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Mechanism of the growth pattern formation and three-dimensional morphological
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Based on an anisotropy function with the anisotropic strength determined via atomistic calculations, the
mechanism of the three-dimensional (3D) growth pattern formation of magnesium alloy dendrite is investigated
by performing phase-field simulations with the parallel adaptive-mesh-refinement algorithm. It is found that the
3D morphological transition of the α-Mg dendrite is dependent on the growth parameters, including the partition
coefficient, the anisotropic strength, and the supercooling during solidification. The α-Mg dendrite exhibits growth
tendency along both the basal and nonbasal directions, but the dendritic growth tendency along the basal direction
is weaker. Consequently, the 3D morphology of the α-Mg dendrite would transform from an 18-primary-branch
pattern to a 12-primary-branch pattern if the local growth driving force on the basal plane is insufficient. During
dendrite growth, the solute concentration increases as the distance from the dendritic nucleus center increases,
and reaches the local maximum at the solid/liquid interface, beyond which it decreases before reaching a constant
value. The simulation results agree well with those found in experiments and the existing solidification theory.
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I. INTRODUCTION

Magnesium alloys have attracted considerable scientific and
technological interests because they are promising candidates
for lightweight materials used in automobile, airplane, and
biomedical fields, etc. [1–7]. The α-Mg dendrite constitutes
the primary phase of Mg-based alloys, and thus the dendritic
orientation, distribution, and morphological preference have
significant influences on the practical performance of the alloys
[8–11]. The existence of surface anisotropy drives the α-Mg
dendrite to grow along certain crystallographic orientations,
leading to diverse growth patterns with complicated dendritic
morphology in three dimensions [12–14]. This is especially
true for the Mg-based alloys with hexagonal lattice structure,
comparing with their counterparts with cubic lattice structure
like nickel-based alloys [15–21].

By the numerical simulation, it was found that the
α-Mg dendrite presents a platelike shape in 3D, which is
induced by a slower growth along 〈0001〉 and a faster growth
along 〈112̄0〉 [22,23]. Through the metallography and electron
backscattered patterns (EBSP) techniques, it was shown that
the α-Mg dendrite grows along 〈112̄0〉 and 〈224̄5〉 with six and
three secondary arms, respectively [24,25]. Based on the syn-
chrotron x-ray tomography and electron backscattered diffrac-
tion (EBSD) experiments, it was confirmed that the α-Mg
dendrite grows along six 〈112̄0〉 basal directions and twelve
〈112̄x〉 nonbasal directions, resulting in an 18-primary-branch
pattern in 3D [9,26]. In addition, a dendritic morphological
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transformation from 18-primary branches to 12-primary
branches [27], i.e., dendrite orientation transition (DOT), is
observed for the α-Mg dendrite. The microstructure of the
α-Mg dendrite is also found to be affected by the solute
concentration, resulting in both dendritic and seaweed type
grains [10,13]. Subsequently, relevant atomistic simulations
based on the density functional theory (DFT) further confirm
the complex growth behavior of the hexagonal-close-packed
(hcp) α-Mg dendrite [28,29].

Research revealed that the growth pattern formation of the
dendritic microstructure is associated with various factors,
including the growth parameters, the anisotropy of materials
properties, and the additional elements, etc. [10,27,30,31]. To
date, most research is largely focused on a qualitative level or
at least a semiquantitative level, and the underlying mechanism
of the 3D dendritic morphological formation in relation to the
dendritic growth orientation of the magnesium alloy is still
unclear or not completely understood. Therefore, investigation
on the 3D growth pattern formation of the hcp α-Mg dendrite
at atomic level is necessary for understanding the dendritic
microstructure evolution during solidification, thus providing
theoretical guidance for improving the mechanical properties
and practical performances of magnesium alloys.

In this work, the underlying mechanism of the growth
behavior of magnesium alloy dendrite and the effects of
growth parameters on dendritic morphological transition is
investigated by performing 3D phase-field simulations. An
anisotropy function developed on the basis of hexagonal struc-
ture symmetry and experimental findings, is coupled into the
phase-field model to simulate the 3D morphological evolution
of the hcp α-Mg dendrite [30,32–34]. The anisotropic strength
is determined quantitatively via the DFT-based atomistic
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calculations on the anisotropic surface energy of different
crystallographic directions. The results show that the hcp α-Mg
dendrite exhibits potential growth tendency along different
directions, but the dendrite growth tendency along the basal
directions is weaker than that along the nonbasal directions. In
addition, it is found that the growth parameters such as the par-
tition coefficient, the anisotropic strength, and the supercooling
conditions are responsible for the dendritic morphological
transition, and could alter the dendritic pattern formation of
magnesium alloy significantly.

