, and facet formation. We show that the
corresponding phase-field limit of the complex amplitude model yields a self-consistent description of highly
anisotropic surface properties that are a function of the surface orientation with respect to the underlying crystal
lattice. The phase-field model is also capable of describing missing orientations on equilibrium shapes of crystals
and naturally includes a regularizing contribution. We demonstrate, in two dimensions, how the resultant model
can be used to study growth of crystals with varying degrees of anisotropy in the phase-field limit.
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I. INTRODUCTION

Defects define the microstructure of materials. Surface
structures such as interfaces, grain, and interphase boundaries
often dominate material performance. The result of the various
phase transformation processes that occur, e.g., solidification
and precipitation reactions, these defect structures determine,
among other features, the various mechanical, optical, and
electrical properties of the resultant material. The anisotropic
nature of these surfaces, which can lead to so-called faceted
structures, has received and continues to receive a great deal
of attention. Of particular interest are microstructures resulting
from solidification or vapor deposition of materials with highly
anisotropic surface energies that can lead to faceted interfaces.
An understanding of the underlying atomistic mechanisms
that lead to and determine the characteristics of these surface
defects is paramount in our understanding of microstructure
and ultimately to the design engineering of materials from the
atomistic scale.

Much is known of the underlying mechanisms that lead to
highly anisotropic interfaces. Historically, using the example
of crystal growth, Gibbs and Wulff established the notion of
an equilibrium shape as a consequence of the minimization
of the total interfacial solid-liquid free energy of the crystal.
The atomistic underpinnings of interface motion and growth
can be traced to Burton, Cabrera, and Frank (BCF) [1], while
the atomistic and thermodynamic treatment of crystal surfaces
can be attributed to Herring [2] who refined and improved the
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formalism by Wulff. Turnbull [3] and Jackson [4] have both
applied a mean field thermodynamic treatment to determine the
characteristics of interfaces based on average quantities such as
enthalpy and entropy, with the former leading to the Turnbull
coefficient which relates the surface energy to the enthalpy
production and the latter the so-called α parameter which
relates the smooth or rough nature of the interface to entropic
effects. In addition, Hoffman and Cahn [5,6] introduced a
general thermodynamic theory based on a vector formalism
to describe equilibrium crystal shapes and their surfaces. Most
recently, this formalism has been extended by Cahn and Carter
[7] as a general mathematical foundational basis to describe
phase equilibria.

At the microstructural scale, phase-field (PF) methods
have provided a unique opportunity to numerically investigate
phase transformation kinetics, particularly that of solidification
microstructures. The PF modeling formalism is a contin-
uum, mean-field phenomenological theory that can be traced
back to the theories of van der Waals, Ginzburg-Landau,
Allen-Cahn, and Cahn-Hilliard. The method couples a set
of uniform order parameters to one or more diffusion fields
(i.e., temperature or solute fields), with the kinetics driven
by dissipative energy minimization of some postulated free-
energy functional. Through the gradient terms of the theory,
terms proportional to |∇φ|2 (where φ is the order parame-
ter), the method is amenable to the inclusion of anisotropic
functions that describe the characteristics of interfaces and
surfaces. Interestingly, Caginalp [8,9] and Caginalp and Fife
[10] were the first to consider inclusion of anisotropic features
in Ginzburg-Landau Hamiltonians of systems describing spins.
Here, instead of inclusion directly to a gradient term, they
considered an underlying lattice, described by reciprocal lattice
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vectors and a nonlocal interaction contribution. This became
the template for subsequent introduction of anisotropy into
PF-type equations. Later, Kobayashi [11] included surface
tension anisotropy by allowing the gradient energy coeffi-
cient to depend on the orientation of the interface into a PF
framework to model dendritic growth. This allowed large-scale
simulation of dendrites, which matched qualitatively to those
from experiments. Wheeler et al. [12] taking the model of
Kobayashi [11], performed rigorous numerical calculations,
while McFadden et al. [13] extended the approach by including
anisotropic mobility and an asymptotic analysis, both allowing
the methodology to become a viable quantitative technique
for studying dendritic growth conditions. Most PF models to
date that include anisotropic surface energy follow the forms
introduced in these works. In two dimensions (2D), it usually
takes the form 1 + δ cos 4θ , for a crystal with fourfold cubic
symmetry, where θ is the orientation of the interface normal
and δ is the anisotropy strength.

Faceting can be driven by anisotropic surface energy,
anisotropic kinetic processes, or both, occurring at the solid-
liquid interface. Sekerka [14] gives a detailed overview of
both theory and approaches to examining anisotropic crystal
growth. From the perspective of surface energy, the deter-
mination of anisotropy is directly illustrated by the Frank
construction. This is an analytical scheme to determine the
missing orientations, i.e., those orientations where the surface
energy is too large to be represented on the equilibrium
crystal shape (ECS), which manifests itself as “ears” on
the Wulff shape. Given 1/γ (θ ) [where γ (θ ) is the surface
energy], the nonconvexity of the resultant plot translates to
a change in sign from positive to negative of the surface
stiffness, γ (θ ) + ∂2γ /∂θ2, and leads to orientations miss-
ing from the ECS. If γ (θ ) + ∂2γ /∂θ2 > 0, and a surface
with this orientation is not on the Wulff shape, then it is
metastable whereas if γ (θ ) + ∂2γ /∂θ2 < 0 the surface is
unstable. To describe highly anisotropic surfaces in the PF
framework, complex forms, some nonanalytical, of the gra-
dient energy description are often necessary. However, field
theories such as the PF methodology can become ill posed
when the surface stiffness becomes negative, and so-called
convexification/regularization methods are employed in order
to render the formulation well posed. Steps in addressing this
shortcoming of PF theories have been proposed. An important
contribution was the connection of the Cahn-Hoffman ξ vector,
by Wheeler and McFadden [15,16] and Wheeler [17], to PF
models which provided a robust mechanism for describing
anisotropic interfaces. Numerical implementations to realize
faceted surfaces have also been attempted. For example,
Eggleston et al. [18], Uehara and Sekerka [19], and Debierre
et al. [20] have developed PF models specifically designed
for highly anisotropic crystal growth. The former and latter
modeled it through highly anisotropic interfacial energy, while
the work of Uehara and Sekerka modeled it through the
kinetic coefficient. Eggleston et al. [18] used a convexified
inverse gradient energy coefficient designed to avoid unstable
interfacial orientations and thus yielding well-posed evolution
equations for the order parameter. The focus in these and
other phase-field models used to model missing orientations,
leading to edges and facets, has mostly been directed towards
determining a feasible and numerically tractable means of

regularizing, for convenience, the corresponding anisotropic
contributions.

The use of regularization methods, however, alters the
nucleation physics of the solidifying interface by preventing
the formation of new facets [21]. A novel idea to circumvent
this physical issue is the work by Wise et al. [22,23] and
Wheeler [24] who used a regularizing method based on the
addition of the square of the Laplacian of φ, i.e., (∇2φ)2,
effectively the square of the interfacial curvature, to the free-
energy functional. The use of regularization methods of this
type can be traced back to the work of Stewart and Golden-
feld [25], when they considered spinodal decomposition on
surfaces, and developed further by Gurtin and Jabbour [26] all
in the context of the thermodynamics of surfaces and sharp
interfaces. Recently, Torabi et al. [27] have also presented a
new PF model for strongly anisotropic systems that accounts
for the Willmore energy by allowing the interface thickness to
be independent of the interface orientation.

