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In this work we developed a practical and general modeling approach for thermal conductivity of metals
and metal alloys that integrates ab initio and semiempirical physics-based models to maximize the strengths
of both techniques. The approach supports creation of highly accurate, mechanistic, and extensible thermal
conductivity modeling of alloys. The model was demonstrated on α-U and U-rich U-Zr and U-Mo alloys, which
are potential fuels for advanced nuclear reactors. The safe use of U-based fuels requires quantitative understanding
of thermal transport characteristics of the fuel. The model incorporated both phonon and electron contributions,
displayed good agreement with experimental data over a wide temperature range, and provided insight into
the different physical factors that govern the thermal conductivity under different temperatures. This model
is general enough to incorporate more complex effects like additional alloying species, defects, transmutation
products, and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under
burnup.
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I. INTRODUCTION

Thermal conductivity describes the rate at which a material
transfers heat, and high-quality thermal conductivity data are
critical to many technologies, ranging from thermoelectrics
to nuclear reactors. However, due to the high cost and low
efficiency of traditional thermal conductivity measurement
techniques [1,2], experimental thermal conductivity data are
limited and often difficult to obtain over a wide temperature
and composition range. Furthermore, an understanding of the
origins of measured thermal conductivity in terms of different
scattering mechanisms is important for predicting how thermal
conductivity might change over time or be controlled through
rational materials design. Thermal conductivity modeling is
a powerful tool to both understand the impact of different
factors on thermal conductivity and interpolate and extrapolate
existing data.

In metals and metal alloys, the conduction of heat is
controlled by interactions between phonons, electrons, and
defects, including phonon-phonon, electron-phonon, electron-
electron, and phonon/electron-defect scattering. Many models
for different contributions to thermal conductivity exist, but
each brings different strengths and weaknesses. On one ex-
treme are simple empirical interpolation formulas [3,4], which
are effective at quantitatively interpolating measured data but
provide little physical insight, making it difficult to utilize
them for guidance in designing improved materials. These
models also require significant measured data for fitting and
may have large errors extrapolating outside the fitted data
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range due to their lack of full mechanistic description. On the
other extreme are highly complex ab initio based simulations,
which predict thermal conductivity contributions from the
fundamental equations of quantum mechanics and heat trans-
port [5,6]. These methods require little or no empirical data
and provide detailed mechanistic information and insight, but
are often very technically challenging to implement, limited
to a specific mechanism and/or composition or temperature
range, and of limited quantitative accuracy. There are also
modeling approaches for different scattering mechanisms
intermediate to these extremes that integrate a significant
amount of physics and empirical fitting, at varying levels. For
modeling of technologically important alloy systems, where
typically some thermal and electrical conductivity data are
available, quantitative prediction is required, and materials
optimization is often a goal. However, it has been unclear
how to integrate the available approaches most effectively for
such cases. To solve this problem, we developed in this work
a model for metal alloy thermal conductivity that includes all
of the different electron and phonon contributions and their
scattering mechanisms using a practical and accurate combi-
nation of ab initio methods and empirical fitting. This approach
leverages new integrations of six key component models into
a complete model for metal thermal conductivity: (i) DFT
phonon thermal conductivity calculation, (ii) the Wiedemann-
Franz law for electronic contributions to thermal conductivity,
(iii) electron-electron scattering from DFT band structure and
Boltzmann transport equation (BTE) (including an empirical
temperature-dependent relaxation time), (iv) electron-phonon
scattering from semiclassical models using the DFT-calculated
phonon spectrum, (v) Nordheim-type models for residual,
impurity, and alloying effects, and (vi) the effects of resistivity
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saturation. Taken together, these component models provide a
significantly more complete physics-based model of thermal
conductivity for metals than has been available previously. The
integration also allows greater accuracy when fitting to limited
data, fewer fitting parameters, and more accurate physics in
some of the component models.

The specific systems for which we have demonstrated this
modeling approach are metallic uranium (U) alloys. Metallic U
alloys possess multiple advantages compared to the UO2-based
nuclear fuels that are widely used in both current thermal and
fast nuclear reactors, including higher thermal conductivity,
high burn-up capability, good transient overpower capability,
ease of recycling, and lower radiotoxicity of nuclear waste
[7,8]. These advantages make metallic U alloys promising
materials for use as nuclear fuels in thermal reactors and espe-
cially in the future deployment of fast reactors as Generation IV
nuclear reactor designs [9]. While metallic U alloys have higher
thermal conductivities than UO2-based fuels, they also have
much lower melting temperatures. Consequently, temperature
control of reactors containing metallic U alloy fuels becomes
a critically important issue. Thus, the thermal conductivity
of metallic U alloys is an essential property influenced by
many factors, including alloying, impurities, and point and
extended defects. Developing a physical understanding of the
thermal conductivity of metallic U alloy fuels will help improve
temperature control and guide its use in reactor environments.
Unfortunately, no such general integrated approach has been
developed in the literature.

Since 1950, the thermal conductivity of α-U has been
measured in numerous experiments. In particular, the exper-
imental data available before 1970 has been summarized by
Touloukian et al. [10]. Since 1970, the main experimental data
have been reported by Takahashi et al. [11], Hall et al. [12],
and Kaity et al. [13]. While there is extensive experimental
data on the thermal conductivity of α-U, a physics-based
computational model that includes the fundamental factors
contributing to the thermal conductivity of α-U under different
temperature conditions has not been established. Therefore, we
here developed an approach that integrates what can be deter-
mined accurately with state of the art ab initio methods with
physics-based functional forms for fitting, and demonstrated
this approach to establish a full physics-based model for α-U
thermal conductivity. We then extended the model to U-rich
U-Mo and U-Zr alloys.

The goal of the present study is to develop a physics-based
computational model of thermal conductivity in metals and
metal alloys. The model is demonstrated on α-U and binary
U-rich alloys containing Zr and Mo as a foundation for under-
standing the more complex thermal conductivity of realistic
U alloy fuels. Here we use all known experimental data of
thermal conductivity and electrical resistivity in α-U combined
with a density functional theory (DFT)-based computational
framework to construct a model of the phonon and electron
contributions to the thermal conductivity in pure α-U. This
physics-based computational model provides an understanding
of the dominant mechanisms for thermal conductivity and,
importantly, is extensible to more realistic metallic alloy fuels
that include physical effects resulting from alloying elements,
impurities, transmutation products, radiation-induced defects,
and noble gas bubbles.

II. METHODS

A. Computational model of thermal conductivity
in pure α-U and U-rich alloys

1. Model for pure α-U

In metals like α-U, the thermal conductivity κ is the sum of
electron and phonon thermal conductivities [14]:

κ = κe + κph, (1)

where κe is controlled by electron-electron, electron-phonon,
and electron-defect scattering, the relative strengths of which
are material and environment dependent, and κph is controlled
by phonon-phonon, phonon-grain boundary, and phonon-
defect scattering. A physics-based computational model that
separately includes electron and phonon contributions and their
relative scattering mechanisms cannot be obtained only using
the available experimental data. Therefore, DFT calculations
were used to calculate the structural, electronic, and vibrational
properties of α-U to analyze the phonon scatterings and
electron-electron scattering processes. We combined these
results with semiempirical analytic models of electron-phonon,
phonon-defect, and phonon-grain boundary scattering fitted to
available experimental electrical resistivity data of α-U to form
our full model. In the following paragraphs, we describe how
each term is modeled.

The phonon thermal conductivity κph can be calculated
using the phonon Boltzmann transport equation (BTE) given
by [15]

κph = 1

3�Nk

∑
kλ

ckλνkλ ⊗ νkλτ
ph
kλ , (2)

where k represents the wave vector, λ represents the different
phonon branches, N is the total number of discrete k points,
and � is the volume of the unit cell. The quantities inside the
summation consist of ckλ, νkλ, and τ

ph
kλ , which are the heat

capacity, phonon group velocity, and phonon relaxation time
for each wave vector and phonon branch, respectively. The ckλ

values are evaluated from the phonon density of states using
the Bose-Einstein distribution. The νkλ values are obtained
by calculating the gradient of the phonon dispersion relation.
Considering different phonon scattering contributions, the
phonon relaxation time τ

ph
kλ for each wave vector k and phonon

branch λ can be divided into three contributions, one each for
phonon-phonon, phonon-grain boundary, and phonon-defect
scattering, using Matthiessen’s rule [16]:

1

τ
ph
kλ

= 1

τ
ph−ph
kλ

+ 1

τ
ph−gb
kλ

+ 1

τ
ph−def
kλ

, (3)

where τ
ph−ph
kλ , τ

ph−gb
kλ , and τ

ph−def
kλ are the relaxation time of

phonon-phonon, phonon-grain boundary, and phonon defect
scattering contribution, respectively. There are other phonon
scattering processes that are neglected in our model, specif-
ically, phonon-electron, phonon-dislocation, and phonon-
isotope scattering. They are discussed in Sec. IV A.

The phonon relaxation time for phonon-phonon scattering
τph−ph is calculated from Fermi’s golden rule using the har-
monic and third-order anharmonic force constants from DFT
calculations [6]. The phonon relaxation time for phonon-grain
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boundary scattering τph−gb can be estimated by [16,17]

τ
ph−gb
kλ = L

νkλ

, (4)

where L is the grain size and νkλ is the phonon group velocity.
We directly evaluate the value of L by experimental data and
in this work use a grain size of ∼0.015 mm in diameter [18].
The phonon relaxation time for phonon-defect scattering can
be approximated by [16,17]

τ
ph−def−1

kλ = Aω4
kλ, (5)

where ω is the phonon frequency and A is a constant. In
our model A is assumed to be an isotropic fitting parameter
obtained from fitting to low temperature thermal conductivity
data. Thus, calculating κph requires calculation of the harmonic
and third-order anharmonic force constants and the associ-
ated phonon dispersion relations and couplings. All of these
phonon-related quantities can be determined from DFT calcu-
lations using the Vienna ab initio simulation package (VASP)
code [19,20]. This approach for phonon-phonon scattering has
been successfully applied to calculate the phonon contribution
to the thermal conductivity in a number of systems, such as
PbTe and PbSe materials [21]. To summarize, κph is calculated
using Eq. (2), where the contributions of different phonon
scatterings are combined using Eq. (3).