II. MODEL AND METHODOLOGY

A. Atomistic simulation scheme

The atomic structure of binary Mg-based alloys is con-
structed using the solid solution model, with the crystallo-
graphic information of Mg referred from a Pearson handbook
[35–37]. The atomic configuration for anisotropic surface
energy calculation is simulated by the slab model [38,39].
Accordingly, different surface slab models corresponding to
those surface orientations associated with the preferred growth
directions of the hcp α-Mg dendrite are obtained. All of the
DFT-based atomistic simulations are performed via the Vienna
Ab initio Simulation Package (VASP) [40,41]. The exchange
and correlation interaction is described by the local density
approximation (LDA) [42]. The interaction between ions and
valence electrons is modeled by the projector-augmented-
wave (PAW) potentials [43]. A plane-wave cutoff energy of
420 eV is used in the calculation. Brillouin zone integration is
modeled by the Monkhorst-Pack k-point mesh, and the k-point
separation in the Brillouin zone of the reciprocal space is

set as 0.01 Å
−1

for each unit cell. Relevant numerical tests
are performed to ensure the convergence and accuracy of
the computational scheme. The total energy is converged to
5 × 10−7 eV/atom with respect to electronic, ionic, and unit
cell degrees of freedom.

The anisotropic surface energy (γ{hkil}) is used to quantify
the anisotropic strength along different directions by using
a least-square regression method [29,44,45]. For a certain
crystallographic plane {hkil}, the anisotropic surface energy
γ{hkil} can be obtained via

γ{hkil} = En
slab − nEbulk

2S
, (1)

where En
slab is the total energy per primitive slab unit cell,

n is the layer number of the surface slab model, Ebulk is
the total energy per primitive bulk unit cell, S is the surface
area per primitive slab unit cell, and the factor of 2 accounts
for two equivalent surfaces of a particular slab model. The
calculated anisotropic surface energy is satisfactorily con-

verged to <0.001 eV/Å
2

with respect to the slab thickness,
the relaxed atomic layers, and the vacuum thickness. Details
on the surface energy calculation and the anisotropic strength
determination have been reported elsewhere [12,29], and no
further illustration would be given here.

B. Anisotropy function model

The growth behavior of the magnesium alloy dendrite
with an hcp lattice structure is significantly different from

TABLE I. The anisotropic strength εi (i = 1, 2, and 3) of the hcp
α-Mg dendrite estimated by relevant DFT-based calculations.

Anisotropic strength εi (i = 1, 2, and 3) Lower value Upper value

ε1 − 0.0629 − 0.0317
ε2 0.0422 0.1344
ε3 − 0.5843 0.0594

that with an face-centered-cubic (fcc) or body-centered-cubic
(bcc) lattice structure. In solidification numerical modeling, a
feasible expression of surface anisotropy function is essential
for an accessible prediction of dendritic microstructure. For the
hcp α-Mg dendrite, a general anisotropy function developed
in literature [16,46] is

dhex(�n) = 1 + δhex
(
n6

x − 15n4
xn

2
y + 15n2

xn
4
y − n6

y

+ 5n4
z − 5n2

z + 6n6
z

)
, (2)

where δhex is the anisotropy coefficient, and �n is the unit vector
normal to the solid/liquid interface. This model could describe
the sixfold symmetrical growth pattern of the α-Mg dendrite
in the basal plane and the dendritic growth along the principal
direction (i.e., 〈0001〉), but the simulated 3D growth pattern
deviates significantly from the practical dendritic morphology
observed in experiments [10,22,23]. To further investigate the
growth behavior of the hcp α-Mg dendrite, an anisotropy
function is developed by combining certain terms of spherical
harmonics based on the hcp structure symmetry and the
experimental findings [9,29]. The resultant formulation of the
anisotropy function model is expressed as

A(�n) = γ0 · {
1 + ε1 · (

3n2
z − 1

)2 + ε2 · (
n3

x − 3nx · ny
2
)2

× [
9n2

z − (1 + ε3)
]2}

, (3)

where εi (i = 1, 2, and 3) are the anisotropic strength for
describing the dendritic growth tendency along different crys-
tallographic directions. In particular, ε1 is associated with the
dendritic growth along 〈0001〉, whereas ε2 and ε3 are associated
with 〈112̄0〉 and 〈112̄x〉. ε1, ε2, and ε3 are determined from
the anisotropic surface energy obtained via the DFT-based
calculations [29], results of which are listed in Table I.

C. Phase-field modeling scheme

The phase-field model developed by Echebarria et al. [47]
is employed here to simulate the dendritic microstructure evo-
lution of magnesium alloys during solidification. In particular,
the phase-field variable φ(�x, t ) is adopted to describe the
distribution of different phases, i.e., φ = 1 denotes the primary
α phase, φ = −1 denotes the liquid phase, while −1 < φ < 1
denotes the solid/liquid interface region [32]. The governing
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equations are expressed as

τ
∂φ

∂t
= ∇ · [W (�n)2∇φ] + ∂

∂x

(
|∇φ|2W (�n)

∂W (�n)

∂φx

)

+ ∂

∂y

(
|∇φ|2W (�n)

∂W (�n)

∂φy

)

+ ∂

∂z

(
|∇φ|2W (�n)

∂W (�n)

∂φz

)
+ φ(1 − φ2)