Growth of faceted crystals have been investigated through
various means. From an atomistic point of view, we have
gained an understanding of the growth processes involving
such features as kinks, steps, and dislocations. Models such as
those based on the work of BCF, molecular dynamics, Monte
Carlo, and other such methods have been instrumental in this
regard. These, however, have lacked the size and temporal
scale to compare and accurately represent those of mesoscale
microstructures like those found in experiments. The PF
method is capable of capturing the diffusive scale needed for
experimental microstructures, and as described in the previous
paragraph is also capable of describing certain aspects of
anisotropic surfaces. Despite the utility of the PF method, it
inherently lacks a self-consistent atomistic description of the
underlying physical mechanisms.

An atomistic-scale diffusive modeling formalism, the
phase-field crystal (PFC) methodology [28–30], has emerged
as an alternative to the numerical simulations of the kinetics
of phase transformations. The methodology, unlike the PF
method, is a formalism where the free-energy functional is
minimized by periodic fields. This allows the method to operate
on atomistic length scales yet access diffusive timescales. The
periodic nature of these fields also allows the self-consistent
description of elastoplastic effects, multiple crystal orienta-
tions, grain boundaries, and dislocations, all evolving over
mesoscopic timescales. It has be shown that the method is
derivable from the fundamental classical density functional
theory (CDFT) [30,31], with certain approximations based on
the Ramakrishnan and Yussouff [32] free-energy formalism.
Since its inception, the method has evolved to model structural
phase transformations [33–36], alloy systems [30,37,38], mul-
tiferroic composite materials [39], order-disorder systems [40],
nucleation and polymorphism [41,42], amorphous or glass
transitions[43,44], quasicrystals [45], and crystal plasticity
[46]. Through coarse-graining procedures, the methodology
may be used to generate models that operate on mesoscopic
length scales. Goldenfeld and co-workers [47,48] were the
first to explore these procedures in the context of PFC models
using renormalization group theory. These so-called complex
amplitude models bear a striking resemblance to PF models,
however, they retain many of the rich atomistic level phenom-
ena of their more microscopic PFC counterparts. The complex
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amplitude formalisms have been used to describe crystal-melt
interfaces [49–52], grain boundary pre-melting [53,54], shear
coupled and defect motion in alloys [55], and lattice pinning
effects on interfaces [56,57].

In this study, we will use the PFC formalism to investigate
surface properties during solidification. Specifically, we coarse
grain a variant of the PFC model to generate a corresponding
PF-type model and analyze the surface properties as a function
of the surface orientation through surface energy calculations
in 1D. Unlike traditional PF models, the gradient energy in this
derived model is not postulated to be of a particular form, but
rather depends directly on the underlying crystal lattice through
the set of reciprocal lattice vectors, similar to the approach of
Caginalp and Fife [8–10]. At the core of this gradient descrip-
tion is the capability to self-consistently describe anisotropy
directly from underlying atomistic considerations. The results
of surface energy calculations are then used to construct the
Wulff shapes from which the ECSs may be inferred. Following
this, we perform full dynamic simulations of dendrite growth
in 2D.

The paper is organized as follows. We begin by briefly
describing the PFC model used in this work and its coarse-
grained limit in Sec. II. A description of surface energy is
given in Sec. III and the resulting coarse-grained model is then
used to calculate surface energy and Wulff shapes in Sec. IV,
as well as 2D crystal growth. Finally, we summarize in Sec. V.

II. PHASE-FIELD CRYSTAL MODELING

In this section, the PFC method is introduced and its
equilibrium properties are described. The model is then coarse
grained, generating two variant PF-type models.

A. Free-energy functional

We will use the simplest, so-called standard PFC model
[28] first proposed as an extension of the Swift-Hohenberg
(SH) model [58], which is used to study Rayleigh-Bénard
convection. To put the model on more fundamental footing, it
has been derived from CDFT in Ref. [30]. The dimensionless
free-energy functional reads as

F =
∫

dr
{

n

2
[ε + (1 + ∇2)2]n + n4

4

}
, (1)

where ε � 0 is an effective temperature parameter related to
properties of the two-point direct correlation function resulting
from the liquid structure factor andn is a dimensionless number
density. This functional is minimized by a stripe phase in 1D,
and triangular and bcc lattice in 2D and 3D, respectively.
The equation of motion generally follows from variational
principles of conserved systems,

∂n

∂t
= −∇ · J

= ∇ · (M∇μ)

= ∇ ·
(

M∇ δF
δn

)
, (2)

where J is the mass flux and μ is the chemical potential defined
by the functional derivative.

B. Equilibrium

The equilibrium phase diagram can be determined from
standard thermodynamic minimization schemes. These meth-
ods culminate in what is known as the common tangent or
Maxwell equal area construction. These constructions are the
geometrical representation of the thermodynamic statements
of equal chemical potential and equal pressure of any two or
more coexisting bulk phases as dictated by the Gibbs phase
rule. The procedures for calculating phase diagrams for PFC
models are well documented [28,30,34,37] and the method
used is briefly summarized here.

Considering 2D solid structures, specifically a triangular
lattice which varies on the atomic length scale, the density
field n is approximated using a single-mode, plane-wave
approximation given by

n(r) = n̄(r) +
3∑

j=1

Aj (r) exp(ikj · r) + c.c., (3)

where n̄ is the average density, a conserved variable {Aj }
are the amplitudes of the density oscillations along each
reciprocal lattice direction j related to the Fourier components
of the structure factor of the solid, which in equilibrium
has a lattice spacing of a = 4π/

√
3, and {kj } denote the

set of reciprocal lattice vectors which describe the triangular
structure and c.c. denotes the complex conjugate. The lattice
vectors explicitly read as k1 = (

√
3/2,−1/2), k2 = (0, 1),

and k3 = (−√
3/2,−1/2).

We proceed by substituting Eq. (3) into Eq. (1), where for a
bulk crystal we assume that Aj (r) → φ, ∀ j , and integrating
over one unit cell, the resultant normalized free energy is
calculated for the solid phase as a function of n̄ and φ. Taking
the values of the amplitudes, which are nonconserved vari-
ables, that minimize the free energy and substituting back into
the free energy gives a free-energy landscape fsol(n̄), where
fsol represents an amplitude-minimized solid free energy. The
liquid phase in this description, denoted by fliq, is trivially
computed by setting φ = 0.

Having the free-energy landscapes of the solid and liquid
phases, phase boundaries between the solid and liquid phases
for a given temperature ε are computed by solving the follow-
ing set of equations:

μliq = μsol, �liq = �sol, (4)

where the last of these, the equality of grand potentials, implies
equilibration of pressure, defined explicitly by

fliq − μliqn̄liq = fsol − μsoln̄sol, (5)

where n̄sol and n̄liq represent the equilibrium density values for
the solid and liquid, respectively. The calculation of Eq. (4) for
various temperature values ε, leads to Fig. 1, which shows the
equilibrium phase diagram between the solid triangular phase
and the liquid phase. We emphasize that this phase diagram
has been extended to effective temperatures far below those of
previous studies using this model. Through this extension, we
increase the allowable phase space in which we can explore
the surface properties of the crystal. It is worth noting that
the single-mode approximation is strictly valid around the
reference point of the PFC expansion, i.e., n̄ = 0, close to
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FIG. 1. Phase diagram for the standard PFC model. The dimen-
sionless temperature ε plotted against the dimensionless density n̄.
In 2D, the triangular phase is in coexistence with the constant liquid
phase.