The electronic thermal conductivity κe can be evaluated
from electrical resistivity using the Wiedemann-Franz law
[16]:

κe = π2

3

(
kB

e

)2
T

ρ
, (6)

where T is the temperature and ρ is the electrical resistivity. It
is useful to treat the resistivity as having an ideal contribution,
which is modeled accurately with the semiclassical BTE
approach, and then modify this ideal contribution with a
saturation effect, which occurs in some metals like U due to
the breakdown of the semiclassical approach for electrons with
wavelengths approaching the length of interatomic separations
[22]. We will take this approach in the present work, and first
consider the ideal contribution ρid to the electrical resistivity.
ρid can be divided into two scattering contributions using
Matthiessen’s rule [16]:

ρid = ρe−e + ρe−ph, (7)

where ρe−e is the electron-electron scattering contribution and
ρe−ph is the electron-phonon scattering contribution. ρe−e can
be obtained from the electrical conductivity tensor σ , total
electronic relaxation time τ , and the electronic relaxation time
for electron-electron scattering τe−e:

ρe−e = 1

σe−e
= 1

σ
τ
τe−e

. (8)

( σ
τ

) is calculated using the BTE with the relaxation time
approximation (RTA) and the rigid band approximation as
follows [23]. The full tensor of σ can be calculated from the
conductivity distributions:

σαβ = 1

�

∫
σαβ (ε)

[
−∂fμ(T ; ε)

∂ε

]
dε, (9)

where σαβ is the full tensor that we denote as just σ in Eq. (8)
(and will denote as just σ throughout this paper), f is the
Fermi-Dirac distribution function, � is the volume system, T

is the temperature, ε is the band energy, μ is the Fermi level,
and σαβ (ε) is the transport distribution given by

σαβ (ε) = 1

N

∑
i,k

σαβ (i, k)
δ(ε − εi,k )

dε
, (10)

where k represents elements of a set of k points in reciprocal
space, N is the number of k-points sampled, and i is the band
index. σαβ (i, k) is the conductivity tensor, which depends on
the electron group velocity vα , the elementary charge e, and
the relaxation times τi,k:

σαβ (i, k) = e2τi,kvα (i, k)vβ (i, k). (11)

Finally, ∂fμ(T ;ε)
∂ε

is the temperature smearing, which is deter-
mined using the electronic density of states and the Fermi-
Dirac distribution evaluated at the appropriate temperature.
Therefore, the input parameters for calculating the electrical
conductivity tensor σ are the relaxation times τi, k and the
electronic band structure information calculated from DFT.
Here we simplify the input of τi,k by assuming it is a constant
which neither depends on band index i nor direction k, which
has been shown to be a satisfactory assumption for many metals
[24,25]. With this approximation, ( σ

τ
) depends on only the

electronic band structure through Eqs. (9)–(11) and its values
can be obtained from DFT-BTE calculations using VASP for
the band structure and the BoltzTrap code [23]. In metals, the
electron-electron scattering relaxation time τe−e is dependent
on temperature T and can be approximated by

τe−e = BT −2, (12)

where B is typically assumed to be a constant [26–28].
For the electron-phonon scattering contribution ρe−ph, we

use semiempirical models and fit the unknown terms using
available experimental data. We note that ρe−ph can be pre-
dicted from DFT calculations [5]. However, we did not pursue
this path due to the limitations of present methods for modeling
U at high temperature, which are discussed in Sec. IV B, and
instead fit semiempirical models to the available experimental
data and DFT-calculated phonon spectra. Following Ziman’s
approach [16], which assumes a spherical Fermi surface and
the deformation potential approach, ρe−ph can be written

ρe−ph ∝ 1

T

∫ R

0

k5

(eh̄ω/kBT − 1)(1 − e−h̄ω/kBT )
dk, (13)

where k represents the wave vector, ν represents the phonon
frequency, and R is the Debye radius. By further assuming the
Debye phonon spectrum, the Bloch-Gruneisen formula can be
obtained from Eq. (13) [16]:

ρe−ph ∝
(

T

θR
D

)5 ∫ θR
D
T

0

x5

(ex − 1)(1 − e−x )
dx, (14)

where θR
D is the Debye temperature obtained from resistivity

measurements. We can improve the accuracy of this model
by using the full phonon spectrum for α-U obtained by DFT
in place of the approximate Debye phonon spectrum, which
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yields

ρe−ph = C

T

∑
kλ

k3

(eh̄ωkλ/kBT − 1)(1 − e−h̄ωkλ/kBT )
, (15)

where k represents the reduced wave vector in the first
Brillouin zone, λ represents the different phonon branches, ω

represents the phonon frequency, and C is a constant which, in
general, depends on crystallographic direction. The validity of
using this method to calculate the electron-phonon scattering
contribution on resistivity is discussed in Sec. IV B.

Within the framework described above, the ideal resistivity
ρid given in Eq. (5) grows linearly with temperature T at high
temperature due to the dominance of electron-phonon scatter-
ing [22]. However, in some metals, including α-U (see Fig. 6),
the resistivity at high temperature is not a linear function of T

due to the resistivity saturation effect mentioned above [22].
We model the total resistivity ρ in the presence of saturation
using Wiesmann et al.’s parallel resistor formula [29]:

ρ = (
ρ−1

id + ρ−1
sat

)−1
, (16)

where the saturation resistivity ρsat is assumed to be a
temperature-independent constant. This approach has been
successfully applied to multiple A15 compounds, e.g., Nb3Sn
[29].

As the final component of our resistivity model, we include
the electron-defect scattering for pure α-U, which is assumed
to arise from point defects and dislocations, and to some extent
the elemental impurities that occur in even the purest material.
The electron-defect scattering is approximately temperature
independent [16], so we can model its contribution by adding
a constant residual resistivity term ρ0 to the total electrical
resistivity. We directly use an experimentally extracted residual
resistivity value of ρ0 = 0.8 × 10−8 � [12,18] to represent the
typical scale of the effect of these defects. To summarize, for
each crystallographic direction, the electrical resistivity ρ in
our model is given by

ρ =
{[(

σ

τ

B

T 2

)−1

+CT 2
∑
kλ

(h̄ωkλ/kBT )3(
eh̄ωkλ/kBT −1

)(
1−e−h̄ωkλ/kBT

)
]−1

+ρ−1
sat

⎫⎬
⎭

−1

+ ρ0, (17)

where ( σ
τ

) is obtained from the DFT electronic density of
states and associated BTE calculations (electronic DFT-BTE
calculations). The values of B, C, and ρsat are obtained by
fitting to experimental resistivity data.

The total thermal conductivity κ is then given by

κ = κph + π2

3

(
kB

e

)2
T

ρ
, (18)

where κph and ρ are the results from Eqs. (2) and (17),
respectively. In total, we have five fitting parameters in our
model for α-U thermal conductivity, which are B, C, ρ0,
ρsat for the electronic contributions and A for the phonon
contributions, and where C and ρsat are potentially anisotropic,
i.e., can have directional dependence.

2. Approximation for U-rich alloys

In dilute alloys, the total resistivity must include the residual
resistivity ρres produced by scattering due to alloy atoms. The
total resistivity can be represented using Matthiessen’s rule
[16]:

ρtotal = ρpure + ρres, (19)

where ρpure is the resistivity of pure α-U using Eq. (17), and
ρres in the binary alloy can be estimated using Nordheim’s rule
[16]:

ρres = Dc(1 − c), (20)

where c is the alloying concentration and D is a constant. If we
assume the impact of alloying elements on the phonon thermal
conductivity is small, the thermal conductivity of dilute U-rich
alloys can be calculated using our α-U model of Eq. (18), and
the only difference is to add ρres to the total resistivity formula:

ρ =
{[(

σ

τ

B

T 2

)−1

+CT 2
∑
kλ

(h̄ωkλ/kBT )3

(eh̄ωkλ/kBT −1)(1−e−h̄ωkλ/kBT )

]−1

+ ρ−1
sat

⎫⎬
⎭

−1

+ ρ0 + Dc(1 − c). (21)

We apply this model as an approximation for binary U-rich
U-Zr and U-Mo alloys in which the U at % is >78%, and fit
the parameter D using Eq. (18) with Eq. (21) for U alloys with
different concentrations. This approach is supported by the fact
that our calculated results fit experimental thermal conductivity
data of U-Zr and U-Mo alloys well at 300–933 K, which we
show in Sec. III D.

B. Structural characteristics of α-U

1. Anisotropy

Bulk α-U crystallizes in an orthorhombic structure (space
group: Cmcm, No. 63) [30]. Due to its anisotropic properties,
we have evaluated our computational model for three different
crystallographic directions: [100], [010], and [001]. For each
crystallographic direction, we used Eq. (17) to fit experimental
data of single crystal α-U resistivities, then calculated the
anisotropic thermal conductivity with Eq. (18). To make
comparisons with polycrystalline experimental data, we use
the fact that the upper bound (UB) and lower bound (LB) of
the thermal conductivity and resistivity are given by [31]

κUB = 1

3
(κ100 + κ010 + κ001), (22)

κLB = 3

(
1

κ100
+ 1

κ010
+ 1

κ001

)−1

, (23)

ρUB = 1

3
(ρ100 + ρ010 + ρ001), (24)

ρLB = 3

(
1

ρ100
+ 1

ρ010
+ 1

ρ001

)−1

. (25)
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We use the simple average of the upper and lower bounds
to estimate the total thermal conductivity κtotal and total
resistivity ρtotal:

κtotal = 1
2 (κUB + κLB), (26)

ρtotal = 1
2 (ρUB + ρLB). (27)

We note here that the differences between the upper bound
and lower bound for both thermal conductivity and resistivity
are small for our U model: 1% difference for T > 450 K, and
1%–3% difference for 43 < T < 450 K.

2. Phase stability

We note here there are other U phases besides α-U that
are stable at temperatures below 43 K and above 933 K. A
series of three low-temperature charge density wave (CDW)
structural phase changes occur below 43 K [32,33], and the
phase transition to β-U occurs at 933 K [33]. Therefore, the
valid temperature range of our model is between 43 and 933 K,
which is the temperature range where α-U is stable. The typical
operating temperature of a fast nuclear reactor is about 600
K, which is well within the temperature range our model can
accurately capture. For the remainder of this work, all models
are evaluated and all results are plotted using this relevant
temperature range of 43 to 933 K.