− λ(1 − φ2)2(θ + kU ), (4)
(

1 + k

2
− 1 − k

2
φ

)
∂U

∂t
= ∇ ·

(
D

1 − φ

2
∇U − �jat

)

+ 1

2
[1 + (1 − k)U ]

∂φ

∂t
, (5)

∂θ

∂t
= α∇2θ + 1

2

L/cp

�T0

∂φ

∂t
, (6)

where τ is the relaxation time, W (�n) is the anisotropic width
of the diffuse interface, �n is the unit normal vector of the
solid/liquid interface, k is the partition coefficient, D and α are
the solute and thermal diffusivities, respectively, L is the heat
of fusion per unit volume, cp is the specific heat, φx = ∂φ/∂x,
φy = ∂φ/∂y, and φz = ∂φ/∂z. λ is the scaled parameter with
its reciprocal measuring the height of the dimensionless energy
barrier of the double-well potential (H ), which is given as

λ = 15

16

RTM (1 − k)

v0H |m| �T0, (7)

where R is the gas constant, TM is the melting temperature, v0

is the molar volume, and m is the liquidus slope in the phase
diagram. θ is the dimensionless temperature and denoted as

θ = T − TM − mc∞
�T0

. (8)

U is the dimensionless solute concentration and given as

U =
2c/c∞

1+k−(1−k)φ − 1

1 − k
, (9)

where c is the solute concentration and c∞ is the initial solute
concentration. �jat is the “antitrapping” current defined as

�jat = − W√
2

c/c∞
[1 + k − (1 − k)φ]

∂φ

∂t

∇φ

|∇φ| . (10)

�T0 is the equilibrium freezing temperature range related to
c∞ and denoted as

�T0 = |m|c∞(1 − k)

k
. (11)

The anisotropy function A(�n) is incorporated by τ = τ0A(�n)2

and W (�n) = W0A(�n). The kinetic effect can be ignored by
taking

τ = τ0{k[1 + (1 − k)U ]}A(�n)2. (12)

To avoid the selection of physical parameters, the dimension-
less form of the length and the time is scaled by the diffuse

interface width and the relaxation time:

W0 = λd0

a1
, τ0 = d2

0 a2λ
3

Da2
1

, (13)

where a1 = 0.8839 and a2 = 0.6267 are the constants, while
d0 is the chemical capillary length and denoted as

d0 = �

�T0
, (14)

where � is the Gibbs-Thomson coefficient. It is worth stressing
that during solidification, both the surface energy anisotropy
and the kinetic anisotropy play important roles in determining
the microstructure formation [48–52]. However, in most com-
mon solidification conditions, the dendritic growth is driven
by the solute diffusion, during which case the dendritic growth
direction and pattern formation are primarily determined by
the thermodynamic effect related surface energy anisotropy
in light of the underlying lattice structure [14,46,53]. During
the rapid solidification with large supercooling conditions, the
microstructure formation is mainly associated with the kinetic
anisotropy forming in a way of solute trapping and the local
solute redistributions near the solid/liquid interface [54,55].
In this respect, the dendritic growth pattern and orientation
selection during common solidification is mostly determined
by the thermodynamic effect related surface energy anisotropy
instead of the kinetic anisotropy, which is not considered in the
solidification dominated by the solute diffusive effect.

The phase-field equations are solved via the parallel
adaptive-mesh-refinement (Para-AMR) algorithm developed
by the current authors [30,32]. It has been demonstrated that
such Para-AMR algorithm could enhance the computational
efficiency significantly by two to three orders of magnitude
[33,56]. The anisotropy function with the anisotropic strength
determined from DFT-based calculations, i.e., Eq. (3), is
incorporated into the phase-field model to simulate the α-Mg
dendrite growth. The 3D phase-field simulations are performed
using the hierarchical mesh with five levels of grids. The
dendritic seeds are planted in the liquid alloy at the center
of the simulation domain with an initial radius of 3.2W0. The
3D computing domain is equivalent to 1024 × 1024 × 1024
meshes on the finest grid level, i.e., dx = dy = dz = 0.8. The
scaled parameter is chosen to be λ = 30. Detailed growth
parameters of different simulation cases are listed in Table II.

D. Model validation

For the simulation of dendritic microstructure, the grids at
the solid/liquid interface need to be refined in light of the AMR
algorithm, because the variables change the fastest and the
gradient reaches the maximum value at this region. On each
grid level, a cluster algorithm is adopted to separate the tagged
grids into the patch boxes (i.e., clusters filled by meshes). The
algorithm is achieved firstly by tagging the cells based on the
gradient criterion defined as

|∇φ| + βU |∇U | + βθ |∇θ | � ξ, (15)

where ξ is a threshold value retrieved from relevant numerical
tests, while βU and βθ are the weight coefficients of solute and
temperature, respectively. The structure of the patch boxes on
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TABLE II. The growth parameters of the α-Mg dendrite, includ-
ing the partition coefficient (k), the anisotropic strength (εi, i =
1, 2, and 3) along different directions, and the supercooling (u) during
solidification.