ε = 0. With decreasing ε, more modes are necessarily required
in order to capture the finer peak structure of the solid that
emerges. Admittedly, an extension of the single-mode expan-
sion to these low-temperature values ignores the small wave-
lengths that would otherwise emerge in the bulk solid via the
peak-to-peak oscillations, which inevitably contributes to the
interfacial description. Although this presents a considerable
inaccuracy when comparing equilibrium and other emergent
properties directly with the microscopic PFC model far from
the expansion, we are still able to capture, in the coarse-grained
description discussed below, the salient features of interfacial
phenomena. Specifically, we note that interfacial widths do
indeed decrease with decreasing temperature.

C. Deriving effective phase-field models through coarse graining

The full atomistic model of Eq. (1) has built-in descrip-
tions of nucleation, surfaces, and faceting of interfaces, e.g.,
Ref. [59]. The ability to exploit these smaller length-scale
physics at larger scales, through coarse-graining methods to
produce effective higher length-scale models, is one interesting
feature of the PFC and other CDFT-type models. Two such
model variants can be derived, based on specific approxima-
tions and interests. The first, called the complex-amplitude
formulation, which retains some of the salient physics from
the atomistic level such as defects and elastic-plastic behavior.
The other, called the phase-field limit, here referred to simply
as an amplitude model, retains less of the underlying atomistic
level information, e.g., the description of dislocations, but still
is useful in describing a host of phase transformation features.

The details of coarse-graining PFC and CDFT-type equa-
tions are well documented in the literature. Generally, we start
by making an ansatz, the plane-wave mode approximation
of Eq. (3) for the density. It is important to note that this
approximation is exact around the reference density from
which the model is expanded, or at small values of ε around
the melting temperature of the CDFT model the PFC model
is derived from. Similar to the phase diagram calculation, this
approximation is then inserted into the free-energy functional
(1), after which the coarse graining follows. The success of
the coarse-graining scheme is based on the tacit assumption
that n̄(r), which is the dimensionless average density, is a
“slow” variable, i.e., smoothly varying on the scale of the

periodic atomistic oscillations. {Aj (r)} represents the complex
amplitudes describing the height of the oscillation of the
density field. Like the dimensionless average density, the
amplitudes are also “slow” variables. This tacit assumption
enables the separation of scales required for successful coarse
graining.

Once the density approximation has been inserted into the
free-energy functional, to zeroth order we want to retain only
those terms where the oscillating exponential phase factors
vanish. Specifically, under coarse graining, the functional
essentially becomes a series of terms with “slow” variables
multiplying phase factors of the form ei�Kl ·r, where �Kl

are sums or differences in the reciprocal lattice vectors. The
zeroth-order approximation results in terms where �Kl ≡ 0,
referred to as the resonance condition. This constitutes the
long-wavelength limit.

Coarse graining Eq. (1), for the 2D triangular structure
considered above, leads to the following complex-amplitude
free-energy functional:

F cg =
∫

dr

⎧⎨⎩(ε + 1)
n̄2

2
+ n̄4

4
+ (ε + 3 n̄2)

3∑
j

|Aj |2

− 6n̄[A1A2A3 + c.c.]

+ 3

2

3∑
j

|Aj |2
⎡⎣|Aj |2 + 4

3∑
m>j

|Am|2
⎤⎦

+
3∑
j

|(∇2 + 2ikj · ∇)Aj |2
⎫⎬⎭, (6)

where, to lowest order, gradients in the average density have
been neglected. This free-energy functional, for 2D triangular
structures, is capable of describing phase transitions and
through the complex nature of the order parameters, it can
describe the physics of defects, elasticity, plasticity, and multi-
ple crystal orientations self-consistently. For the bcc structure
which minimizes the microscopic PFC free-energy functional
in 3D, the coarse-grained free energy will have the appropriate
complex amplitudes, and their coupling, commensurate with
the Fourier components and symmetry of that crystal structure.
Equation (6) resembles a typical Ginzburg-Landau functional
of several order parameters, i.e., multi-order-parameter PF
models. The difference is that here, the set of order parameters,
save for the average density n̄, are complex fields. Forgoing
that, however, we have a φ4 theory in both the average density
(van der Waals and Cahn-Hilliard theories) and the complex
amplitudes (Ginzburg-Landau theory) and of course coupling
between the order parameters.

The model can be further coarse grained by taking the
phase-field limit of the complex-amplitude model of Eq. (6).
This limit amounts to extracting only the real portions of
the complex amplitudes, i.e., Aj = φj and A∗

j = φj . This
effectively removes most of the atomistic level information
that was inherited from the original coarse graining, giving
us more conventional phase-field-like order parameters. Note,
however, that this is not a single order-parameter theory as
we have retained the individual amplitudes for each reciprocal
lattice direction. The amplitude model, i.e., effective phase-
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field model, reads as

Fph =
∫

dr

⎧⎨⎩(ε + 1)
n̄2

2
+ n̄4

4
+ (ε + 3 n̄2)

3∑
j

φ2
j

− 12 n̄φ1φ2φ3 + 3

2

3∑
j

φ4
j + 6

3∑
j

3∑
m>j

φ2
j φ

2
m

+
3∑
j

[(∇2φj )2 + 4(kj · ∇φj )2]

⎫⎬⎭. (7)

This Ginzburg-Landau free energy is described in polynomials
of the order parameters φ1, φ2, and φ3, similar to the multi-
order-parameter phase-field models. Unlike their traditional
phase-field counterpart, these order parameters are not fixed
between specific bulk values, but instead take a value of zero
in the liquid and some finite nonzero value in the solid, where
the value changes as a function of temperature ε and the average
density n̄. We now modify this free-energy functional by the
introduction of an additional parameter. The free energy now
reads as

Fph =
∫

dr

⎧⎨⎩(ε + 1)
n̄2

2
+ n̄4

4
+ (ε + 3 n̄2)

3∑
j

φ2
j

− 12 n̄φ1φ2φ3 + 3

2

3∑
j

φ4
j + 6

3∑
j

3∑
m>j

φ2
j φ

2
m

+
3∑
j

[β(∇2φj )2 + 4(kj · ∇φj )2]

⎫⎬⎭, (8)

where the coefficient β has been introduced. We note that
β = 1 represents the exact derivation of the model correspond-
ing to Eq. (7). This parameter controls the strength of the
Laplacian-squared term, and can be motivated in a variety of
ways. Here, it represents the lack of parameter diversity when
the model is reduced to a one-parameter model from the CDFT
formulation, and our further reduction of the model through
coarse graining. The important thing here is the inclusion of the
higher-order gradient contribution itself, which will be shown
to influence anisotropic features of the model.