3. Perfect crystal approximation

In this study, our DFT calculations model α-U as an ideal
crystalline material. Therefore, our phonon DFT calculations
of α-U do not directly include effects on the thermal con-
ductivity due to point and extended (dislocation and grain
boundary) defects, and the effects of these defects (electron-
defect, phonon-grain boundary, and phonon-defect scattering)
are counted in our model separately, as mentioned in Sec. II A 1.
The magnitude of the defect effect depends on the defect
concentration present in the experimental samples. However,
since the electrical resistivity in our model is fit to single crystal
resistivity data [34,35], the effects of electron-grain boundary
scattering are not included in our model.

With respect to the effect of electron-grain boundary scat-
tering, we will also show in Sec. IV B, by comparing the single
crystalline and polycrystalline resistivity data, that both types
of samples display the same temperature dependence with a
small difference (∼5%) in resistivity values, at least for a
typical grain size that is ∼0.015 mm in diameter [18]. These
results indicate that structural differences between single crys-
tal and polycrystalline samples produce only a small difference
in the resistivity. Thus, the effect of electron-grain boundary
scattering on the thermal conductivity is expected to be small
at high temperature. Our model can therefore be considered
accurate within 5%–10% near 600 K for materials with defect
concentrations and grain sizes similar to those used in our fit-
ting and the above discussion describes how each term might be
affected if significantly different defect levels are considered.

C. DFT calculations of α-U

All DFT calculations were performed with periodic bound-
ary conditions with a plane-wave basis set using VASP. Initial
atomic coordinates for α-U were obtained from the orthorhom-
bic structure (space group: Cmcm, No. 63) in Refs. [30,37].

The electron-ion interaction of U uses the projector augmented
wave (PAW) method [38] as implemented by Kresse and
Joubert [39]. The valence electron configuration for the U
pseudopotential was 6s26p67s25f 36d1. The exchange cor-
relation functional parametrized in the generalized gradient
approximation (GGA) [40] by Perdew, Burke, and Ernzerhof
(PBE) [41] was used. The plane-wave cutoff energy was set to
450 eV, and the stopping criteria for self-consistent loops were
1 meV per cell for electronic and ionic relaxation. The lattice
constants from our structure relaxation calculations agree well
with Beeler et al.’s calculation results [42] (difference <0.3%)
and Barrett et al.’s experimental data [37], which values are
presented in Appendix A. For phonon calculations, the phonon
band structure was simulated with a 4 × 4 × 4 supercell (128
atoms) and a 4 × 4 × 2 Monkhorst-Pack [43] k-point grid.
Anharmonic force constant calculations were performed using
the small displacement method [44] with a 2 × 2 × 2 supercell
(16 atoms) and a 10 × 10 × 10 Monkhorst-Pack k-point grid.
The phonon contribution to the thermal conductivity (phonon-
phonon scattering) was obtained by calculating the phonon
BTE using Phono3py [6] with a 13 × 13 × 13 q-point mesh,
resulting in a convergence error of phonon thermal conduc-
tivity of <10%. For electron calculations, band structure
calculations were performed with a 2 × 2 × 2 supercell (16
atoms) and a 23 × 23 × 12 Monkhorst-Pack k-point grid. The
electron-electron scattering portion of the electronic contri-
bution to the thermal conductivity was obtained using the
BoltzTraP [23] software to conduct BTE calculations in the
RTA with a convergence error of <5%.

III. RESULTS

A. Phonon contribution to U thermal conductivity

The phonon DFT calculation results for α-U are plotted in
Figs. 1 and 2. Figure 1 illustrates the calculated α-U phonon
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FIG. 1. The calculated phonon dispersion curves along [100],
[010], and [001] directions for α-U. The dots represent Crummett
et al.’s experimental data [49] obtained from inelastic neutron
scattering.
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FIG. 2. Plot of the phonon contribution to the α-U thermal
conductivity in the temperature range of 43 to 933 K. The different
curves correspond to the phonon contribution to the thermal con-
ductivity along different crystallographic directions and the black
curve indicates the average over the different directions. Only the
phonon-phonon scattering is included in these values.

dispersion curves along [100], [010], and [001] directions at
equilibrium calculated by VASP and Phono3py using the small
displacement method. The dots in the figure show Crummett
et al.’s experimental data for inelastic neutron scattering at
room temperature [45]. Our calculation results agree well with
Bouchet’s calculation [46] and Yang et al.’s calculation [47].
In addition, Bouchet and Yang et al.’s work suggested that
the discrepancies between calculations and experiments of
the optical branches of [010] and [001] directions are due to
the large uncertainties of the experimental measurements for
these modes and the temperature difference between the DFT
calculations (which are at zero temperature) and experiments
conducted at room temperature.

Figure 2 illustrates the phonon-phonon scattering contribu-
tion for α-U in the temperature range of 43 to 933 K calculated
using the phonon dispersion data of Fig. 1 and the phonon
BTE in Eq. (2), where for the phonon relaxation time τph in
Eq. (3) only the phonon-phonon scattering contribution τph−ph

is included. The curves with different colors correspond to
the phonon contribution to the thermal conductivity along
different crystallographic directions in the anisotropic α-U
structure. For all crystallographic directions, the calculated
phonon portion of the thermal conductivity decreases with
increasing temperature.

The phonon-grain boundary and phonon-defect scatter-
ing contributions are added into τph using Eqs. (3)–(5). As
discussed in Sec. II A, the value of grain size used is L =
0.015 mm. The parameter A is fit to the experimental phonon
thermal conductivity data at 54 K: κ = 32.3 W/m K from
Hall et al. [12], ρ = 0.60 × 10−7 � m in our model (shown
in Sec. III B), therefore κe = 22.0 W/m K from Eq. (6), and
finally κph = 10.3 W/m K at 54 K from Eq. (1). Using this data
point, A is fit to be A = 1.0 × 10−2 (ps)3, and the calculated

FIG. 3. Plot of the phonon scattering contributions to the α-U
thermal conductivity in the temperature range of 43 to 933 K.
The different curves correspond to the different phonon scattering
contributions to the thermal conductivity and the black curve indicates
the phonon thermal conductivity obtained from Eq. (2).

phonon scattering contributions for polycrystalline α-U are
shown in Fig. 3. The different curves correspond to the different
phonon scattering contributions to the thermal conductivity
and the black curve indicates the phonon thermal conductivity
obtained from Eq. (2). At the fast nuclear reactor working
temperature near 600 K, the phonon thermal conductivity is
dominated by phonon-phonon scattering, and is <4.5% of total
thermal conductivity. Therefore, the influence of phonons on
the total thermal conductivity can be considered negligible for
most applications. A detailed discussion about the contribution
of different phonon scattering mechanisms is presented in
Sec. IV A.

B. Electronic contribution to U thermal conductivity

Figure 4 contains a plot of ( σ
τ

) (electrical conductivity
divided by relaxation time) of electrons along different crys-
tallographic directions in α-U over the temperature range of
43 to 933 K, as determined from the electronic BTE of Eq. (9).
Overall, the value of ( σ

τ
) shows a very weak temperature de-

pendence of <10% change over the entire range of 43 to 933 K.
Now that ( σ

τ
) has been determined, we can fit B, C, ρsat, and

ρ0 to model single crystal electrical resistivity data using the
complete resistivity model in Eq. (17). Fitting parameters are
calculated by minimizing the root-mean-square error (RMSE)
between the model and all experimental data for single crystal
resistivity, and the standard deviations of the fitting parameters
are obtained from the coefficient covariance matrix from fitting
[48]. All fits are performed with the “nlinfit” subroutine in
MATLAB (MATLAB and Statistics Toolbox Release 2015a,
The MathWorks, Inc., Natick, Massachusetts, United States.).
The fitted parameter values and their standard deviations
are given in Table I. Figure 5 contains single crystal α-U
experimental resistivity data along different crystallographic
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FIG. 4. Plot of ( σ

τ
) (electrical conductivity divided by relaxation

time) of electrons in α-U over the temperature range of 43 to 933 K.
The curves with different colors indicate the value of ( σ

τ
) along

different crystallographic directions and the black curve indicates the
average over the different directions.

directions together with our full resistivity model of Eq. (17)
fitted to these data. From the standard deviations of all fitting
parameters the standard deviations of the predicted single
crystal resistivity are calculated via a propagation of error
formula [49], providing an estimate of the uncertainty of
the model predictions. One standard deviation for all model
predictions is shown in Fig. 5 as shaded areas, from which the
model uncertainties are all within 10% of the calculated single
crystal resistivity. However, this uncertainty is large enough
that almost all experimental data are within the uncertainty of
our model.

We use Eq. (27) to estimate the electrical resistivity of
polycrystalline α-U. The calculation results of resistivity are
shown in Fig. 6, together with a comparison to experimental
data. The filled circles represent experimental data of single
crystal α-U, and the open circles represent experimental data
of polycrystalline α-U. The solid black curve (ρtotal ) is the
calculated resistivity of α-U, and the dashed orange (ρe−ph),
purple (ρe−e), and blue (ρ0) curves are the electron-phonon,
electron-electron, and electron-defect scattering contributions,
respectively (the equations used to estimate ρe−ph, ρe−e, and
ρ0 are shown in Appendix B). The shade area is the error range
of calculated resistivity. The polycrystalline and single crystal
α-U resistivity data have the same temperature dependence.

TABLE I. Fitting parameters obtained from fitting Eq. (17) to
anisotropic single crystal α-U experimental resistivity data.

[100] [010] [001]

C (10−9 � mK) 11.3 ± 0.4 6.3 ± 0.2 8.8 ± 0.2

ρsat (10−7 � m) 7.3 ± 0.4 8.5 ± 0.9 9.7 ± 0.7

B (107 s K2) 0.3 ± 0.2

FIG. 5. Plot of fitted resistivity model [using Eq. (17), solid
curves] of α-U resistivity from 43 to 933 K, compared with single
crystal α-U experimental resistivity data (symbols). The curves
with different colors represent the fitted resistivity along different
crystallographic directions, and the shaded areas represent the error
ranges. The experimental data for the [010] and [001] directions were
obtained from Pascal et al. [36] and Raetsky [35], and the [100] data
were from Raetsky [35].