Growth parameters

Group No. Case No. k u ε1 ε2 ε3

I 1 0.13 0.10 − 0.050 0.074 − 0.077
2 0.15 0.10 − 0.050 0.074 − 0.077
3 0.24 0.10 − 0.050 0.074 − 0.077
4 0.29 0.10 − 0.050 0.074 − 0.077
5 0.30 0.10 − 0.050 0.074 − 0.077
6 0.31 0.10 − 0.050 0.074 − 0.077
7 0.32 0.10 − 0.050 0.074 − 0.077

II 1 0.37 0.12 − 0.050 0.080 0.059
2 0.37 0.13 − 0.050 0.080 0.059
3 0.37 0.14 − 0.050 0.080 0.059
4 0.37 0.15 − 0.050 0.080 0.059
5 0.37 0.17 − 0.050 0.080 0.059
6 0.37 0.20 − 0.050 0.080 0.059
7 0.37 0.22 − 0.050 0.080 0.059

III 1 0.135 0.10 − 0.050 0.080 0.059
2 0.135 0.10 − 0.050 0.080 − 0.035
3 0.135 0.10 − 0.050 0.080 − 0.169
4 0.135 0.10 − 0.050 0.080 − 0.463
5 0.135 0.10 − 0.050 0.040 − 0.463
6 0.135 0.10 − 0.050 0.040 0.059
7 0.135 0.10 − 0.050 0.130 − 0.463
8 0.135 0.10 − 0.050 0.130 0.059

every grid level is properly nested. The finer grids are contained
inside the coarser grids. All of the grids comprise a hierarchical
architecture with different patch boxes setting at each grid level
after AMR.

The according grid structure and mesh architecture of the
patch boxes during AMR of a typical hcp α-Mg dendrite is
illustrated in Fig. 1. The variation of the local box density
demonstrates that the mesh refinement accommodates well
with the refinement of the solid/liquid interface, as shown in
Figs. 1(a) and 1(b), respectively. Meanwhile, the physical prop-
erties of materials are assumed to be constants and the solute
diffusion in solid phase is neglected during simulation. The

FIG. 1. Hierarchical mesh architecture of the patch boxes during
the AMR of the hcp α-Mg dendrite. (a) and (b) show the perspective
viewed along 〈111〉 and 〈125〉, respectively.

periodic boundary conditions are adopted for the phase field
and solute field, whereas the isothermal conditions are consid-
ered for the temperature. As the dendrite growth proceeds, the
computing time per time step increases because the net grid
number, particularly at the top level, increases considerably as
the solid/liquid interface region increases during solidification.
Numerical tests with respect to the accuracy and efficiency of
the Para-AMR algorithm have been performed and reported in
our previous work [30,32,56,57].

III. RESULTS AND DISCUSSION

A. Typical dendritic growth pattern

Figure 2(a) shows the typical growth pattern of the simu-
lated hcp α-Mg dendrite. The coordination system is depicted
at the bottom right corner, where the z axis is along the principal
direction (i.e., 〈0001〉), and the x-y plane corresponds to the
basal plane. As shown, the hcpα-Mg dendrite presents a sixfold
symmetrical pattern viewed along the z axis, and there are three
layers with each having six-primary branches viewed along
the x and/or y axis. Consequently, the dendritic morphology
exhibits an 18-primary-branch pattern in 3D. These 18-primary
branches growing out from the seed center could be further
classified into two categories: one is the 6-primary branches
along the basal directions, and the other is the 12-primary
branches along nonbasal directions. The secondary arms of
the hcp α-Mg dendrite exhibit the same growth direction
as the primary dendritic stem direction. This is significantly
different from a typical fcc α-Al dendrite, which normally
exhibits a fourfold symmetrical pattern in two dimensions
and the dendritic morphology presents six primary branches
in three dimensions, as shown in Fig. 2(b). In addition, the
6-primary branches growing out from the dendritic nucleus
center gradually evolve into a paraboloid shape connected by
four fin-shape-like subarms. These distinctions in dendritic
morphology between the hcp α-Mg dendrite and the fcc α-Al
dendrite primarily originate from the intrinsic difference of the
underlying lattice structure and the according surface energy
anisotropy [26,29].

B. Influence of partition coefficient (k)

The partition coefficient (k) is the ratio between the solute
concentration in the solid phase (Cs ) and that in the liquid phase
(Cl ) at a given temperature, i.e., k = Cs/Cl [58–60]. Once
nucleation occurs, the subsequent growth of the solid phase
is controlled by the diffusion of solute atoms. For dendritic
microstructure, the solute diffusion rate in the liquid phase
is significantly larger than that in the solid phase [19]. In
the practical situation, the magnitude of k is generally not
constant and depends on the local concentration. Accordingly,
the influence of the partition coefficient on the growth pattern
of the hcp α-Mg dendrite is investigated with parameters listed
in Table II designated as group I. Attention is focused on the
cases when k < 1, where the solute solubility in the solid phase
is less than that in the liquid phase.