The use of gradient contributions to this order is not typical
of phase-field models, but have been included in a number of
works as a means of regularizing the free energy, specifically
in cases where highly anisotropic interfaces are of interest
[22,24]. The Laplacian squared term provides access to smaller
length-scale contributions that account for atomic interactions
on longer ranges. The parameter β characterizes the region
of these length-scale contributions and is related to the corner
energy. We have for the equations of motion

∂n̄

∂t
= Mn̄∇2 δFph

δn̄

= Mn̄

⎧⎨⎩(ε + 1)n̄ + n̄3 + 6 n̄

3∑
j

φ2
j − 12φ1φ2φ3

⎫⎬⎭, (9)

∂φj

∂t
= −Mj

δFph

δφj

, ∀ j = 1, 2, 3

= −Mj

⎧⎨⎩(ε + 3 n̄2)2φj − 12 n̄

3∏
m�=j

φm

+ 6φj

⎡⎣φ2
j + 2

3∑
m�=j

φ2
m

⎤⎦+2β∇4φj − 8(kj · ∇)2φj

⎫⎬⎭,

(10)

where Mn̄ and Mj are the mobility coefficients. Here, these
coefficients are constants which set the timescale of the
problem at this coarse-grained level. In principle, they can
be related to the mobility constant M from Eq. (2) when
the coarse-graining scheme is approached starting with the
equation of motion. A look at the work of Goldenfeld and
co-workers [47,48] and Huang et al. [60], for example, can
offer some insight. Here, these coefficients set the timescale of
the problem and can also be determine self-consistently from
the present theory using, for example, capillary fluctuations.

III. CALCULATING SURFACE ENERGY
AND WULFF SHAPE

This section describes our methods of calculating the
surface properties from our simulations. We start by describing
interfacial excess energy calculations of the proposed model.
We follow with the fitting scheme employed here and the Wulff
construction.

A. Interfacial excess energy

Interfacial energy is a thermodynamic excess quantity.
Quantitative calculation of surface excess quantities is best
performed using the grand potential. The grand potential is
defined as � = −pV , where p is the pressure and V the
volume, in the absence of surfaces and other excess artifacts.
In the presence of an interface, the potential reads as

� = −pV + γA, (11)

where γ is the surface energy and A the area of the interface.
The additional term accounts for the work done to create
the interface structure. The excess of the grand potential is
then nothing more than the difference between the total grand
potential of a system and that of a bulk phase. Thus, the surface
energy is simply defined as

γ ≡ � − �ν

A
, (12)

where ν is either one of the bulk liquid or solid phases.
Traditionally, the determination of the interfacial energy re-
quires intimate knowledge of the exact position and size of
the interfacial area. To accomplish this, the Gibbs criterion, or
Gibbs dividing surface, method has been applied extensively.
With the introduction of diffuse interface approaches, the
fields employed as order parameters in such theories implicitly
possess information about the position and size of the interfa-
cial area. In our current theory, the grand potential function
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becomes a functional defined by

�ph[{φj }, n̄] = Fph[{φj }, n̄] − μ

∫
dr n̄(r), (13)

with μ the equilibrium chemical potential, the natural variable
of the grand potential. Using Eq. (12), in equilibrium the
surface energy is defined by

γ = 1

A

∫
V

dr
(

f ph − f ph
s

n̄(r) − n̄

n̄s − n̄

+ f
ph



n̄(r) − n̄s

n̄s − n̄

)
,

(14)

where f ph is the integrand of Eq. (8). We have used the tangent
rule for the chemical potential and f

ph
ν and n̄ν (with ν = s, l)

represent the equilibrium values for the free energy and solid
and liquid densities, respectively. It is worth mentioning that
the above equation can also be used as a general construction
to describe the excess energy of interfaces when the constraint
of equilibrium is relaxed. In Appendix A, we further explore
this derivation and another using a first integral methodology
along with a description of the corner energy.

For different orientations of the interface, �ph necessarily
assumes a different value since the amplitudes {φj } and the
average density n̄ evolve to different profiles. This leads to
anisotropy of the surface tension. This is also included naturally
in our free-energy description through the gradient terms.
When considering traditional PF models, specific functions
for the gradient coefficient need to be added in order to
capture surface energy anisotropy. Our effective phase-field
model, Eq. (8), captures anisotropic surface energy directly by
inclusion of atomistic level information, specifically through
the reciprocal lattice vectors. Particularly, we note the nature
of the square gradient term in Eq. (8), which can be written as

(kj · ∇φj )2 = (kj · nj )2|∇φj |2, (15)

where nj is the normal vector to the interface of each of the
amplitudes with respect to a reference frame. We can loosely
interpret this as collectively contributing some functional form
with (kj · nj )2 ≈ w(n)2. At once we realize that our gradient
energy coefficient, which is based on and derived from lattice
symmetry, is akin to gradient energy functions often used in
phase-field models to describe anisotropy.

B. Fitting surface energy

After computing the surface energy, we fit the data to a
form that is more amenable to mathematical manipulation
and analysis. Generally, data of this kind are fit to Kubic
harmonics (a linear combination of spherical harmonics), as
a function of the interface orientations. In 3D, these are special
functions defined as a series of functions on the surface of a
sphere, while in 2D this amounts to a Fourier series defined
on a circle. As a function of orientation, i.e., the direction
normal to the interface, for a triangularly symmetric crystal
(sixfold symmetric), the surface energy can be expanded in
the following form:

γ (θ ) = γ0

(
1 +

N∑
u=1

ε6u cos (6u θ )

)
, (16)

where γ0 is the isotropic surface energy for a planar interface,
N is the order of the fit, and ε6u is the anisotropy parameter
for the given harmonic 6u. In approaches where the amplitude
formalism has been used to determine surface energy, partic-
ularly where the anisotropic form is sought as input into the
phase-field method [50,51], only the first-order term N = 1
from Eq. (16) has been used. The work of Jugdutt et al. [61], in
a study of solute effects on anisotropy, is the only work known
to the authors where higher-order terms have been considered.
In this study, we will consider an order N necessary to capture
the full breadth of the surface energy. Once a form of Eq. (16)
has been determined, the stiffness immediately follows:

�(θ ) = γ (θ ) + γ ′′(θ ). (17)

Using the surface energy and stiffness measurements, we
can determine the Wulff shape which minimizes the free
energy. The shapes in conjunction with the surface energy and
stiffness can be used as a metric to determine if the system
undergoes a transition to missing orientations and eventually
complete faceting under the right conditions. For example, a
condition for missing orientations is given by the development
of cusps in the polar plot of the surface energy. The appearance
of cusps means that γ −1(θ ) is no longer convex and indicates
the existence of facets at those orientations. The nonconvexity
that leads to these cusps and the initiation of facet formation can
also be determined through a stiffness criterion, i.e., �(θ ) < 0
[14]. Lastly, we can also visually inspect the Wulff shape, as
the appearance of “ears” in the Wulff shape is an indication of
missing orientations.

C. Wulff construction

The Wulff construction begins by first plotting the surface
energy γ (θ ). On every point on the γ surface, a plane is
drawn through the point and perpendicular to the radius vector.
The Wulff construction is then the inner envelope of all such
planes, so-called Wulff planes. In 3D, ξ vector of Hoffman and
Cahn [5,6] has greatly improved the ease by which the Wulff
construction is done [14,24]. In 2D Cartesian coordinates,
which our results will be presented in, the Wulff construction
has a simple mathematical form since the surface energy
depends only on a single angle value. To derive this form,
we begin with the Gibbs-Thomson equation, which reads as

�̃μ = [γ (θ ) + γ ′′(θ )]K, (18)

where �̃μ is a dimensionless difference of chemical potentials
between the solid and liquid phases, and for a pure material
in the limit of small undercooling is ∼(Tm − T )/Tm, and K is
the curvature defined as

K = − ∂θθ s

(1 + (∂θ s)2)
3
2

, (19)

where s is the arc length and maps out the equilibrium crystal
shape. This equation can be solved to yield the following
parametric solutions for the interface shape [1,62,63]:

x(s) = γ (θ ) cos θ − γ ′(θ ) sin θ,

y(s) = γ (θ ) sin θ + γ ′(θ ) cos θ, (20)

where x and y are the Cartesian coordinates of the arc length.
For a sufficiently low temperature, the Wulff shape assumes
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TABLE I. The set of regularization parameters and grid resolu-
tions (with a = 4π/

√
3) examined in our study.