FIG. 6. Calculation results of α-U resistivity from 43 to 933 K
(curves), compared with experimental data (symbols). The filled
circles represent experimental data of single crystal α-U from
Refs. [35,36], and the open circles represent experimental data of
polycrystalline α-U from Refs. [18,50–52]. The solid black curve
(ρtotal ) is the calculated resistivity of α-U, and the dashed orange,
purple, and blue curves, labeled ρe–ph, ρe–e, and ρ0, respectively, are
the electron-phonon, electron-electron scattering contributions, and
residual resistivity due to electron scattering with point defects.
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FIG. 7. Plot of our thermal conductivity model from 43 to 933 K
(solid curves), compared with polycrystalline α-U experimental
thermal conductivity data (symbols). The curves with different colors
represent the calculated thermal conductivity along different crys-
tallographic directions. The experimental thermal conductivity data
were obtained from Refs. [10–13,50,53,54].

The average of the single crystal data over different directions
falls within the spread of the polycrystalline data. This result
suggests grain boundary effects are smaller than the uncertainty
introduced by different experiments and by our averaging over
the single crystal data, which are discussed later in Sec. IV B.
Here and in some later sections of the paper we will calculate
errors between model and experimental data where the exper-
imental data is often clustered in certain temperature ranges.
In such comparisons, when possible we extrapolate the ex-
periments through linear interpolation onto an approximately
uniform temperature grid so that errors represent uniform sam-
pling over temperature. These temperature grids can be found
for each case in the Appendixes. The mean error (ME) and root-
mean-square error (RMSE) between our model and average
polycrystalline data are (0.02 ± 0.04) × 10−7 and 0.15 ×
10−7 � m, respectively, which are <5% of the total resistivity
value. All values of resistivity from our calculation results (Ap-
pendix C, Table III) and the known experimental measurements
(Appendix D, Table V) are provided in the Appendixes.

C. Total model for U thermal conductivity

Using Eqs. (18) and (26) and our calculated phonon thermal
conductivity and fitted resistivity results from Table I, the
thermal conductivity of α-U was calculated. The values are
tabulated in Table IV of Appendix C, along with all available
experimental values from the literature in Table VI of Ap-
pendix D. Figure 7 shows the anisotropic thermal conductivity
results of α-U compared with experimental polycrystalline
thermal conductivity data. To our knowledge, no thermal
conductivity data of single crystal α-U exists in the literature.
Almost all of the experimental polycrystalline data points
are within our predicted α-U thermal conductivity curves. In

FIG. 8. Calculation results of α-U thermal conductivity from 43
to 933 K (curves), compared with polycrystalline α-U experimental
thermal conductivity data (symbols). The solid black curve (κtotal ) is
the calculated thermal conductivity of α-U, and the dashed orange
and purple curves, labeled κph and κe, respectively, are the phonon
contribution and electronic contribution to the thermal conductivity,
respectively. The experimental thermal conductivity data were ob-
tained from Refs. [10–13,50,53,54].

Figs. 7 and 8 the solid black curve (κtotal ) is the thermal con-
ductivity of polycrystalline α-U, estimated using an average
of different crystallographic directions [Eq. (26)]. In Fig. 8
the dashed orange (κph) and purple (κe ) curves illustrate the
phonon contribution and electronic contribution, respectively.
For the entire temperature range, the ME and RMSE between
our model and experimental thermal conductivity data are
0.09 ± 0.11 and 0.41 W/m K, respectively. Our model is
within the range of reported experimental data and shows good
overall agreement.

Despite the good overall agreement of our model with the
experimental data, we obtain slightly higher thermal conduc-
tivity values than some experimental data for 300–700 K,
slightly lower thermal conductivity values for 750–933 K (see
errors in Table IV of Appendix C), and show some dramatic
errors below about 300 K for Tyler et al.’s data [10] and
below about 100 K for Hall et al.’s data [12]. These issues
are discussed respectively in Sec. IV C.

D. Extended thermal conductivity model
for binary U-rich alloys

The thermal conductivities of binary U-rich U-Zr and U-Mo
alloys from 300 to 933 K were calculated by fitting the full
thermal conductivity equation [Eq. (18)] with the alloy resis-
tivity equation [Eq. (21)] to experimental data. The thermal
conductivity values are tabulated in Tables VII and VIII of
Appendix E, and experimental data of thermal conductivity
for alloys is tabulated in Tables IX and X of Appendix F.
Figures 9 and 10 contain U-Zr and U-Mo experimental thermal
conductivity data with our alloy thermal conductivity model
fitted to these data, respectively. The fitting parameters are
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FIG. 9. Calculation results of U-rich U-Zr alloys thermal con-
ductivity from 300 to 933 K (solid curves), compared with U-Zr
experimental thermal conductivity data (symbols). The dashed lines
are values based on empirical models developed by Kim et al. [3].
The curves and symbols with different colors represent the U-Zr
thermal conductivities in different Zr at %. The experimental thermal
conductivity data were obtained from Refs. [10,11,13,56,58].

the same as values in Table I except for the addition of
the parameter D in Eq. (21). The values of D obtained
from the fit are: DUZr = (0.97 ± 0.08) × 10−6 � m, DUMo =
(1.51 ± 0.13) × 10−6� m. The overall RMSE values in our

FIG. 10. Calculation results of U-rich U-Mo alloys thermal con-
ductivity from 300 to 933 K (solid curves), compared with U-Mo
experimental thermal conductivity data (symbols). The dashed lines
are values based on empirical models developed by Kim et al. [4].
The curves and symbols with different colors represent the U-Mo
thermal conductivities in different Mo at %. The experimental thermal
conductivity data were obtained from Refs. [10,11,13,57,59–63].

fits are 1.3 and 1.6 W/m K for U-Zr and U-Mo, respectively.
The overall ME values in our fits are (0.15 ± 0.18) and
(0.29 ± 0.24) W/m K for U-Zr and U-Mo, respectively. We
note here that in theory this model only applies for U-rich alloys
with a dilute amount of impurities. However, the agreement
between our fitted model results and experimental data shows
that despite the alloy composition being somewhat out of the
dilute regime (we consider U at % > 78%) this model is still a
good approximation for U-Zr and U-Mo alloys. We also note
that the typical alloy components in actual fuels are U-22 at %
Zr in the Experimental Breeder Reactor-II (EBR-II) in Idaho,
USA [8], and U-15.7 at % Mo in the Belgian Reactor 2 (BR2)
in Mol, Belgium [55]. These Zr and Mo composition ranges are
covered by our model. Based on experimental data, Kim et al.
developed empirical formulas for the thermal conductivity of
the U-Zr [3,56] and U-Mo alloys [4,57] applicable to any com-
position, which are shown as dashed curves in Figs. 9 and 10,
respectively. Comparing to the same data, the overall RMSE
values for Kim et al.’s empirical formulas are 1.6 W/m K for
both U-Zr and U-Mo. Thus, based only on the RMSE values,
for U-Zr our model is slightly better than Kim et al.’s formula,
and for U-Mo our model is as good as Kim et al.’s formula.
However, while both our and Kim et al.’s models are based on
the thermal conductivity of pure α-U, Kim et al.’s formulas
use five parameters to fit the thermal conductivity of alloys,
whereas we only use one. This suggests that our model may
give a more complete physics-based representation of the con-
tributions to the thermal conductivity, and that our modeling
approach can be extended to complex materials like U alloys.

One advantage of our model having fewer fitting parameters
relative to a typical empirical model, e.g., that for U-Zr from
Kim et al., is that less experimental data are needed to construct
our model than might be needed for an empirical model. Here
we demonstrate the extensibility of our model beyond α-U
to alloy systems with very limited data by showing we can
achieve good agreement with experimental U-Zr thermal con-
ductivities in the limit where only a single experimental data
point is available. Our model can capture experimental thermal
conductivity data of the U-Zr alloy system using a single data
point because there is only one fitting parameter in our alloy
model. Using each of the U-Zr experimental data points as
fitting data, we predict the thermal conductivity of U-Zr and
calculate the RMSE relative to the experimental data. One
example is given in Fig. 11 in Appendix G, and the mean RMSE
value from fitting to each single U-Zr experimental data point
and predicting the others is 2.1 W/m K. This quite small error
result shows that even with one data point, our model can still
accurately predict the thermal conductivity for alloys. Thus,
for the case where little experimental data are available, our
model can still predict reliable results compared to experiment,
a result that would not be possible with a more empirical model
like that used by Kim et al. In general, obtaining high-quality
experimental thermal conductivity measurements for alloys,
especially U alloys, is expensive and difficult. Thus, it is
potentially very useful to know the thermal conductivity value
within 10% error for a wide temperature and concentration
range via one or a few experimental data points, as we have
demonstrated can be done with our model for U-Zr.

Overall, the current alloying model developed in this work
is still somewhat approximate. More specifically, we do not
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FIG. 11. Calculation results of U-rich U-Zr alloys thermal con-
ductivity from 300 to 933 K (solid curves), compared with U-Zr
experimental thermal conductivity data (symbols). The black dot is
the data point to which the model was fitted.

include the impact of alloying elements on the phonon thermal
conductivity and use a one-parameter fitting formula for
residual resistivity with only up to quadratic concentration
dependence and with no temperature dependence. Adding the
effects of alloying on the phonon thermal conductivity and
incorporating a more complex alloying resistivity formula,
e.g., with temperature dependence and/or higher order terms in
concentration, could produce a more accurate model compared
to experimental data for U alloys, including U-Zr and U-Mo.
Developing such a model will be the subject of future work.

IV. DISCUSSION

A. Phonon thermal conductivity

Our model for phonon thermal conductivity contains
phonon-phonon, phonon-grain boundary, and phonon-defect
scattering, but other scattering processes for phonons are
neglected, specifically phonon-electron, phonon-dislocation,
and phonon-isotope scattering. The contributions from these
mechanisms can be easily included in our formalism by
adding their respective phonon relaxation time terms in our
model through Eq. (3). The phonon-electron and phonon-
dislocation scattering are expected to only limit the phonon
thermal conductivity at low temperature and are negligible
above room temperature [16]. Recent ab initio calculations
for multiple metals like Al and Ag support the assertion
that the phonon-electron scattering is negligible above room
temperature [64]. Ab initio studies also support the assertion
that the phonon-dislocation scattering is negligible above room
temperature for dislocation densities <109 cm−2 [65], and
the dislocation density for annealed metals is ∼107–108 cm−2

[66]. Therefore, these contributions are appropriate to exclude
for the conditions of focus in this work. For phonon-isotope
scattering, we estimate its contribution by adding the phonon-
isotopic scattering relaxation time following Togo et al.’s

approach [6] with the mass variance parameter of U from
Laeter et al.’s values [67], and the results are discussed in the
next paragraph.