Figures 3(a1)–3(h1) show the simulated 3D den-
dritic morphology when k = 0.12, 0.13, 0.15, 0.18, 0.21,

0.24, 0.28, and 0.31, respectively. To achieve a better under-
standing on the 3D growth pattern of the hcp α-Mg dendrite,
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FIG. 2. Growth pattern of a typical simulated dendrite with (a) hcp lattice structure, e.g., the α-Mg dendrite and (b) fcc lattice structure,
e.g., the α-Al dendrite. (a0), (a2) and (b0), (b2) show the 3D morphology viewed from 〈111〉 and 〈001〉. The according 2D sections cut by
{010} and {001} sections are shown in (a1), (a3) and (b1), (b3), respectively.

the two-dimensional (2D) projections viewed from the 〈112̄0〉
and 〈0001〉 are presented in Figs. 3(a2)–3(h2) and 3(a3)–3(h3),
respectively. In addition, the 2D sections cut by the {101̄0}
and {0001} planes are presented in Figs. 3(a4)–3(h4) and
3(a5)–3(h5). The results show that the hcp α-Mg dendrite grow
faster when k is lower, as indicated by the size of the primary
and secondary dendrite arms. As k increases, the 3D dendritic
morphology transforms from an 18-primary-branch pattern
to a 12-primary-branch pattern. The fact that the 6-primary
branches of the hcp α-Mg dendrite along the basal direction
ceased to grow agrees well with the DOT phenomenon ob-
served in experiments [26,27]. This indicates that the dendritic
growth tendency along the nonbasal directions is larger than
that along the basal ones, as is also reflected by the magnitude
of the crystallographic anisotropy [26,29]. In this respect, the
dendritic growth tendency along the basal directions could be
inhibited when the hcp α-Mg dendrite does not have enough
driving force to grow, such as the case when k is larger

[46,61,62]. As shown in Fig. 3, a higher solute concentration
or partition coefficient leads to a lower growth velocity and
thus shorter dendritic primary branches and/or secondary
arms.

Figure 4 shows the variation of the solute concentration
when k = 0.31 at the time step of 8000, 28 000, 52 000, 76 000,
and 100 000, respectively. The results indicate that as the
solidification proceeds, the solute concentration in the liquid
phase increases, and such increase of solute concentration
continues until a steady growing state is achieved. On the other
hand, the solute concentration in the solid phase increases
slightly from its original state to an equilibrium value. As
shown in Fig. 4(a), the solute concentration increases as
the distance from the dendritic nucleus center increases and
achieves a local maximum at the solid/liquid interface, after
which it decreases before reaching a constant value. The inset
of Fig. 4(b) is a zoomed-in area of the solute concentration
at the time step of 52 000. It is found that as the dendrite
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FIG. 3. Growth pattern and morphological transition of the hcp α-Mg dendrite with different solute partition coefficient (k). The 3D dendritic
morphology is shown in the second column. The 2D projections viewed along 〈112̄0〉 and 〈0001〉 are shown in the third and fourth columns,
respectively. The 2D sections cut by the {101̄0} and {0001} sections are shown in the fifth and sixth columns, respectively.

grows further, the solute concentration difference at the front
of the solid/liquid interface become less significant, and thus
the solute concentration in the liquid phase distributes more
uniformly than that at the initial growth stage, indicating that
the growth rate of the hcp α-Mg dendrite become slower with
the solidification proceeding.

The evolution of the 3D growth pattern for the hcp α-Mg
dendrite at different times when k = 0.31 is shown in Fig. 5.
The coordination system is depicted at the lower right corner in
each subfigure, where the z axis is along the principal direction
(i.e., 〈0001〉). Figure 5(a) shows the 3D dendritic morphology
at the initial growing stage of the hcp α-Mg dendrite; it can
be observed clearly that there are two layers with each layer

having six-primary branches viewed along the x and/or y

axis, but no primary branches are observed along the z axis.
Accordingly, the resultant 3D dendritic morphology exhibits a
12-primary-branch pattern, and the secondary dendritic arms
grow along the same direction as that of the primary branches,
as shown in Figs. 5(b)–5(i).

Figure 6 shows the solute concentration variation versus
the distance from the solid/liquid interface at the time step of
52 000. The corresponding correlation between the partition
coefficient and the maximum solute concentration (i.e., the
value at the solid/liquid interface) is presented in the inset.
The results indicated that the solute concentration in the liquid
changes exponentially, and such variation is associated with
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FIG. 4. (a) Solute concentration distribution at the time step of 52 000, and (b) solute concentration variation with the distance from the
dendritic nucleus center at different time steps during dendrite growth with k = 0.31.

the growth rate and solute diffusion coefficient. Furthermore,
the solute concentration decreases as the distance from the
solid/liquid interface increases and it varies slightly slower
when the partition coefficient is lower. This behavior is in
qualitative agreement with previous solidification theory and
experimental results [60,63,64]. In addition, the maximum
solute concentration decreases as the partition coefficient
increases. When the partition coefficient is lower, more solute

atoms are accumulated at the solid/liquid interface, leading to
a more inhomogeneous distribution.

