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Disorder engineering: From structural coloration to acoustic filters
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We study localization of waves in a one-dimensional disordered metamaterial of bilayers composed of thin
fixed length scatterers placed randomly along a homogenous medium. As an interplay between order and disorder,
we identify a new regime of strong disorder where the localization length becomes independent of the amount of
disorder but depends on the frequency of the wave excitation and on the properties of the fixed length scatterer.
As an example of a naturally occurring nearly one-dimensional disordered bilayer, we calculate the wavelength-
dependent reflection spectrum for Koi fish using the experimentally measured parameters and find that the main
mechanisms for the emergence of their silver structural coloration can be explained through the phenomenon of
localization of light in the regime of strong disorder discussed above. Finally, we show that, by tuning the thickness
of the fixed length scatterer, the above design principles could be used to engineer disordered metamaterials
which selectively allow harmonics of a fundamental frequency to be transmitted in an effect which is similar to
the insertion of a half-wave cavity in a quarter-wavelength stack. However, in contrast to the Lorentzian resonant
peak of a half-wave cavity, we find that our disordered layer has a Gaussian line shape whose width becomes
narrower as the number of disordered layers is increased.
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I. INTRODUCTION

Metamaterials are composite materials engineered out of
more commonly available materials by carefully arranging
them in ways such that their collective response gives rise
to novel mechanical and electromagnetic properties [1–9].
At the heart of any engineering design is the ability to
accurately control the response of a system. Disorder thus
seems manifestly at odds with the main principles of any
engineering design. At the same time, random aggregates
of objects, both natural [10,11] or man made [12–14], often
display many novel properties which emerge in part from their
intrinsic disorder. Yet, characterizing disorder and harnessing it
to design materials whose response can be precisely controlled
remains a challenge.

A periodic arrangement of a bilayer of materials con-
sisting of regions of two different wave speeds (mechanical
or electromagnetic) but with randomly varying thicknesses
is a quintessential example of a one-dimensional disordered
system whose transport properties are governed by wave
localization [15–21]. Due to the mismatch in wave speeds at
each interface of such a bilayer system, a part of the wave
is reflected, and a part gets transmitted. Disorder in the path
lengths in a sufficiently large sample can then eventually cause
the reflected waves to interfere constructively in such a way that
all the energy remains confined to a region of space, known
as the localization length. The localization length in general
depends upon both the nature and the amount of disorder and
on the frequency of the incident wave. If the system length is
much greater than the maximum localization length within the
band of frequencies being considered, then wave transmission
through the bilayer channel is effectively prevented, and, in the
absence of any dissipative processes, all of the incident wave
energy is reflected.

An intriguing prospect then is to ask the question: Could
the disorder-induced localization length be harnessed to design
metamaterials whose frequency response can be precisely con-
trolled? Recent experiments have demonstrated how disorder-
induced wave localization could be used to manipulate light on
the nanoscale [22] and induce optical transitions from the spin-
Hall effect in the regime of weak disorder to the random Rashba
effect in the regime of strong disorder [23]. In this article, we
study localization of waves in a one-dimensional disordered
metamaterial consisting of thin fixed length scatterers placed
randomly along a homogenous medium. We identify a different
regime of wave localization whereby the localization length
is independent of the amount of disorder (for sufficiently
large disorder) yet depends only on the frequency of the
wave excitation and on the properties of the fixed length
scatterer. We use the transfer-matrix formulation to analytically
derive the localization length and power transmission and
compare these to corresponding results obtained numerically.
As an example of a naturally occurring nearly one-dimensional
disordered bilayer, we calculate the wavelength-dependent
reflection spectrum for Koi fish using the experimental param-
eters discussed in Ref. [11] and find that the main mechanisms
for the emergence of their silver structural coloration can be
explained through the phenomenon of localization of light in
the regime of strong disorder discussed above.