Above 600 K, the phonon thermal conductivity is below
1.4 W/m K and the experimentally measured thermal con-
ductivity of α-U is above 30 W/m K (Fig. 3). Therefore, the
phonon contribution to the total thermal conductivity at reactor
operating conditions in relatively pure α-U is likely negligible
for most considerations, although this could change in irradi-
ated systems and fuel alloys. Therefore, it is still of importance
to evaluate which scattering mechanism dominates the phonon
thermal conductivity. Although some parameters in our model
are only accurate for specific samples in specific experiments,
e.g., the grain size L and the constant A (which depends on
defect concentration), the model represents typical parameter
values and can be easily adapted to new parameter values as
needed. To separate the values of different phonon scattering
contributions, the Matthiessen approximation [16] is applied:

1

κph
= W ph−ph + W ph−gb + W ph−def + W ph−iso, (28)

where κph is the phonon thermal conductivity, and W ph−ph,
W ph−gb, W ph−def , and W ph−iso are the estimated thermal
resistivity values of phonon-phonon, phonon-grain boundary,
phonon-defect, and phonon-isotope scattering, respectively.
These thermal resistivity values can be obtained from
Eq. (2) with different phonon scattering contributions.
From Eq. (28) it is clear that κph is controlled by the
scattering with the largest value of thermal resistivity.
Examination of the results in Fig. 3 shows that phonon-defect
scattering plays a major role in controlling the phonon
thermal conductivity when T < 70 K, while for T > 70 K,
phonon-phonon scattering plays a major role. Near the reactor
operating temperature of 600 K, the phonon-phonon scattering
controls ∼71% of the total phonon thermal conductivity [i.e.,
W ph−ph/(W ph−ph + W ph−gb + W ph−def + W ph−iso) ≈ 71%],
and the phonon-defect, phonon-grain boundary, and
phonon-isotope scattering controls ∼27%, 2%, and 0.05% of
total phonon thermal conductivity, respectively.

B. Resistivity and electrical thermal conductivity

As mentioned in Sec. II A 1, the electron-phonon scattering
contribution ρe−ph uses a semiempirical fitting model instead
of DFT calculations. The DFT approaches for realistic systems
generally follow those taken in, e.g., Savrasov et al.’s [5]
and Verstraete’s [68] calculations. In these approaches, effects
of anharmonicity effects are not taken into account at high
temperature, so the temperature range is limited by T < 2θtr ,
where θtr is the average phonon frequency [5,69]. For α-U,
θtr ≈ 130 K from our phonon calculations, these DFT-based
approaches to calculate ρe−ph do not cover the reactor working
temperature near 600 K. Although some approaches can
calculate the phonon anharmonicity, like Phono3py [6] and
phonon Monte Carlo [70], a robust approach that includes
phonon anharmonicity into the calculation of ρe−ph is not
presently available and validated for complex systems like U.
Therefore, we did not pursue DFT calculations of ρe−ph and
instead fit a semiempirical model to the available experimental
data and phonon spectrum calculation results with Eq. (15).
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To check the validity of Eq. (15), we compare the Debye
temperature of resistivity and heat capacity, as a descriptor,
from our calculation results and experimental data, and they
are discussed below. From our calculation results, Eq. (15) is in
close agreement with the Bloch-Gruneisen formula [Eq. (14)]
with θR

D ≈ 115 K for α-U. θR
D values have been estimated from

resistivity measurements by Lee et al. and by Meaden as 121
[71] and 170 K [18], respectively. We show excellent agree-
ment with Lee et al., but are somewhat lower than Meaden. The
disagreement between our and Meaden’s estimated values is
expected to come from two sources. First, our Eq. (15) is not ex-
act, which will introduce errors when fitting Eq. (14) and θR

D to
the results of Eq. (15) when compared to fitting to presumably
more exact experimental data. However, if approximations in
Eq. (15) were the dominant source of error they should have
led to disagreements with both Meaden and Lee et al. Second,
the experimental resistivity data contains contributions not
included in our single crystal model, specifically, the small
resistivity step due to the phase transition near 43 K [18], the
lattice strains induced by heating and cooling processes near
the phase transition [72], and the impurities that can influence
the temperature dependence of resistivity at low temperature
[18]. These contributions may be more significant in Meaden’s
experiments than Lee et al., driving the larger differences.
While the difference between the θR

D fit in our model and
Meaden’s value appears large, the resistivity of the Bloch-
Gruneisen formula is approximately independent of θR

D when
T > 0.4θR

D , so a discrepancy in θR
D only affects the resistivity

values at low temperature and does not significantly influence
our model parametrization, or model predictions above about
100 K. The θR

D obtained from resistivity measurements, both
in our model and the values estimated from experiments, are
lower than the Debye temperature obtained from heat capacity
(θC

D ), which is ∼200 K [30] from experimental data and is
176 K calculated from our phonon spectrum. This difference
is not unexpected because the phonon bands of α-U are not a
Debye phonon spectrum, and the θR

D and θC
D values are affected

differently by the Debye approximation.
To estimate the magnitude of the effect of grain boundaries

on resistivity, we should calculate the RMSE between single
and polycrystalline resistivity data. However, due to the lack
of resistivity along [100] direction at 300–933 K, we cannot
directly calculate the average of single crystal resistivity
data. As our resistivity model is fitted to single crystal data,
we use the RMSE value between our model and average
polycrystalline data to estimate the RMSE between single and
polycrystalline resistivity data, which is <5% as mentioned in
Sec. III B. Such a small difference of the resistivity between
single crystal and polycrystalline samples suggests that the
effects of grain boundaries are small and our estimation of
averaging the resistivity (and electronic contributions to ther-
mal conductivity) along different crystallographic directions
as a proxy for a polycrystalline resistivity (and electronic
contributions to thermal conductivity) value is reasonable.

From the results of our fitted resistivity model, we
can clearly see which physical contribution dominates the
resistivity of α-U. In Fig. 6, the electron-phonon scattering
contribution of resistivity is larger than both the electron-
electron scattering part and residual resistivity, and dominates
the temperature dependence of resistivity from 43 to 933 K.

C. Total thermal conductivity

As mentioned in Sec. III C, we have slightly higher thermal
conductivity values than some experimental data for 300–
700 K, slightly lower thermal conductivity values for 750–
933 K (see errors in Table IV of Appendix C), and show some
dramatic errors below about 300 K for Tyler et al.’s data [10]
and below about 100 K for Hall et al.’s data [12].

To explain the discrepancy with Tyler et al.’s data we note
that at low temperatures, defects (point defects, impurities, and
dislocations) can significantly decrease the thermal conduc-
tivity of α-U due to their influence on both the phonon and
electronic component of the thermal conductivity. Our calcu-
lation results show that phonon-defect scattering dominates
the phonon thermal conductivity at low temperature. It also
has been shown experimentally by Hall et al.’s experiments
[12] that the α-U thermal conductivity values increase more
than 40% at low temperature after annealing. The fact that
annealing tends to remove defects from a material suggests
that the samples used by Tyler et al. contain a sizable number
of defects, which decrease both the phonon and electronic
contributions to the thermal conductivity. This hypothesis is
also supported by the residual-resistance ratio (RRR) of the
Hall and Tyler samples, which is 28 for Hall et al.’s and 10
for Tyler et al.’s [59]. RRR is the ratio of the resistivity at
300 K and at temperature close to 0 K, and usually a higher
RRR value indicates a sample with lower residual resistivity
and fewer defects. Therefore, Tyler et al.’s sample may have
a higher concentration of defects. Although the origin of
the discrepancy between our model and Hall et al.’s data is
not clear, we note that the latter shows complex temperature
dependence at low temperature, which is not supported by the
basic theory of thermal conductivity of metals that underlies
our modeling [16]. Therefore, we exclude both Tyler et al.’s
and Hall et al.’s data in our RMSE calculations. Only one
data point from Hall et al.’s data is used, κ = 32.3 W/m K at
54 K, which is used to estimate the correct scale of phonon-
defect scattering. Although the scale is correct, the defect
concentrations among different experiments are still different,
and this may lead to the slight discrepancies at 300–933 K.

For the slight discrepancies at 300–933 K, they may be
due to missing physics in the model, or due to the inaccuracy
of the model results for the [100] direction, and we discuss
both of these possibilities. A potentially significant piece of
missing physics in the model is that our phonon band structures
are calculated at 0 K and ignore the physics of thermal
expansion. Thermal expansion effects will decrease the density
of materials and therefore decrease phonon thermal conduc-
tivity [73]. The influence of thermal conductivity, estimated
from the Leibfried-Schlemaan formula for phonon-phonon
scattering [74] and the Gruneisen parameter of U [75] (which
are discussed in Appendix H), is ∼13% near 600 K. Thus,
thermal expansion effects may make our predicted thermal
conductivity slightly higher than actual values by ∼1% above
600 K, but the change is expected to be negligible. DFT or
experimental thermal expansion could be added to a future
iteration of the model to reduce any errors associated with
these effects. Another piece of missing physics in the model
is that we assume the validity of lowest order perturbation
treatment for the scattering processes, e.g., the T 2 dependence
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of electron-electron scattering relaxation time and the ω−4

dependence of phonon-defect scattering relaxation time. This
assumption is valid for low temperature and may result in
the discrepancy at high temperature due to the impact of
higher order perturbation. Another source of error between
the predicted thermal conductivity and the measured values
is that the resistivity prediction for the [100] direction may
be inaccurate from 300 to 933 K, due to less resistivity data
being available in this direction. As the electronic contribution
is the majority of the thermal conductivity at high temperature,
this inaccuracy in the [100] resistivity data could lead to the
observed discrepancies in the total thermal conductivity.