C. Influence of anisotropic strength (ε)

The surface anisotropy plays an important role in the
selection of the operating state during dendrite growth [19,65].
The dendritic microstructure formation is associated with the

FIG. 5. Phase-field simulation on the hcp α-Mg dendrite growth pattern with 12-primary branches at the different time steps of (a) 8000,
(b) 16 000, (c) 24 000, (d) 32 000, (e) 40 000, (f) 48 000, (g) 56 000, (h) 64 000, and (i) 72 000, respectively.
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FIG. 6. Solute concentration (C/C∞) distribution in the liquid
region at the front of the solid/liquid interface under different partition
coefficient (k). The inset shows the according correlation between the
partition coefficient (k) and the solute concentration at the solid/liquid
interface (i.e., the maximum solute concentration).

magnitude of anisotropic strength along different crystallo-
graphic directions [14,66]. Accordingly, phase-field simula-
tions (i.e., group III in Table II) are performed to investigate the
influence of anisotropic strength (εi, i = 1, 2, 3) on the growth
pattern formation of the hcp α-Mg dendrite. Because no growth
tendency along the principal direction (i.e., 〈0001〉) is observed
in experiments [12,26], the simulations are performed by fixing
ε1 = −0.050, whereas changing ε2 and ε3. It is worth stressing
that the anisotropic strength is determined quantitatively by
performing relevant DFT-based atomistic calculations [29], the
results of which are listed in Tables I and II.

Figures 7(a1)–7(d1) show the simulated 3D morphology of
the hcp α-Mg dendrite when ε2 = 0.080 and ε3 = −0.463,
−0.169, −0.035, and 0.059, respectively. Figures 7(a2)–7(d2)
and 7(a3)–7(d3) show the according 2D projections of the hcp
α-Mg dendrite viewed from 〈112̄0〉 and 〈0001〉, respectively.
The corresponding 2D sections of the {101̄0} and {0001} planes
are shown in Figs. 7(a4)–7(d4) and 7(a5)–7(d5), respectively.
The results indicate that as ε3 increases from −0.463 to 0.059,
the 3D dendritic morphology transforms from a 12-primary-
branch pattern to an 18-primary-branch pattern, i.e., the six
primary branches on the basal plane exhibit at a larger ε3.
Figures 7(e1)–7(h1) show the simulated 3D morphology of
the hcp α-Mg dendrite with different combinations of ε2 and
ε3. The third and fourth columns show the 2D projections
viewed from 〈112̄0〉 and 〈0001〉, whereas the 2D projections
on the {101̄0} and {0001} planes are presented in the fifth
and sixth columns, respectively. It is found that the dendritic
morphological transition also occurs by increasing ε2 from
0.040 to 0.130 with a fixed ε3 = 0.059, as shown in Figs. 7(g),
7(d), and 7(h), respectively. By fixing ε3 at −0.0463, the hcp
α-Mg dendrite exhibits a 12-primary-branch pattern regardless
of ε2, as shown in Figs. 7(a), 7(e), and 7(f).

In this respect, the growth tendency of the hcp α-Mg
dendrite along the six basal directions is inhibited when ε3

is negative, resulting in a 12-primary-branch pattern in 3D. On
the other hand, a positive ε3 tends to promote the hcp α-Mg

dendrite growth along the basal directions, inducing an 18-
primary-branch pattern, as shown in Figs. 7(a), 7(e), and 7(f),
together with Figs. 7(d), 7(g), and 7(h). Figures 8(a) and 8(b)
show the solute concentration variation with the distance from
the solid/liquid interface corresponding to different ε3 at the
time steps of 8000 and 24 000, respectively. The inset shows the
according correlation between ε3 and the solute concentration
at the solid/liquid interface (i.e., the maximum value of solute
concentration). The results indicate that an increase of ε3 could
widen the difference of the solute concentration. Therefore,
the 3D growth pattern formation of the hcp α-Mg dendrite is
determined by the combined effect of the anisotropic strength
ε2 and ε3, which controls the dendrite growth along both the
basal and nonbasal directions.

D. Influence of supercooling (u = −θ )

As the driving force for crystal nucleation and growth,
supercooling is an important parameter related to dendritic mi-
crostructure formation and dendritic morphological evolution
during solidification [10,12,66]. In this respect, different sim-
ulations (i.e., group II in Table II) are performed to investigate
the effect of supercooling on the growth pattern formation of
hcp α-Mg dendrite. Figures 9(a1)–9(g1) show the simulated re-
sults of the dendritic growth pattern under different undercool-
ing conditions, i.e., u = 0.12, 0.13, 0.14, 0.15, 0.17, 0.20,
and 0.22, respectively. To further understand the complex den-
dritic morphology, the α-Mg dendrite is cut by using different
crystallographic planes. Figures 9(a2)–9(g2) and 9(a3)–9(g3)
show the according 2D projections of the hcp α-Mg dendrite
viewed from 〈112̄0〉 and 〈0001〉, respectively. Whereas, the 2D
projections cut by the {101̄0} and {0001} planes are shown in
Figs. 9(a4)–9(g4) and 9(a5)–9(g5), respectively.