Finally, we use our results to propose the design of a simple
one-dimensional mechanical metamaterial and discuss how,
by tuning the wave speed and thickness of the scatterer, we
can engineer disordered metamaterials which only allow the
transmission of a narrow band of frequencies centered around
the harmonics of the fundamental mode. We find that, in
contrast to resonances in ordered systems, which typically
have Lorentzian line shapes, here the transmission peak has a

2475-9953/2018/2(7)/075201(10) 075201-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.075201&domain=pdf&date_stamp=2018-07-05
https://doi.org/10.1103/PhysRevMaterials.2.075201


NITIN UPADHYAYA AND ARIEL AMIR PHYSICAL REVIEW MATERIALS 2, 075201 (2018)

FIG. 1. A schematic of a periodic on average disordered meta-
material consisting of disordered bilayers of two materials with wave
speeds c1,c2, respectively. The thickness of material 1, denoted by d1,
varies randomly whereas the thickness of material 2 is kept constant
at a value of d2 which is much smaller than the average value of
d1. This is reminiscent of the random Kronig-Penny model whereby
we place scatterers (with thickness d2 and wave speed c2) randomly
along the length of a homogenous background medium with wave
speed c1. For large variations in the thicknesses of material 1 (strong
disorder), the localization length for a wave with frequency ω depends
only on the properties of the scatterer as derived in Eq. (12). Thus,
the parameters of material 2 can be tuned to design materials with a
specific frequency response.

Gaussian shape with a width that decays as 1/
√

N , where N is
the number of layers, and thus can be made arbitrarily narrow.
Thus, our paper adds to the growing interest in using disorder-
induced wave localization to engineer novel properties.

II. WAVE LOCALIZATION IN A PERIODIC ON AVERAGE
DISORDERED METAMATERIAL

Consider a homogenous medium with scatterers of fixed
length placed randomly along a medium as in Fig. 1. This
is reminiscent of the random Kronig-Penney model [24,25]
where there is disorder in the thicknesses of only one of
the layers (the background medium) comprising the bilayer
whereas the thickness of the other is held constant at a value
which is much smaller than the average thickness of the
disordered layer.

In the following, we make use of the transfer-matrix
formulation to study the reflectance and transmittance of a
wave (electromagnetic or acoustic) impinging on this one-
dimensional structure at normal incidence, although the ap-
proach presented generalizes to arbitrary angles of incidence.
The transfer matrix which relates the forward going (E+)
and backward going (E−) complex wave amplitudes across
a bilayer can be written in the form (see Appendix A for the
derivation) (

E+
after bilayer

E−
after bilayer

)
= M

(
E+

before bilayer

E−
before bilayer

)
,

where

M =
(

A B

B∗ A∗

)
, (1)

and

A = 1

1 − r2
(ei(δ1+δ2) − r2ei(δ1−δ2)), (2)

B = 2ir

1 − r2
e−iδ1 sin δ2, (3)

where ∗ denotes complex conjugation and we have defined
r = | n2−n1

n2+n1
| as the reflection coefficient for normal incidence

at the interface between medium 1 and medium 2 with optical
refractive indices n1,n2, respectively. Here, δ1,2 = 2π

λ
n1,2d1,2

are the phases accumulated by a wave of wavelength λ as it
propagates media 1 and 2 with thicknesses d1,2, respectively,
see Fig. 1.

We may rewrite the transfer-matrix Eq. (1) in the formM =
MsMb, where Ms is a completely deterministic transfer
matrix associated with the fixed length scatterer, and Mb

is a random transfer matrix associated with the background
medium,

M = 1

1 − r2

(
eiδ2−r2e−iδ2 −2ir sin δ2

2ir sin δ2 e−iδ2 − r2eiδ2

)(
eiδ1 0
0 e−iδ1

)
.

Here, the entries in the second matrix (Mb) contain only δ1

which is a random variable and denotes the phase accumulated
by the wave as it traverses the background medium, whereas
the entries in the first matrix (Ms) contain only δ2 which is a
constant phase change as the wave traverses the scatterer.