Corner energy (β) Resolution (�x)

β1 = 0 �x1 = a/16
β2 = 1 × 10−6 �x2 = a/12
β3 = 1 × 10−4 �x3 = a/8
β4 = 1 × 10−2 �x4 = a/4
β5 = 0.1 �x5 = a/2
β6 = 0.2
β7 = 0.5
β8 = 1

a polygonal structure corresponding to the lattice symmetry,
while at larger temperatures close to the melting temperature
it assumes a more isotropic, circular shape. Results indicating
this behavior are discussed below.

IV. RESULTS

In this section, we apply the amplitude model of Eqs. (8)–
(10) to study the surface properties of the effective phase-field
model derived from PFC. Using 1D calculations, as a function
of temperature, the surface energy will be determined using
Eq. (20), from which the Wulff shapes will be calculated.
Combined with the criterion for the convexity of the surface
stiffness �(θ ) [14,64], we shall determine the transition to
missing orientations and formation of facets in this system.
Following the 1D calculations of surface energy and Wulff
shapes, we perform 2D simulations to corroborate the surface
energy calculations in a regime where dendritic growth is
observed.

A. 1D surface energy calculations

Examining the surface energy, and subsequently the Wulff
shapes, will allow us to determine the anisotropic features of
this system leading to missing orientations. While the transition
is driven by changing temperature, two additional effects of
the effective phase-field model are worth exploring. They are
the effects of the regularization parameter β and length-scale
resolution.

The regularization parameter β was added phenomeno-
logically, in order to afford us some control over the corner
energy and its possible effects on the transition to the missing-
orientation regime. We note that numerically, the stability and
equilibrium properties of this coarse-grained model, like other
PF-type methodologies, can be considered to be a balancing
effect between bulk and surface contributions. Having, in an ad
hoc manner, altered the inherent contribution of one of these
terms requires exploration. In this regard, we have considered
various corner energy gradient coefficients which are given in
Table I.

The motivation for moving to a coarse-grained model
description was the access to larger length scales to explore
microstructural features at relevant scales. Given the coarse-
grained nature of the model, use of larger numerical grid
resolutions than that of the original PFC model for simulations
would be natural. However, the physics of interest here is

multiscale in nature, ranging from the pseudoatomistic to the
mesoscale. We therefore must investigate what resolution is
sufficient to capture the full length-scale range involved to
best quantitatively capture the associated physics. To do so, we
will consider various numerical grid spacings �x, presented
in Table I. We note that the aim here is in exploring in what
regime we can safely use coarser resolutions and conversely
where finer resolutions are necessary in order to capture the
essential physical features.

Simulations are performed by initializing profiles of the
density n̄ and the amplitudes {φj } in a 1D domain at the
equilibrium values of the solid and liquid phases as dictated
by the numerically computed phase diagram (see Sec. II B)
for a given temperature ε. Equations (9) and (10) are then
solved to correct for any artifacts of the initial conditions until
equilibrium is reached, which is determined by convergence of
the grand potential �ph[{φj }, n̄] over time. Once equilibrium is
attained, the surface energy is calculated per Eq. (14) for each
given orientation. In the following subsections, we evaluate the
consequences of these simulations, considering first the surface
energy and Wulff construction and finally the stiffness.

1. Surface energy and Wulff shapes

Once the surface energy is determined from the 1D simula-
tions, we perform a fit of the data to Eq. (16), where the order
of the fit is determined on the basis of minimizing the standard
error. Once we have the fit, it is straightforward to determine
the stiffness, viz., Eq. (17).

In Fig. 2, for various different values of β and �x, we plot
the surface energy in polar form as fit by Eq. (16). In the figure,
we have β increasing from top to bottom, i.e., increasing corner
energy, and �x increasing from left to right, i.e., decreasing
resolution. Within each panel in the figure, temperature de-
creases outward from the center. That is, the surface energy
plots further from the center correspond to successively lower
temperatures ε. Following the same scheme, Fig. 3 displays
the Wulff shapes for the same parameter values. We note that
we have not shown plots for β2 and β6-β8 as the results for
those values do not substantially contribute to the discussion
to follow.

There are several interesting features worth noting in the
figures. First, we note that, generally, both the surface energy
and Wulff shapes become isotropic for increasing β, i.e.,
increasing corner energy. There are some slight variations,
which are only perceptible when the stiffness is plotted (not
shown). We also see that for the coarsest resolution plotted,
�x4 in Fig. 3(d), the Wulff shapes are seemingly isotropic for
all temperatures and β, also evident in Fig. 2(d) for the surface
energy. As the resolution becomes finer, decreasing �x, and for
eachβ as ε decreases, we see the development of high curvature
regions in the surface energy plots of Fig. 2, which translates to
Wulff shapes assuming more hexagonal-like shapes in Fig. 3.
Eventually, we see the development of “ears” indicating we
have crossed the threshold to the regime of missing orientations
and a transition to highly anisotropic shapes. This is supported
in the surface energy plots of Fig. 2, where depressions and
rounded cusp regions appear, coinciding with the emergence
of “ears.” It is important to note here that for the plots in
Figs. 2 and 3, especially those parameters where pronounced
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FIG. 2. Polar plots of the surface energy, as calculated using 1D simulations and fitted using Eq. (16). β increases from top to bottom,
while �x increases from left to right. In the panels, temperature decreases from the center going outward, with the outer plots representing
successively lower temperatures.

“ears” are evident, we have plotted the data up to the transition
temperature (as determined in the following section) for clarity.

Now, we wish to comment on another trend exhibited
in the Wulff shapes and surface energy plots, specifically
for �x4 and �x5. For these resolution parameters, we have
noticed that both the surface energy, and consequently the
Wulff shapes, undergo a change in the anisotropic direction
as a function of temperature. This is more evident in the
case of �x5 [Fig. 4(a)]. As a function of temperature, we
see the easy axis direction, i.e., maximum surface energy
direction, change from the [01] direction. In the surface energy
and Wulff plots, this phenomenon is almost imperceptible.
However, since the stiffness is more anisotropic (by at least
an order of magnitude), in Fig. 4(b) we show a plot of the
stiffness for a representative combination of the grid resolution
and corner energy parameters. In the figure, as a function of
decreasing temperature, i.e., going from the center outward in
the panel, we clearly observe the minimum stiffness direction
changing from the [01] direction. This change in anisotropy
can be physical and has been reported in pure materials and
alloys both experimentally and numerically [65–68], although

this is the first it has been reported for 2D systems to the
authors’ knowledge. In the case presented here, however, it
is an artifact of the system being under-resolved, as evident by
the lack of such a transition in the cases where finer resolution
parameters are utilized, i.e., �x1, �x2, and �x3, and thus
caution should be exercised when conducting simulations. It
is also worth noting that the value of �x, i.e., �x3, where
this artificial transition arrest is comparable to the minimum
resolution often used in the simulation of regular atomistic
PFC simulations. An indication that perhaps the sufficient
resolution required to capture the salient physical features of
highly anisotropic surfaces, in the limit of missing orientations
and facet formation, is similar to that required for full PFC
model.