It is found that the hcp α-Mg dendrite grows faster under
a larger supercooling condition, which could also be reflected
by both the size and the intensity of the dendritic primary and
secondary arms. As shown in Figs. 9(a5)–9(g5), the hcp α-Mg
dendrite exhibits a 12-primary-branch pattern under lower
undercooling conditions, whereas the six-primary branches
along the basal directions exhibits when the supercooling is
larger. This simulated result agrees well with the DOT phe-
nomenon observed in experiment [26,27]. It is found that the
hcp α-Mg dendrite exhibits potential growth tendency along
the six basal directions under both high and low supercooling
conditions, which agrees with the results predicted from DFT-
based calculations [12,26]. The difference is that the dendritic
growth tendency along the nonbasal directions is larger than
that along the basal directions, as reflected by the distinctions
of the surface energy anisotropy [26,29]. In this respect, the
hcp α-Mg dendrite growth along the six basal directions could
be inhibited under the small supercooling conditions.

Figure 10 shows the 3D morphological evolution of the
hcp α-Mg dendrite at different time steps when u = 0.20. The
coordinate system is also depicted at the bottom right corner
of each subfigure. Figure 10(a) shows the 3D growth pattern
of an α-Mg dendrite at the initial solidification stage. The hcp
α-Mg dendrite exhibits an 18-primary-branch pattern in 3D,
including the 6-primary branches along the basal directions
and the other 12-primary branches along nonbasal directions.
Figures 10(b)–10(i) show that as the dendrite growth proceeds,
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FIG. 7. Phase-field simulation on the growth pattern of the hcp α-Mg dendrite with different combinations of anisotropic strength (i.e.,
εi, i = 1, 2, 3).

the secondary arms exhibit the same growth direction as the
dendritic primary branches. Figures 11(a)–11(c) show the
according solute concentration variation at the time steps of
8000, 28 000, and 36 000, respectively. The results indicate
that the solute concentration decreases as the distance from

the solid/liquid interface increases, and the variation becomes
larger as the supercooling increases. More solute accumulation
occurs at the solid/liquid interface under a larger supercooling
condition. On the other hand, when the supercooling is lower,
the diffusion layer at the solid/liquid interface becomes more
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FIG. 8. Solute concentration (C/C∞) variation versus the distance from the solid/liquid interface under different anisotropic strength ε3 at
the time steps of (a) 8000, and (b) 24 000, respectively. The inset maps show the corresponding solute concentration variation at the solid-liquid
interface (i.e., the maximum solute concentration).

FIG. 9. Phase-field simulation on the growth pattern of the hcp α-Mg dendrite under different supercooling (u) conditions. (a1)–(g1) show
the 3D dendritic morphology, (a2)–(g2) and (a3)–(g3) show the 2D projections of the simulated α-Mg dendrite viewed from 〈112̄0〉 and 〈0001〉,
(a4)–(g4) and (a5)–(g5) show the according 2D sections cut by the {101̄0} and {0001} planes, respectively.
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FIG. 10. Phase-field simulation on the hcp α-Mg dendrite evolution with a specific supercooling condition of u = 0.20 at the time steps of
(a) 4000, (b) 8000, (c) 16 000, (d) 20 000, (e) 24 000, (f) 28 000, (g) 32 000, (h) 40 000, and (i) 48 000, respectively.

smeared and the solute concentration distributes more uni-
formly. As the solidification proceeds, the solute accumulation
at the solid/liquid interface becomes more significant in the

liquid region between the dendritic primary and secondary
arms. Furthermore, the maximum solute concentration (i.e.,
at the solid/liquid interface) increases as the supercooling

FIG. 11. Solute concentration (C/C∞) variation versus the distance from the solid/liquid interface under different supercooling (u) conditions
at the time steps of (a) 8000, (b) 28 000, and (c) 36 000. (d) shows the corresponding variation of the maximum and minimum solute concentration
at different supercooling conditions.
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FIG. 12. (a) Solute concentration (C/C∞) variation in the liquid close to the front of the solid/liquid interface at different time steps under
a given supercooling of u = 0.15 and (b) solute concentration distribution at the time step of 52 000. The inset shows the solute concentration
change at the solid/liquid interface (i.e., the maximum solute concentration).

increases, whereas the minimum solute concentration de-
creases to maintain the mass conservation, as shown in
Fig. 11(d).

Figure 12(a) shows the solute concentration variation at
different time steps when k = 0.37 and u = 0.12. The inset
shows the corresponding variation of solute concentration at
the solid/liquid interface, i.e., the maximum solute concentra-

tion. As the hcp α-Mg dendrite grows further, the variation
of the solute concentration becomes insignificant, and the
maximum value increases as the time evolves before reaching
a constant value. Figure 12(b) shows the solute concentration
distribution at the time step of 52 000. As the distance from
the dendritic nucleus center increases, the solute concentration
firstly achieves a local maximum at the solid/liquid interface,

FIG. 13. 3D growth pattern of the multidendrites during directional solidification of magnesium alloy. (a) and (c) show the 3D dendritic
morphology viewed from 〈123〉 and an according 2D solute concentration distribution of a specified section, while (b) and (d) from 〈111〉 and
〈010〉, respectively.