The transfer matrix across N + 1 barriers then is recursively
given by MN+1 = MsMbMN and assumes the form

MN+1 =
⎛
⎝ 1

τ ∗
1

− ρ∗
1

τ ∗
1

− ρ1

τ1

1
τ1

⎞
⎠

⎛
⎝ 1

τ ∗
N

− ρ∗
N

τ ∗
N

− ρN

τN

1
τN

⎞
⎠, (4)

where, ρ,τ are complex numbers representing the wave am-
plitude reflected and transmitted respectively, see Eqs. (A10)
and (A11). Thus, the power transmitted TN+1 = 1

|MN+1[1,1]|2 is

TN+1 = TNT1

1 + RNR1 + 2
√

RnR1cos(φ)
, (5)

where we have expressed the reflectance and transmittance
amplitudes in terms of the power reflected R and transmitted
T using the relations ρ1 = √

R1e
iφ1 , ρN = √

RNeiφN , τN =√
TNeiλN and defined φ = φN − φ1 − 2λN to encode the

random phase accumulated over the N layers.
Energy conversation and time-reversal symmetry provide

us with an additional constraint [26],
ρN

ρ∗
N

= −τN

τ ∗
N

, (6)

using which, λN = φN + π
2 and therefore, φ assumes an even

simpler form—

φ = π + φ1 + φN. (7)

Equation (7) has a clearer physical interpretation—φ is a
random variable obtained by summing the reflection phases
of individual bilayers through which the wave passes. The
reflection phase of a single bilayer is obtained as ρ = B∗

A∗ , see
Eq. (A10), and when δ2 is kept fixed, the reflection phase
is 2δ1 up to a constant. For strong disorder, i.e., when the
standard deviation in the values of spacing d between scatterers
is very large compared with the wavelength, we would expect
the phase δ1 = 2π d

λ
to become uniformly distributed within

the interval [−π,π ). Adding a uniformly distributed phase to
another phase characterized by any distribution would result in
a uniformly distributed phase. Therefore in the strong disorder
regime we expect φ to be uniformly distributed. As we will
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see in the following sections, even for moderate values of
disorder in the strong disorder limit which we use in our paper,
the resultant distribution of φ tends to be uniform, a result
which we will be able to further validate when we compare
our analytical results with numerical data.

Next, we take the logarithm of Eq. (5) (which we shortly
justify) and then ensemble average both sides of the resultant
equation [15] to obtain

〈 ln TN+1〉 = 〈ln TN 〉 + 〈ln T1〉 − 〈ln[a + b cos(φ)]〉, (8)

where a = 1 + RNR1 and b = 2
√

RnR1. If we now use the
condition that the probability distribution of φ is nearly
uniform, the ensemble average of the last term in Eq. (8)
vanishes as follows:

〈ln[a + b cos (φ)]〉 = 1

2π

∫ 2π

0
ln(a + b cos φ)dφ,

= ln

(
1

2
(a +

√
a2 − b2)

)
,

= ln

(
1

2
(1 + RNR1 + |1 − RNR1|)

)
,

= 0, (9)

where the last line follows since |RNR1| � 1.
We now see one of the main advantages of taking the

logarithm (see also Appendix B for a further discussion) of
Eq. (5) for we have reduced Eq. (5) into a simple recursion
relation,

〈ln TN+1〉 = 〈ln TN 〉 + 〈ln T1〉,
whose solution is

〈ln TN 〉 = N〈ln T1〉.
Substituting T1 evaluated from Eq. (1), we find that T1 does not
depend on the random variable δ1 but only on the fixed phase
constant δ2 and hence is a deterministic quantity. The average
of the logarithmic power transmitted through N bilayers is
therefore,

〈ln TN 〉 = −N ln

∣∣∣∣ 1

1 − r2
(eiδ2 − r2e−iδ2 )

∣∣∣∣
2

,

= −N ln

(
1 + 4r2

(1 − r2)2
sin2 δ2

)
. (10)

We can now invert the relation Eq. (10) to obtain the
expected power transmitted through N bilayers (see also
Ref. [27]),

TN ∼ e−Nd/ζ , (11)

where d = 〈d1〉 + d2 is the mean thickness of a bilayer and we
obtain ζ as the localization length,

ζ = d

ln
(
1 + 4r2

(1−r2)2 sin2 δ2
) . (12)

The resultant Eq. (11) can be expressed as TN ∼
1

(1+ 4r2

(1−r2)2
sin2 δ2)

N or in other words, this suggests the power

transmitted through the disordered layer can be obtained by

taking the product of power transmitted through N ordered
bilayers, see Eq. (A12) for comparison. This is a remarkably
simple result, and even though it may seem that the resultant
transmittance is a result of incoherent transmission of waves,
that is not the case. Using the results of Ref. [18] for incoherent
waves, one finds a Lorentzian line shape whose width scales
as 1/