2. Convexity of stiffness

The plots presented above of surface energy and the Wulff
constructions were illuminating. However, a more quantitative
measure is required in determining the transition to missing
orientations. To this end, we also consider the stiffness criterion
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FIG. 3. Wulff shapes as a function of temperature. Note the interior, convex region of the Wulff shape gives the equilibrium crystal shape.
β increases from top to bottom, while �x increases from left to right. Temperature decreases from the center of each panel going outward, with
the outer curves representing successively lower temperatures in the figure panels.

to determine at which temperature missing orientations, i.e.,
ears, start appearing in the Wulff shapes and therefore the
possibility of a faceting transition. We evaluate the stiffness at

FIG. 4. Polar plots of surface energy and stiffness. (a) Surface
energy for �x5 and various values of β. (b) Stiffness for �x5 and β4

clearly displaying a change in anisotropy as a function of decreasing
temperature. Temperature decreases moving from the center outward.

the normal direction that corresponds to the close-packed [01]
direction which below the transition temperature is expected
to be the initial missing orientation. We have plotted this value
for the stiffness for the various parameters of β and �x as a
function of the temperature ε. The results are shown in Fig. 5.
For �x5, Fig. 5(a) clearly indicates that the stiffness criterion is
not met for any value of β, as �(0) is a monotonic function of ε.
This is expected given behavior exhibited by the surface energy
and Wulff plots. The inset shows a magnification of the data,
where an inflection is visible. This inflection point indicates
the temperature at which the change in anisotropy occurs,
as discussed in the previous section and further discussed in
Appendix B.

At the next finer resolution �x4 [Fig. 5(b)], there are three
features worth noting. The first being that several values of
β exhibit negative stiffness values below select temperatures,
indicating the transition to missing orientations. Second, we
observe that this transition does not occur for the same
temperature for all β values, although β1-β4 seem to cluster
around a similar transition temperature. And, third, there is
evidence in this plot as well of the anisotropy transition as
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FIG. 5. Plots of the stiffness (�), evaluated at θ = 0, versus temperature ε for the resolution parameters considered (a)–(e). Note that
temperature decreases from right to left. The stiffness criterion states that orientations where the stiffness is negative corresponds to those
missing from the ECS. In the Wulff construction (Fig. 3), this is indicated by the emergence of “ears.”

indicated by the change in curvature of the plot for decreasing
values of β.

For the remainder of the plots, Figs. 5(c)–5(e), �(0) for
β5-β8 all show monotonic behavior as a function of tempera-
ture. This indicates that for the temperature range considered,
there is no transition to missing orientations for any of the
corner energy coefficients and notably no anisotropy transition.
This is supported by their surface energy and Wulff plots from
Figs. 2 and 3. The remainder of the corner energy parameters
do, however, show an abrupt change at ε ∼ 2.6, the instance
where the �(0) initially becomes negative, beyond which it
fluctuates. The insets in the figure show enlarged regions
around this temperature. We interpret this as the transition
temperature to missing orientations and possibly the beginning
of a faceting transition.

To understand why beyond this transition temperature we
see oscillations of the stiffness, we interrogate the surface
energy and order-parameter profiles for some of these pa-
rameters around this transition. We examine the profiles at
the finest resolution �x1, for corner energy coefficients β3

and β4, and for temperatures ε = −3.08 and −5 below the
transition. As reference for the discussion, we have listed in
Table II the equilibrium properties for the solid phase for the
aforementioned temperature values.

Fig. 6 shows the surface energy plots for β3 [Fig. 6(a)] and
β4 [Fig. 6(c)] at ε = −3.08. In the plots, the simulation is
represented by the blue data points, while the red line is the
fit using Eq. (16). The lines A and B delineate the orientations
θ = 0.025π and 0.1π , respectively, for which we have plotted
the order-parameter profiles in Figs. 6(b) and 6(d), respectively.
In the profiles of the order parameters, the amplitudes are dis-
played in the top row, while the density in the bottom row, with
the left column corresponding to line A and the right to line B.
The same convention is used in Fig. 7. In Fig. 6(a), the surface
energy exhibits a discontinuous, two-branched behavior. The
upper branch represents the allowed, stable orientations on the
ECS, while the lower branch, representing those orientations
closest to the high-symmetry orientations of the crystal, depict
missing/unstable orientations. The surface energy for the latter

TABLE II. Select temperature values and the corresponding
equilibrium values for the solid phase.

ε n̄s φeq

−3.08 −0.61819 −0.48167
−5 −0.73887 −0.64374
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FIG. 6. Order-parameter profiles and surface energy for �x1 at ε = −3.08. (a), (b) β = 1 × 10−4 while for (c), (d) β = 1 × 10−2. Surface
energy plots (a) and (c) have raw simulation data in blue, while the red curve is a fit to Eq. (16). For the order-parameter profiles (c) and (d),
amplitudes are shown (top row) and the density (bottom row) at the respective orientations θ = 0.025π and 0.1π marked by the lines A (left
column) and B (right column), respectively.

set of orientations was calculated by relaxing the equilibrium
constraint on Eq. (14); see Appendix A. The unstable character
of these orientations is clearly visible in the plots of the
order-parameter fields presented. Choosing the orientations
marked by lines A (θ = 0.025π ) and B (θ = 0.1π ), we see
that for the former, only one of the amplitudes is nonzero
(φ2 ∼ −1), and its value deviates from the equilibrium value
φeq = −0.481 67, from Table II. Similar with the density n̄s =
−0.1 when compared with n̄sol = −0.618 19. Conversely, the
order parameters for θ = 0.1π , have all converged to their
equilibrium values. This is indicative that for the unstable
orientations, we have lost integrity of the triangular crystal
structure represented by our amplitude expansion and therefore
a triangular solid described by this system of equations is
unstable. Moreover, our subsequent attempts to fit the full
range of surface energy (red line with N = 15), below the
transition, is the likely cause behind the oscillations exhibited
in Fig. 5. The fact that the oscillations mimic a sinusoidal-like
behavior is also presumably caused by the functional form
of the fitting function we have used here. For β4, Fig. 6(b),
we see a well-behaved, continuous surface energy plot with
no missing orientations. The order-parameter profiles further
reinforce this for the representative orientations chosen.

At ε = −5, displayed in Fig. 7, we witness two interesting
features. First, for Fig. 7(a), we notice that the number of

unstable orientations has increased, a trend towards complete
faceting. The order-parameter profiles coincide with our pre-
vious discussion. Once again for the unstable orientations, we
have no solid integrity as φ1 = φ3 = 0, φ2 ∼ −1.2, and n̄s =
0, showing significant deviations from their expected equilib-
rium values (Table II). Second, we see that for β4, Fig. 7(c),
a transition has occurred where now unstable orientations
are present. The number of unstable orientations, however, is
smaller, specifically due to the larger corner energy coefficient
regularizing the interface. In this case, when we compare the
two plots, it becomes apparent that like temperature, the corner
energy coefficient in this description can also influence the
number of and transition to unstable orientations.