Within our framework, the dominant scattering process of
total thermal conductivity of a-U can be easily assessed. In
Fig. 8 the electronic thermal conductivity is larger than the
phonon thermal conductivity from 43 to 933 K, and dominates
the temperature dependence of thermal conductivity. Thus,
electrons are the major heat carriers, and electron-phonon scat-
tering is the dominant interaction of thermal conductivity of
α-U, including at the expected working temperature of U-based
metallic fuels of around 600 K. However, the electron-electron
scattering contribution and the phonon contribution (mainly
controlled by phonon-phonon and phonon-defect scattering)
also play a significant role in setting thermal conductivity
values near 800 and 100 K, respectively. Near 100 K the phonon
scattering (mainly controlled by phonon-defect scattering)
contributes ∼25% of the total thermal conductivity. Near
800 K, the electron-electron scattering contributes ∼10% of
the total thermal conductivity.

To validate that the physical contributions of the model are
correct one can fit to just part of the data and assess the ability to
extrapolate to the rest of the data. Here we perform such a test
based on temperature extrapolation. Specifically, we use only
the resistivity data from the low temperature range of 43–300 K
for all three crystallographic directions as fitting data, with the
same fitting processes and error analysis as before. The results
are presented in Fig. 12 in Appendix I. By extrapolating to
the high temperature range of 300–933 K and comparing to
the experimental data from 300–933 K, the ME and RMSE
are both 2.4 W/m K, which is ∼7% of the total thermal
conductivity value. Therefore, our model demonstrates correct
temperature dependence of the thermal conductivity even when
only low temperature thermal conductivity data are used in the
fit, which supports that we have a robust representation of the
temperature dependent physics and that our approach could
be used effectively in systems with data available only over
limited temperature ranges.

D. Sensitivity and error analyses

As our model is fit to experimental electrical and thermal
conductivity data over a range of temperatures from multiple
groups, our model is fairly insensitive to errors in one given
experimental data point. For temperatures above room temper-
ature, the phonon contribution is dominated by phonon-phonon
scattering obtained from DFT, and the electrical contribution
is obtained from the Wiedemann-Franz Law to the fitted
experimental resistivity. Therefore, our thermal conductivity
prediction contains almost no contributions for direct fitting to
the thermal conductivity data. Thus, the success of our model

FIG. 12. Calculation results of α-U thermal conductivity from 43
to 933 K (curves), compared with polycrystalline α-U experimental
thermal conductivity data (symbols). The solid curve is obtained by
fitting to the single crystal resistivity data from 43 to 300 K, while
the dashed curve is fitted to all available single crystal resistivity data
from 43 to 933 K.

when comparing to the measured thermal conductivity is quite
encouraging, and our model is largely insensitive to the exact
values of the measured thermal conductivity over most of the
relevant temperature range. Our model is also expected to be
quite insensitive to errors in the band structure of electrons,
because the electronic contribution is scaled by a relaxation
time that is fit to experimental resistivity data. However, the
phonon contributions are sensitive to the phonon spectrum and
force constants, which come from DFT that can contain errors.
But, as the phonon contribution is small at high temperature,
this sensitivity only matter at low temperature and is not critical
for this work.

The error ranges, shown in Figs. 5 through 10, are calculated
from an error propagation formula as mentioned in Sec. III B.
The propagated errors are from two sources: error from fitting
which is represented by the standard deviations of fitting
parameters, and DFT calculation errors. As mentioned in
Sec. III B, the standard deviations of fitting parameters are
obtained from the coefficient covariance matrix (see Table I for
values). For nonlinear fitting, the coefficient covariance matrix
shows the correlation between fitting parameters. For DFT
calculations, the only error included is the convergence error,
and the error between DFT calculation and experiments is not
included. For phonon spectrum, we compared our calculated
results with previous experimental and calculation results in
Sec. III A, and the good agreement suggests that this source
of error should be small. For phonon force constants and
electronic band structure calculations, we have discussed that
our model is not very sensitive to these values near reactor
operating temperature of about 600 K, so we expect their
contributions to the overall errors to also be small. As the
error ranges (one standard deviation) of different resistivity
contributions and thermal conductivity contributions are all
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<10% of the total resistivity and total thermal conductivity,
respectively, these errors do not affect our prediction of the
relative contributions of the different mechanisms

E. Anisotropy of resistivity and thermal conductivity

From the results of our anisotropic single crystal resistivity
model, we predicted that the resistivity along [100] direction
becomes lower than the resistivity along [001] direction when
T > 370 K, and nearly identical to the resistivity along [010]
direction at ∼930 K, although all experimental data of [100]
direction have larger values than the other two directions in
the range 43–300 K. These results show that the relative value
of the [100] resistivity changes dramatically with temperature,
going from the largest, to tied, to the smallest value among the
three directions. Such large changes in relative values is not
unprecedented in materials exhibiting resistivity saturation,
e.g., yttrium and WO2 also show significant changes in the
relative values of resistivity along different directions with
increasing temperatures [76].

Besides temperature, anisotropy also influences the con-
tributions of different scattering mechanisms to the thermal
conductivity. From Fig. 5 the electrical resistivity along the
[010] direction is smaller than along [100] and [001] directions.
This directly leads to the result in Fig. 7 that the thermal
conductivity along [010] direction is much larger than along the
[100] and [001] directions from 150 to 933 K. Also, as shown
in Fig. 5, the phonon-phonon scattering contribution along
the [100] direction is much larger than along the other two
directions for T < 100 K. This leads to the result in Fig. 7 that
for T < 100 K, although the resistivity along [100] direction
is slightly larger than [001] and [010] directions, the thermal
conductivity along the [100] direction is still the largest among
three directions.

V. CONCLUSIONS

A computational, physics-based model of α-U thermal
conductivity has been constructed which is based on DFT
calculations and experimental data, and which incorporates
both phonon and electron scattering contributions, includ-
ing phonon-phonon, phonon-grain boundary, phonon-defect,
electron-phonon, electron-electron, and electron-defect scat-
terings. This is a model of α-U thermal conductivity that
incorporates all known experimental resistivity and thermal
conductivity data and separates out contributions from differ-
ent physical mechanisms. This model provides insight into the

different physical factors that govern the thermal conductivity
of α-U under different temperature ranges. At 43–933 K,
electrons are the major heat carriers and the conductivity
is generally dominated by electron-phonon scattering. Near
reactor operating temperatures of 600 K, the phonon contri-
bution is ∼4.5% of the overall thermal conductivity, and the
electron-phonon scattering contribution is ∼80% of the total
resistivity. Therefore, the electron-phonon scattering controls
∼75% of the overall thermal conductivity near 600 K.

Overall, this work serves as a first step to understanding the
complex behavior of thermal conduction in metallic U alloy
nuclear fuels. Now that a model of pure α-U has been estab-
lished, it can be used to incorporate more physically realistic
and complex effects, such as intentional alloying elements,
transmutation products, radiation-induced defects, and noble
gas bubbles. For example, the thermal conductivity of U-rich
U-Zr and U-Mo alloys can be calculated simply by adding a
residual resistivity term, with results that agree well with the
available experimental data. The usage and extension of this
thermal conductivity model of α-U to more complex systems
is an important step to gaining a deeper understanding of the
thermal conduction characteristics of metallic U-alloy nuclear
fuels. This understanding will in turn enable the improved
design of temperature control in the future construction of
nuclear reactors powered by metallic U-alloy fuels. Finally,
the general framework for thermal conductivity of α-U, U-Zr,
and U-Mo alloys developed in this work can be applied to the
generation of ab initio based and physics-based semiempirical
thermal conductivity models for other metallic systems.
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APPENDIX A

The optimized crystal structure at zero pressure, which is
compared with previous results from calculations and experi-
ments and shows a good agreement with previous PBE calcula-
tions (difference <0.3% for lattice constants) and experiment
(difference <1.5% for lattice constants). See Table II.

TABLE II. The optimized lattice constants, internal parameters, and volume per atom for α-U, compared with Beeler et al.’s first-principle
calculations [42], Taylor’s PW91 pseudopotential calculations [77], Söderlind’s full-potential (FP) calculations [78], Crocombette et al.’s
norm-conserving (NC) pseudopotential calculations [79], and experimental data at 50 K from Barrett [37].

This work (PBE) Beeler (PBE) Taylor (PW91) Söderlind (FP) Crocombette (NC) Barrett (expt.)

A (Å) 2.794 2.793 2.800 2.845 2.809 2.836
B (Å) 5.844 5.849 5.896 5.818 5.447 5.867
C (Å) 4.913 4.894 4.893 4.996 4.964 4.936
Y 0.098 0.098 0.097 0.103 – 0.102

Volume/atom (Å
3
) 20.057 19.987 20.194 20.674 19.026 20.535
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TABLE III. Calculation results of α-U resistivity from 43 to 933 K. Both single and polycrystalline results are listed.

Resistivity (×10−7 � m)

Calculations Experiments

T (K) [100] [010] [001] Total Arajsa Eriksena Bennetta Avga Errorb

43 0.55 0.35 0.46 0.45 0.46 – – 0.46 −0.01
100 1.49 0.97 1.29 1.23 1.08 – – 1.08 0.15
150 2.11 1.43 1.88 1.78 1.57 – – 1.57 0.21
200 2.61 1.84 2.41 2.26 2.02 – – 2.02 0.24
250 3.03 2.22 2.87 2.68 2.46 – – 2.46 0.22
300 3.39 2.57 3.30 3.06 2.86 – – 2.86 0.20
350 3.70 2.89 3.68 3.40 3.21 – 3.17 3.19 0.22
400 3.97 3.19 4.03 3.71 3.57 4.11 3.44 3.71 −0.05
450 4.21 3.47 4.35 3.99 3.88 4.33 3.72 3.98 −0.02
500 4.42 3.73 4.64 4.24 4.19 4.62 4.00 4.27 −0.05
550 4.61 3.97 4.91 4.48 4.47 4.88 4.27 4.54 −0.09
600 4.77 4.19 5.17 4.69 4.72 5.14 4.50 4.79 −0.12
650 4.93 4.40 5.40 4.89 4.95 5.47 4.68 5.03 −0.17
700 5.06 4.60 5.61 5.08 5.15 5.62 4.86 5.21 −0.15
750 5.19 4.78 5.81 5.25 5.36 5.77 5.04 5.39 −0.15
800 5.30 4.95 6.00 5.40 5.51 5.78 5.20 5.49 −0.08
850 5.41 5.12 6.17 5.55 5.65 5.91 5.34 5.63 −0.08
900 5.50 5.27 6.34 5.69 – – – – –
933 5.56 5.36 6.44 5.77 – – – – –

The average [mean error (ME)] and standard deviation of error 0.02 ± 0.04
The root mean square error (RMSE) 0.15

aExperimental resistivity values are calculated using linear interpolation of experimental data from Arajs et al. [18,51], Eriksen et al. [50], and
Bennett [45]. Average experimental resistivity values are the mean values of interpolated values. All original data are given in Table V.
bThe error is defined as �ρerror = ρtotal − ρexpt. (avg).