083402-12



MECHANISM OF THE GROWTH PATTERN FORMATION AND … PHYSICAL REVIEW MATERIALS 2, 083402 (2018)

FIG. 14. 3D growth pattern of the equiaxed multidendrites of magnesium alloy viewed from different perspectives (a)–(d), compared with
the 3D dendritic morphology reconstructed from synchrotron x-ray tomography experiment (e). The according solute concentration distribution
of the equiaxed multidendrites is also shown in (c).

and then decreases gradually before reaching a constant value.
The predicted results agree well with the existing solidification
theory [63,65].

As discussed, the hcp α-Mg dendrite exhibits growth
tendency along both the basal and nonbasal directions, but
the dendritic growth tendency along the nonbasal directions
is larger. Whether the hcp α-Mg dendrite grows along the
basal directions or not is dependent on the magnitude of the
local driving force, which on the other hand is associated with
the growth parameters, such as the partition coefficient, the
anisotropic strength, and local supercooling conditions during
solidification. The consequence is that the 3D morphology of
the hcp α-Mg dendrite would transform from an 18-primary-
branch to a 12-primay-branch pattern [26,27]. Such growth
behavior can be attributed to the difference of the dendritic
growth tendency along the basal and nonbasal directions, as
reflected by the surface energy anisotropy [2,28]. In particular,
the basal primary branches could be inhibited by the lead
growth or the overgrowth of the nonbasal ones.

E. Multidendrites growth pattern

Simulations are also performed to investigate the growth
pattern formation of the columnar multidendrites of magne-
sium alloys formed during the directional solidification, where
15 dendritic nuclei are initialized randomly at the bottom of
the computing domain. A uniform temperature gradient is then

imposed along the y axis. Accordingly, the simulated results on
the 3D dendritic morphology of the columnar multidendrites
viewed from different perspectives are shown in Figs. 13(a),
13(b), and 13(d), respectively. A longitudinal section through
the columnar multidendrites and the corresponding solute
concentration distribution is also shown in Fig. 13(c). The
results indicate that because of the competitive growth, some
dendrites survive whereas others get blocked and disappear as
the dendritic microstructure evolves. Further analysis found
that the blocked dendrites are normally those with an orienta-
tion deviating from the y axis (or parallel to the temperature
gradient direction). The dendritic microstructure is featured by
small dendritic trunks with a sixfold symmetrical pattern and
a regular arrangement of the trunks along one of these sixfold
directions. The simulated dendrites are analogous with their
morphology despite the growth variation of both primary and
secondary arms. The results are consistent with those reported
by Pettersen et al. [24,25].

Figure 14 shows the 3D growth pattern for equiaxed multi-
dendrites growth of magnesium alloys. An overall 15 dendritic
seeds are planted randomly within the computation domain,
and all dendrites grow and impinge with each other. The sim-
ulated 3D morphology of the equiaxed multidendrites viewed
from different perspectives is shown in Figs. 14(a)–14(d),
respectively. The according solute concentration distribution is
also presented in Fig. 14(c). It is found that the hcp α-Mg den-
drites exhibit a typical sixfold symmetrical pattern in 2D due
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to its hexagonal lattice structure. Each dendritic morphology
exhibits an 18-primary-branch pattern in 3D, which agrees well
with those found in synchrotron x-ray tomography experiments
[9,12,27], as presented in Fig. 14(e). A Supplemental Material
video with respect to the evolution of both equiaxed and
columnar multidendrites growth of the magnesium alloy is
provided in Ref. [67]. The present investigation will provide
deep insight into understanding the growth pattern formation
and morphological transition of the α-Mg dendrite with hcp
lattice structure.

IV. CONCLUSIONS

In conclusion, the growth behavior and pattern formation
of magnesium alloy dendrite are investigated, together with
the discussion on the underlying mechanism behind the 3D
morphological transition of the hcp α-Mg dendrite observed
in experiments. The anisotropy function with the anisotropic
strength quantified from DFT-based atomistic calculations
is coupled into the 3D phase-field model to simulate the
dendritic growth behavior. It is found that the dendritic mor-
phological transition from the 18-primary-branch pattern to
the 12-primary-branch pattern is associated with the growth
parameters during solidification, including the partition coeffi-
cient, the anisotropic strength, and the supercooling conditions.
The hcp α-Mg dendrite mainly exhibits growth tendency

along the basal and nonbasal directions, but because of the
difference in surface energy anisotropy, the dendritic growth
tendency along the basal directions is lower than that along
the nonbasal directions. Consequently, without enough driving
force, the basal dendritic primary branches would not exhibit,
as exemplified by the 3D dendritic morphology with 12-
primary-branch pattern under lower supercooling condition.
During solidification, the solute concentration increases from
the dendritic nucleus center, and achieves the maximum at the
solid/liquid interface, beyond which the solute concentration
decreases before reaching a constant value.
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