We should mention here that a discontinuous surface energy
is strictly speaking unphysical, even at the limit of metasta-
bility. Here, we only observe this behavior after relaxing the
equilibrium constraint placed on Eq. (14), which in doing so
allows us to calculate a general relative excess quantity (see
Appendix A), a quantity that in the regime of stable ori-
entations, i.e., the upper branch solution, gives exactly the
equilibrium constrained surface energy equation. Note that if
the constraint of equilibrium was imposed for all orientations,
the resulting surface energy values for the unstable orientations
discussed above would be negative and therefore prohibited.
Applying the equilibrium conditions, we performed simula-
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FIG. 7. Profiles and surface energy plot for �x1 and ε = −5. (a), (b) β = 1 × 10−4 while for (c), (d) β = 1 × 10−2. Surface energy plots
(a) and (c) have raw simulation data in blue, while the red curve is a fit to Eq. (16). For the order-parameter profiles (c) and (d), amplitudes are
shown (top row) and the density (bottom row) at the respective orientation θ = 0.025π and 0.1π marked by the lines A (left column) and B
(right column), respectively.

tions that confirmed that indeed by not allowing the negative
surface energy values, only the upper branch, i.e., stable orien-
tations, are selected. We further note that the orientations where
the surface energy is negative, the interface can varifold and
effectively undergo a decomposition process that eliminates
these surfaces. We have tested this in 2D simulations of
arbitrary initial sinusoidal interface shapes.

B. 2D crystal growth

Two-dimensional simulations of dendritic growth were
performed to support the calculations in the previous section.
Primarily, we want to demonstrate the increasing of the surface
energy anisotropy as a function of decreasing temperature
and the consequences it has on dendritic behavior. We chose
temperatures ε = −0.1,−0.5,−1,−2, and −3, corner energy
coefficient β4, and grid resolution �x = a/10, where a is the
equilibrium lattice spacing. All simulations were performed
with a time resolution of �t = 1 × 10−3. We start with a
circular seed of radius r = 40�x, where the solid is initialized
with the equilibrium amplitude and density, n̄sol, as specified
by the phase diagram. The liquid density is set to satisfy the
supersaturation ω = (n̄liq − n̄)/(n̄liq − n̄sol ), where n̄ is the

average density of the system. The supersaturation was chosen
such that in equilibrium the system will have attained a solid
fraction fs = 0.55. The results are displayed in Fig. 8, where
we show time slices throughout the simulation for the various
temperatures. Temperature decreases from left to right and
time increases from top to bottom. Although the simulations
were performed in a domain of 3072�x × 3072�x, only a
portion of the domain, 1536�x × 1536�x, centered around
the growing crystal is shown. In the images, we plot the
sum of the modulus of amplitudes

∑3
j |φj |, overlaid on the

reconstructed density described by Eq. (3). At high temperature
ε = −0.1, the crystal grows isotropically, with only slight
variations. However, with decreasing temperature, dendrites
emerge, with the dendritic instability occurring at successively
earlier times for decreasing temperature, characteristic of
increasing anisotropy. In addition to the early onset of the
dendritic morphology for decreasing temperature, we also
observe that due to increasing anisotropy, the form and shape
of the dendrites also change. Specifically, we note that the
primary arms become finer, almost needlelike, with decreasing
temperature, and the interfaces become smoother eliminating
fluctuations that would eventually cause the emergence of side
branching.
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ε = −0.1 ε = −0.5 ε = −1 ε = −2 ε = −3

t = 61τ t = 57τ t = 30τ t = 15τ t = 12τ

t = 122τ t = 114τ t = 60τ t = 30τ t = 24τ

t = 183τ t = 171τ t = 90τ t = 45τ t = 36τ

t = 244τ t = 228τ t = 120τ t = 60τ t = 48τ

FIG. 8. Dendritic solidification of the effective phase-field model demonstrating effects of highly anisotropic surfaces as function of
temperature. Each column of images represents a different temperature, which decreases from left to right. Time increases from top to bottom,
with τ = 104�t , where we have attempted to match time according to similar solid fractions, terminating at an approximate solid fraction of
fs ≈ 0.12. The sum of the modulus of amplitudes, i.e.,

∑3
j |φj |, is superimposed on the atomic density as reconstructed from Eq. (3), with red

being large amplitude for the solid phase, while blue is zero representing the liquid phase and black the density peaks.

V. SUMMARY AND CONCLUSIONS

This paper reports the development of an effective phase-
field model, derived from the diffusive atomistic PFC model
through a coarse-grained formalism, for the modeling of highly
anisotropic interfaces. In the derived model, the gradient
energy responsible for surface energy was shown to be related
to atomistic level information through the reciprocal lattice
vectors of the underlying lattice symmetry of choice. This
relationship was anticipated by Caginalp and Fife [8–10], who
envisioned anisotropic Ginzburg-Landau models not directly
through assumed coefficients of gradients but through general
nonlocal interactions based on lattice symmetry. Further, the

model self-consistently gives rise to a biharmonic contribution
known to act as a regularizing term in other diffuse interface
theories, giving rise to explicit corner energy contributions
[22–24]. Using 1D calculations, we perform an analysis of
the interfacial energy and, consequently, the Wulff shape
properties of the model as a function of the surface orientation.
The role of corner energy is explored, as well as the appropriate
resolution with which to perform simulations to adequately
account for the multiple length scales involved in the physics
of highly anisotropic surfaces. We find that a resolution similar
to the full PFC model needs to be considered. The phase-field
model captures a transition to missing orientations for specified
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corner energy coefficients. Dendritic growth simulations show
the clear role of strongly anisotropic surface energy on the
morphology of growing dendrites. We find that decreasing
temperature, and hence increasing anisotropy, enhanced the
onset of dendritic instability while also leading to finer primary
arms with smooth surfaces. A deeper investigation of dendritic
growth in this regime would be instructive in detailing other
features of our model as they compare with standard theories.
Finally, the phase-field model does not yield faceted interfaces
or a roughening transition. This is a likely consequence of the
coarse-grained smoothing of the model, but it is a matter worth
further investigation.

This is an initial step in determining the feasibility of
PF-type models of this form in adequately describing highly
anisotropic properties. As such, several things are not consid-
ered that are worth exploration. For example, neither the role of
elastic and stress effects are not explicitly considered, nor the
kinetic factors that have an effect on the behavior of interfaces.
Nonetheless, the phase-field model presented here, capable
of describing the presence of cusps in the surface energy,
dictated by capillary effects, is nontrivial. Also, the model
we derived, though capable of describing surface orientation,
cannot describe multiple grain orientations, a feature crucial to
the modeling and understanding of polycrystalline systems that
exhibit highly anisotropic interfaces and boundaries. To this
end, a natural extension of this work is to examine the complex
amplitude formalism, derived in Eq. (6), which naturally
includes elastoplastic effects and the ability to model multiple
crystal orientations. For the kinetic aspects of anisotropic
interface growth and behavior, one can consider a capillary
fluctuation approach [69], on the level of the complex ampli-
tudes or the effective phase-field model. Also, an asymptotic
analysis of the governing equations might shed light on the
role of kinetics to first order. Finally, there are emergent
PFC formulations that are based on descriptions of the two-
point direct correlation function that closely mimic the more
fundamental classical density functional theory [34,36,37]. It
would be instructive to use the effective models derived from
these models to examine anisotropic surface properties using
the same approach outlined here. Doing so would naturally
give a temperature dependence on parameters such as the
corner energy coefficient β, and would also allow us to relate
these properties to a fundamental measure theory. This will be
considered elsewhere.
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APPENDIX A: EQUATIONS FOR SURFACE ENERGY

Starting from Eq. (12), there are numerous ways that one
can calculate the surface energy. The simplest is to choose a
reference grand potential, notably the equilibrium from one of
the bulks, and subtract that from the full grand potential. This
reads as