APPENDIX B

The equations to separate electron-electron and electron-
phonon contribution for total resistivity.

The resistivity for each direction is calculated using [as same
as Eq. (17)]

ρX = {[
ρ

X,id
e−e + ρ

X,id
e−ph

]−1 + (
ρX

sat

)−1}−1 + ρ0, (B1)

where X represents a direction (100), (010), or (001), ρX,id
e-e is

calculated using Eqs. (8) and (12), and ρ
X,id
e−ph is calculated using

Eq. (15). We approximately separated electron-electron and
electron-phonon contribution by weighting the total resistivity
along a direction by the fraction of the ideal resistivity due to
each contribution, as shown here

ρX
e−e = {[

ρ
X,id
e−e + ρ

X,id
e−ph

]−1 + (
ρX

sat

)−1}−1 ρ
X,id
e−e

ρ
X,id
e−e + ρ

X,id
e−ph

,

(B2)

ρX
e−ph = {[

ρ
X,id
e−e + ρ

X,id
e−ph

]−1 + (
ρX

sat

)−1}−1 ρ
X,id
e−ph

ρ
X,id
e−e + ρ

X,id
e−ph

.

(B3)

We used Eq. (27) to calculated total resistivity from anisotropic
resistivities of each direction and this equation mixes contribu-
tions of ρX

e−e and ρ X
e−ph in ways that do not allow for a rigorous

separation of ρtotal into electron-electron and electron-phonon
components. Therefore, we instead use a simple average
to calculate the total contribution of electron-electron and
electron-phonon scattering:

ρe−e/ e−ph = 1
3

(
ρ100

e−e/e−ph + ρ010
e−e/e−ph + ρ001

e−e/e−ph

)
. (B4)

This average means that ρtotal is not rigorously equal to
ρe−e + ρe−ph, althought the difference is small than 3% at all
temperatures.

APPENDIX C

Model and experimental data of resistivity and thermal
conductivity of α-U. See Tables III and IV.

APPENDIX D

All experimental data of resistivity and thermal conductivity
of α-U. See Tables V and VI.

APPENDIX E

Model and experimental data of thermal conductivity of
U-Zr and U-Mo. See Tables VII and VIII.

APPENDIX F

Experimental data of thermal conductivity of U-Zr and U-
Mo alloys. See Tables IX and X.

083401-14



COMBINED AB INITIO AND EMPIRICAL MODEL … PHYSICAL REVIEW MATERIALS 2, 083401 (2018)

TABLE IV. Calculation results of α-U thermal conductivity from 43 to 933 K. Both single and polycrystalline results are listed.

Thermal conductivity (W/m K)

Calculations

T (K) [100] [010] [001] Total Expt. (Avg)a Errorb

43 47.92 34.60 28.37 36.12 − −
54c 40.01 31.37 25.44 31.73 32.31 −0.58
100 29.09 27.70 22.09 26.11 − −
150 26.35 27.53 21.86 25.12 − −
200 25.73 28.06 22.30 25.25 − −
250 25.94 28.82 22.97 25.80 − −
300 26.56 29.68 23.75 26.56 26.19 0.37
350 27.43 30.60 24.60 27.43 27.02 0.41
400 28.45 31.56 25.49 28.39 28.05 0.34
450 29.58 32.54 26.41 29.40 29.02 0.38
500 30.78 33.55 27.35 30.45 30.04 0.41
550 32.04 34.58 28.31 31.54 31.03 0.51
600 33.35 35.63 29.28 32.65 32.20 0.45
650 34.70 36.69 30.27 33.77 33.55 0.22
700 36.07 37.77 31.26 34.92 34.92 0.00
750 37.47 38.86 32.27 36.08 36.18 − 0.10
800 38.88 39.97 33.29 37.26 37.68 − 0.42
850 40.32 41.09 34.31 38.45 38.83 − 0.38
900 41.77 42.21 35.35 39.65 39.95 − 0.30
933 42.73 42.96 36.03 40.44 41.13 − 0.69

The average [mean error (ME)] and standard deviation of error 0.09 ± 0.11
The root mean square error (RMSE) 0.41

aExperimental thermal conductivity values are calculated using linear interpolation of experimental data from Hall et al. [12] for T � 100 K,
and from Refs. [10,11,13,50,53,54] for T � 300 K. The results of linear interpolation are not listed, but average values are given. All original
data are given in Table VI. We exclude Tyler et al.’s data [10] and Hall et al.’s data [12] as discussed in Sec. III C.
bThe error is defined as �κerror = κtotal − κexpt.(avg).
cThis data point (κ = 32.31 W/m K at 54 K from Hall et al.’s [12]) is used to estimate the proper scale of phonon-defect scattering and to fit
the parameter A in Eq. (5).

APPENDIX G

Alloying concentration extensibility of our model: fitting
our model with one alloy data point.

For U-alloys, in our approach we have only one fitting
parameter for each alloy, therefore, we can obtain the fit
using only a single experimental data point. Here we use
one experimental U-Zr alloy data point to predict the thermal
conductivity of U-Zr alloy to demonstrate the accuracy of our
model when little alloy data are available. One example of
the calculated thermal conductivity results is shown in Fig. 11,
where the black dot is the only experimental data point to which
our model was fitted.

The RMSE for the calculation results shown in Fig. 12 is
1.8 W/m K. By comparison, the RMSE in Sec. III D (fitting to
all data) is 1.3 W/m K. This one-point fitting demonstrates we
obtain the correct temperature and concentration dependence,
and good agreement with experimental data, with just a one
point fit. By individually using each of the 48 experimental
data points in Fig. 12 to produce the one-point fitting, the mean
value of the 48 fitted RMSEs is 2.1 W/m K, which is ∼10%
of the total thermal conductivity value.

APPENDIX H

The estimation of the impact of thermal expansion on
phonon thermal conductivity.

The temperature dependence of thermal conductivity of
phonon-phonon scattering at temperature higher than Debye
temperature can be estimated by the Leibfried-Schlemaan
formula [74]:

κph ∼ aθ3
D

γ 2T
, (H1)

which leads to the following expression by differentiating with
respect to volume at constant temperature:

�κph

κph
= −

(
3γ + 2q − 1

3

)
�V

V
, (H2)

where a is atomic distance, θD is Debye temperature, γ =
−( ∂lnθD

∂lnV
)T is the Gruneisen parameter, and q = −( ∂lnγ

∂lnV
)T ,

where q ≈ 1 [81,82]. For U, γ = 1.7 [75] and �V /V ≈ 2%
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TABLE V. Experimental α-U resistivity data.

T (K) R (10−8 � m) T (K) R (10−8 � m) T (K) R (10−8� m) T (K) R (10−8 � m)

Raetskya [100] Raetskya [010] cont. Pascal et al.a [001] cont. Arajs et al.c cont.

67 9.2 97 9.8 200 24.4 45 4.6
69 9.7 99 10.0 250 28.8 51 5.2
70 10.0 108 10.9 288 32.3 58 5.8
73 10.4 113 11.3 369 38.1 65 6.5
73 10.6 125 12.4 472 45.2 77 7.8
76 11.2 150 14.1 569 51.0 88 8.9
85 12.8 191 17.3 672 55.7 97 9.8
86 13.0 201 18.2 772 59.2 107 10.8
87 13.5 239 21.0 871 61.2 116 11.6
89 13.7 263 22.9 127 12.7
95 14.0 293 24.8 Eriksen et al.b 137 13.6

95 14.5 369 39.5 147 14.4
98 15.0 Raetskya [001] 409 41.6 157 15.3

101 15.3 80 9.7 458 43.8 168 16.3
104 15.7 84 10.3 463 44.3 177 17.1
107 16.1 84 10.5 504 46.3 188 18.1
109 16.5 91 11.5 546 48.6 198 18.8
113 17.1 93 11.9 585 50.7 209 19.7
120 17.8 109 13.9 592 51.1 219 20.5
121 18.0 114 14.6 623 52.4 229 21.3
126 18.3 128 16.0 633 54.2 241 22.2
127 18.7 133 16.6 702 56.3 250 23.0
137 19.6 163 19.4 712 55.9 261 23.8
141 20.2 288 31.2 729 57.7 272 24.6
164 22.3 300 32.5 738 56.7 283 25.5
166 22.8 746 57.7 295 26.4
177 23.8 Pascal et al.a [010] 803 58.1 304 27.1

178 23.6 99 10.1 870 59.4 315 27.8
202 26.4 150 14.5 326 30.7
206 26.4 200 18.6 Bennettb 373 33.5

257 30.9 251 22.4 312 29.6 398 35.5
291 34.7 289 25.2 574 44.0 425 37.2

372 29.8 774 51.2 499 41.8
Raetskya [010] 473 35.4 876 54.1 543 44.4

69 6.3 571 40.6 590 46.8
72 6.6 672 45.2 Arajs et al.c 657 49.8

75 7.0 772 49.2 7 0.8 679 50.8
77 7.3 869 51.6 14 0.9 699 51.4
80 7.8 20 1.1 728 52.9
82 8.1 Pascal et al.a [001] 24 1.6 758 53.8

84 8.3 73 10.9 29 2.4 790 54.8
89 8.8 98 13.3 35 3.2 832 56.0
91 9.1 149 19.3 40 3.9 869 57.1

aValues read from the plot of Ref. [80].
bValues read from the plot of Ref. [52].
cValues read from the plot of Ref. [51].

near 600 K [83], thus the phonon thermal conductivity decrease
is ∼13% for 600 K. This leads to the total thermal conductivity
to decrease <1%.

APPENDIX I

Temperature extensibility of our model: fitting our model
with resistivity data from a limited temperature range.
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TABLE VI. Experimental α-U thermal conductivity data.