γ = �ph[{φj }, n̄] − �
ph



A

= �ph[{φj }, n̄] − ω
ph

 (n̄)V

A

= 1

A

∫
V

dr
(
ωph − ω

ph



)
, (A1)

where ωph represents the grand potential density of our
effective phase-field model. In the second line we have used
the definition that for a bulk phase �ph = −pV (where
−p ≡ ωph) and have chosen the liquid as our reference.
This definition can be further expanded by using the explicit
definition of the grand potential, and noting that the equilibrium
chemical potential is defined by μ = (f ph

s − f
ph

 )/(n̄s − n̄).
We then have
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n(r)−f
ph

 + f
ph
s − f

ph



n̄s − n̄

n̄

)

= 1

A

∫
V

dr
(

f ph − f ph
s

n(r) − n̄

n̄s − n̄

+ f
ph



n(r) − n̄s

n̄s − n̄

)
,

(A2)

where in the second line, we have used the definition of the
grand potential, and this is the form of the surface energy
we have reported in the text. f

ph
ν and n̄ν (with ν = s, l)

represent the equilibrium values for the free energy and
density for the liquid and solid, respectively. In equilibrium,
Eqs. (A1) and (A2) are identical. However, for out of equilib-
rium or for unstable configurations that still have constant bulk
contributions, we can define the following f

ph
ν → f

ph∗
ν and

n̄ν → n̄∗
ν (where the asterisk denotes evaluation in the bulk)

and refer to this as a relative excess quantity [64].
Further to the definitions above, we can also examine the

surface energy contributions using an alternate method. In 1D
for simplicity, we begin with the Euler-Lagrange equations
(ELE) of Eq. (8). This method explicitly reveals some of
the underlying properties of our derived effective phase-field
model. The ELE read as

δFph

δn̄
= ∂f ph

∂n̄
≡ μ,

δFph

δφj

= ∂f ph

∂φj

− ∂x

∂f ph

∂ (∂xφj )
+ ∂2

x

∂f ph

∂
(
∂2
xφj

) ≡ 0 ∀ j. (A3)

We multiply both equations by their respective gradients to get

n̄x

∂f ph

∂n̄
= n̄xμ,

3∑
j

φj,x

∂f ph

∂φj

− φj,x∂x

∂f ph

∂φj,x

+ φj,x∂
2
x

∂f ph

∂φj,xx

= 0 (A4)
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where we have used shorthand notation for the gradient
derivatives of the fields. The general gradient of the energy
reads as

∂f ph

∂x
= ∂f ph

∂n̄
n̄x +

3∑
j

∂f ph

∂φj

φj,x + ∂f ph

∂φj,x

φj,xx

+ ∂f ph

∂φj,xx

φj,xxx . (A5)

We substitute Eq. (A5) into the addition of the ELE, Eq. (A4),
and arrive at the following:

∂f ph

∂x
− n̄xμ = −

3∑
j

(
∂f ph

∂φj,x

φj,xx + ∂f ph

∂φj,x

φj,xxx

+ φj,x∂x

∂f ph

∂φj,x

− φj,x∂
2
x

∂f ph

∂φj,xx

)
. (A6)

Next, we perform, under suitable boundary conditions, partial
integration by parts on the right-hand side of Eq. (A6), to yield

∂f ph

∂x
−n̄xμ =

3∑
j

(
φj,x

∂f ph

∂φj,xx

−φj,x

∂f ph

∂φj,x

+2φj,xx

∂f ph

∂φj,xx

)
.

(A7)

Lastly, we integrate both sides across the 1D domain, i.e., −∞
to ∞. Note that the left-hand side is nothing but the integral of
the grand potential, where in equilibrium we expect the bulk
phases to yield equivalent contributions, this integral is nothing
but the surface energy. That is,∫ ∞

−∞

(
∂f ph

∂x
− n̄xμ

)
=

∫ ∞

−∞

∂ωph

∂x
dx ≡ γ. (A8)

For the right-hand side, we write the derivatives explicitly to
attain

3∑
j

(
8(kj · n)2

(
∂φj

∂x

)2

+β

(
∂φj

∂x

)(
∂2φj

∂x2

)
+4β

(
∂2φj

∂x2

)2
)

.

The normal vector is defined as n = (cos θ, sin θ ). The equi-
librium profiles of the amplitudes {φj } to first order can be
represented by hyperbolic tangents, an integral over the domain
then yields

γ (θ ) =
∫ ∞

−∞

3∑
j

{
8
(
kx

j cos θ + ky

j sin θ
)2

(
∂φj

∂x

)2

+ 4βκ2
j

(
∂φj

∂x

)4}
, (A9)

where kx
j and ky

j are the x and y components of the reciprocal
lattice vectors and we have used the fact that the curvature
can be defined by κj = ∂2

xφj/(∂xφj )2. We explicitly see the
anisotropic nature of the surface energy through the surface
orientation θ . In rewriting the biharmonic contribution in terms
of the curvature, we immediately see the role of the regularizing
term in the rounding of corners. The above calculation can also
be performed more rigorously through perturbation expansions
involving matched asymptotic analysis.

We have seen in Eq. (A9) the contributions from corners
to the total excess energy of the interface, which we called
the surface energy. If we define the actual corner energy σ to
simply be the difference of the the total excess energy with
and without the higher-order contribution, then it is trivial to
obtain that the corner energy is defined by

σ =
∫ ∞

−∞
4β

3∑
j

κ2
j

(
∂φj

∂x

)4

. (A10)

For the singular case where β might be zero, the corner energy
based on Eq. (A10) is necessarily zero. This is pathological and
for a more exact treatment of cases such as these, an asymptotic
expansion is necessary, where one considers β → 0 as was
done in Ref. [24].

APPENDIX B: TRANSITION OF ANISOTROPY

In Sec. IV A, when we considered the surface energy and
Wulff shapes, we found that for select parameters of the corner
energy coefficient β and the resolution �x that the system
underwent an anisotropy transition. This is the first for 2D
structures that we are aware of. However, this mechanism
has been reported in the literature for both experiments and
computations [66–68] for 3D structures. For pure systems,
specifically for fcc structures, this was a result of a negative
anisotropy coefficient for the second harmonic used to describe
the surface energy. In alloys, this resulted from solute additions
changing the anisotropy coefficient. Although the transition
reported here is the result of an under resolved system, we
have found this is caused by a sign change in the anisotropy
coefficients as a function of temperature, which can also
be understood in the light of solute additions changing the
temperature behavior in alloys. Here, we demonstrate this
for a simple case for an anisotropy function of the form
η(θ ) = 1 + δ cos 6θ . In Fig. 9, we show the stiffness plot of
the aforementioned anisotropy function for various anisotropy
strengths δ, which decreases from left to right. For this to ex-
hibit the hyperbranching resulting from an anisotropy change,
as described in the models and experiments of Refs. [66–68],

FIG. 9. Stiffness plots, from the anisotropy function η(θ ) = 1 + δ cos 6θ , showing the change of the growth directions as a function of the
anisotropy strength δ, which decreases from left to right. The middle middle panel represents δ = 0.
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higher-order terms would need to be considered in our sixfold
function.

We note that, conventionally, anisotropy coefficients do
not change as function of temperature or alloy content in
the myriad of phase-field models present in the literature.

In models such as the one presented here, derived from
atomistics, because a priori there is no predetermined form
of the anisotropy function, the system is allowed to explore
various effects, of course, assuming that the resolution is
sufficient.
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