T (K) K (W/m K) T (K) K (W/m K) T (K) K (W/m K)

Hall et al.a Babbitt et al.a Sample 1 Deem et al.a cont.

50 32 293 25 473 27.5
60 32 360 26.5 573 30
80 32 473 28.5 673 33
100 33 573 31.5 773 35.5

680 34 873 39
Tyler et al.a 780 38

66 19 880 45 Pearson et al.a

80 20.5 407 29
110 22.5 Babbitt et al.a Sample 2 540 29.5

200 25.5 293 25 589 29.5
278 28 360 26 735 31.5

473 28 800 35
Eriksen et al.a 540 29.5 926 40

373 26 573 30.5
473 28.5 680 33.5 Takahashi et al.d

573 31 780 37 300 27
673 33 880 41 400 28.5
773 35.5 500 30.5
873 38 Kaity et al.b 600 32.5

300 27 700 35
Howlc 373 28 800 38

422 30.5 473 31.5 900 40.5
526 31 573 33.5
614 33.5 673 36 Touloukian et al.c,e

648 35.5 773 38.5 373 29.5
685 36 873 40.5 473 31
754 37.5 573 33.5
823 39.5 Deem et al.a 673 36

812 40 293 24 773 38.5
373 25.5 873 41

aValues read from Ref. [46].
bValues read from Ref. [13].
cValues read from Ref. [10].
dValues read from Ref. [11].
eRecommended data.

In the present work the resistivity data used in our fit is
all single crystal data from 43 to 933 K (except the data for
the [100] direction, which is only from 43 to 300 K). To test
the ability of our model to extrapolate to higher temperatures,
here we only use the resistivity data from 43 to 300 K for
all three directions as fitting data. All the other processes and
error analysis are the same as in Sec. III C. In Fig. 12, the solid

black curve is the calculation result of thermal conductivity
with resistivity data from 43 to 300 K, and the dashed black
curve is the original result from Sec. III C. Compared to the
experimental data from 300 to 933 K, the ME and RMSE
are both 2.4 W/m K, which is ∼7% of the total thermal
conductivity value.
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TABLE VII. Calculation results of U-Zr thermal conductivity (W/m K) from 373 to 873 K.

U 4 at % Zr U 12 at % Zr

T (K) Calc. Touloukiana Error Calc. Touloukiana Error

323 24.6 23.2 1.4 21.0 19.8 1.2
373 25.6 24.1 1.5 22.1 21.0 1.1
423 26.6 25.1 1.5 23.2 22.0 1.2
473 27.7 26.1 1.6 24.3 22.9 1.4
523 28.8 27.3 1.5 25.4 24.0 1.4
573 29.9 28.6 1.3 26.5 25.1 1.4
623 31.0 29.8 1.2 27.6 26.6 1.0
673 32.2 31.1 1.1 28.7 28.1 0.6
723 33.3 32.6 0.8 29.8 29.5 0.3
773 34.5 34.1 0.4 30.9 30.9 0.1
823 35.7 35.6 0.8 32.1 32.4 0.3
873 36.8 37.2 −0.3 33.2 34.0 −0.8

U 14 at % Zr U 22 at % Zr

T (K) Calc. Takahashia Kaitya Expt. (Avg)a Error Calc. Cheona Error
323 20.4 19.7 22.3 21.0 −0.6 18.6 18.6 0.0
373 21.5 21.0 23.3 22.1 −0.6 19.6 19.1 0.5
423 22.6 22.2 24.4 23.3 −0.7 20.7 20.2 0.5
473 23.7 23.4 25.5 24.5 −0.8 21.8 21.2 0.5
523 24.8 25.0 26.9 26.0 −1.2 22.8 22.5 0.4
573 25.9 26.9 28.3 27.6 −1.7 23.9 23.7 0.2
623 27.0 28.1 29.6 28.9 −1.9 25.0 24.7 0.3
673 28.1 29.9 30.9 30.4 −2.3 26.1 25.7 0.4
723 29.2 31.2 32.0 31.6 −2.4 27.1 26.6 0.5
773 30.3 32.6 33.1 32.8 −2.5 28.2 27.6 0.6
823 31.4 33.9 34.0 33.9 −2.5 29.3 28.6 1.2
873 32.5 35.6 – 35.6 −3.1 30.4 29.7 0.7

The average [mean error (ME)] and standard deviation of error (for all concentrations) 0.15 ± 0.18
The root mean square error (RMSE) (for all concentrations) 1.3

aExperimental thermal conductivity values are calculated using linear interpolation of experimental data from Touloukian et al. [10] for U4Zr,
from Takahashi et al. [11] and Kaity et al. [13] for U14Zr (and the average experimental values for U14Zr), and from Cheon et al. [58] for
U22Zr. All original data is given in Table IX.

TABLE VIII. Calculation results of U-Mo thermal conductivity (W/m K) from 373 to 873 K.

U 0.5 at % Mo U 4 at % Mo U 11.6 at % Mo

T (K) Calc. Francisa Error Calc. Francisa Error Calc. Touloukiana Error

323 26.5 – – 23.2 – – 19.0 – –
373 27.4 – – 24.3 – – 20.0 – –
423 28.4 – – 25.4 – – 21.1 22.4 − 1.3
473 29.5 27.0 2.5 26.4 23.2 3.2 22.2 23.1 − 0.9
523 30.5 28.5 2.1 27.5 25.3 2.3 23.3 23.8 − 0.6
573 31.6 29.9 1.7 28.7 27.3 1.4 24.3 24.5 − 0.2
623 32.8 31.4 1.4 29.8 29.3 0.5 25.4 25.2 0.2
673 33.9 32.9 1.0 30.9 31.4 − 0.4 26.5 26.2 0.3
723 35.1 34.3 0.7 32.1 33.4 − 1.3 27.6 27.5 0.1
773 36.2 35.8 0.4 33.2 35.4 − 2.2 28.7 28.8 −0.2
823 0.1 34.4 – – 29.8 – –
873 38.6 – – 35.5 – – 30.8 – –
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TABLE VIII. (Continued.)

U 20 at % Mo U 21.6 at % Mo

T (K) Calc. Matsuia Error Calc. Touloukiana Kleina Roya Expt. (Avg)a Error

323 16.4 15.2 1.2 16.0 12.7 12.8 13.0 12.8 3.2
373 17.4 16.6 0.8 17.0 13.8 14.2 14.5 14.2 2.9
423 18.4 18.0 0.4 18.0 15.6 14.2 16.1 15.3 2.8
473 19.4 19.4 0.0 19.1 17.3 14.2 17.6 16.4 2.7
523 20.5 20.9 −0.4 20.1 18.7 15.7 19.3 17.9 2.2
573 21.5 22.3 −0.8 21.1 20.1 17.2 21.1 19.5 1.6
623 22.5 23.7 −1.2 22.1 21.7 18.7 23.4 21.2 0.9
673 23.5 25.1 −1.6 23.1 23.3 20.1 25.7 23.0 0.0
723 24.5 26.5 −2.0 24.1 25.3 21.6 – 23.4 0.7
773 25.5 27.9 −2.4 25.1 27.2 23.0 – 25.1 0.0
823 26.6 29.5 −2.9 26.1 28.7 24.7 – 26.7 − 0.6
873 27.6 31.1 −3.5 27.1 30.1 26.4 – 28.3 − 1.1

The average [mean error (ME)] and standard deviation of error(for all concentrations) 0.29 ± 0.24
The root mean square error (RMSE) (for all concentrations) 1.6

aExperimental thermal conductivity values are calculated using linear interpolation of experimental data from Francis et al. [59] for U0.5Mo
and U4Mo, from Touloukian et al. [10] for U11.6Mo, from Matsui et al. [61] for U20Mo, and from Refs. [10,62,63] for U21.6Mo (and the
average experimental values for U21.6Mo). All original data are given in Table X. We exclude Konobeebsky et al.’s data [60] for U19.7Mo
due to its significant error near 800 K.

TABLE IX. Experimental thermal conductivity data of U-Zr alloys in at %.

T (K) K (W/m K) T (K) K (W/m K) T (K) K (W/m K)

Touloukian et al. U-4Zra Takahashi et al. U-14Zrb Kaity et al. U-14Zrc

293 22.6 300 18.8 300 21.8
373 24.1 350 20.4 373 23.3
473 26.1 400 21.6 473 25.6
573 28.6 450 23.0 573 28.4
673 31.1 500 24.0 673 31.0
773 34.1 550 26.5 773 33.1
873 37.2 600 27.4 823 34.0

650 29.2
Touloukian et al. U-12Zra 700 30.9 Cheon et al. U-22Zrd

293 19.2 750 31.6 293 18.2
373 21.0 800 33.5 373 19.1
473 23.0 850 34.2 473 21.2
573 25.1 880 36.1 573 23.7
673 28.2 673 25.7
773 30.9 773 27.5
873 34.0 873 29.7

aValues read from Ref. [10].
bValues read from the plot of Ref. [11].
cValues read from the plot of Ref. [13].
dValues read from the plot of Ref. [58].
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TABLE X. Experimental thermal conductivity data of U-Mo alloys in at %.

T (K) K (W/m K) T (K) K (W/m K) T (K) K (W/m K)

Francis et al. U-0.5Moa Touloukian et al. U-11.6Mob cont. Matsui et al. U-20Moc

473 27.0 750 28.2 293 14.3
573 29.9 800 29.5 373 16.6
673 32.9 473 19.4
773 35.8 Touloukian et al. U-21.6Mob 573 22.3

823 37.3 293 12.1 673 25.1
373 13.8 773 27.9

Francis et al. U-4Moa 473 17.3 873 31.1

473 23.2 573 20.1
573 27.3 673 23.3 Konobeebsky et al. U-19.7Moc

673 31.4 773 27.2 373 16.7
773 35.4 873 30.1 473 20.9

573 26.8
Touloukian et al. U-11.6Mob Klein et al. U-21.6Moc 673 32.6

400 22.1 296 12.1 773 38.5
450 22.8 373 14.2
500 23.5 473 14.2 Roy et al. U-21.6Moc

550 24.2 573 17.2 323 12.97
600 24.9 673 20.1 485 17.99
650 25.6 773 23 581 21.34
700 26.9 873 26.4 677 25.94

aValues read from Ref. [59].
bValues read from Ref. [10].
cValues read from Ref. [57].
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