√
N . In turn, Eq. (11) gives a transmission peak which is

Gaussian and whose width also happens to scale as 1/
√

N .
To appreciate this, consider Eqs. (11) and (12). Defining

 ≡ 2r

(1−r2) sin δ2, the resulting transmission for a system with

N � 1 layers and in the regions where 
2 	 1 is well
approximated by

TN ≈ e−N ln(1+
2) = 1

(1 + 
2)N
≈ e−N
2

. (13)

Furthermore, we see from Eq. (12) that under our assump-
tions of strong disorder, the localization length ζ is independent
of the amount of disorder. However, since δ2 = ω

c2
d2, the

localization length depends on the frequency of the incident
wave ω and on the parameters of the scatterer. In the next
section, we first discuss the optical case and see how our
result Eq. (12) allows us to explain the observed reflection
spectrum for Koi fish and consequently the main mechanisms
for their silver structural coloration. This is one example of how
nature harnesses disorder to engineer broadband reflectance.
In the subsequent section, we will see how the localization
length in Eq. (12) provides us with a way to harness disorder
and engineer the frequency response of an acoustic disordered
metamaterial.

What if we also allow the thickness of the scatterer to
vary randomly? In that case, δ2 in Eq. (10) is no longer a
deterministic variable. However, if we continue to make the
assumption that δ2 is uniformly distributed over [0,2π ) and
express 2 sin2(δ2) = 1 − cos(2δ2), we can ensemble average
Eq. (10) in the same way as Eq. (9) to obtain

〈ln T1〉 = − 1

2π

∫ 2π

0
ln

(
1 + 2r2

(1 − r2)2
− 2r2 cos(2δ2)

1 − r2

)
dδ2,

= − ln

(
1

1 − r2

)
. (14)

This is exactly the result obtained in Ref. [18] where the authors
explain the mirrorlike appearance of a stack of transparencies
as a result of Anderson localization of light propagating
through a one-dimensional disordered medium composed of
bilayers of air and plastic, both of whose thicknesses vary
randomly. Note here, the localization length in Eq. (14)
depends only on the bare reflection coefficient r and neither
on the magnitude of disorder nor on the frequency of the
incident wave. Consequently, such a metamaterial will reflect
back all incident frequencies, and this is what gives a stack of
transparent materials its characteristic mirrorlike appearance.
In Appendix C, we re-derive our result Eq. (12) using the
method suggested in Refs. [17,18] for the case when the
thickness of one of the layers comprising the bilayer is held
constant.
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FIG. 2. Left: A butterfly Koi fish, exhibiting a broadband re-
flectance spectrum. Right: A magnified scanning electron microscopy
(SEM) image of an iridophore cell extracted from the skin of Koi fish
[11], well approximated as an alternating arrangement of guanine
crystals (Cr) and cytoplasm (Cy). Image reproduced from Ref. [11],
courtesy of Dr. D. Oron.

III. SILVER STRUCTURAL COLORATION IN FISH

The magnitude and distribution of ambient light is perhaps
one of the most striking differences between terrestrial and
oceanic life and has played a fundamental role in the evolution
of the vertical segregation of habitats in our oceans [28].
In particular, the key factor determining camouflage in the
mesopelagic realm (200–1000 m below sea level), essential
for survival in the open ocean environments, is the uniformity
of light distribution in all lateral directions. Under such
conditions, a nearly transparent body structure (also found in
upper ocean species and flowing rivers) or, more practically,
a mirrorlike appearance that mimics transparency is most
advantageous [28,29].

A mirrorlike appearance requires a broadband reflectance
that reflects all wavelengths within the visible spectrum of
light. Sea organisms, such as fish achieve this by covering
their surface with millions of nearly one-dimensional micron-
sized stacks, composed of a high refractive index material
interspersed with a low refractive index material. Such a
one-dimensional stack of bilayers is the most basic unit for
structural colors in nature [30,31]. The basic optical structure
in fish scales is well approximated by a one-dimensional stack
of a crystalline organic substance—guanine with a refractive
index of approximately ng ≈ 1.83, interspersed with layers
of watery cytoplasm with a refractive index of approximately
nc ≈ 1.36, see Fig. 2 (bottom) for a SEM image showing the
one-dimensional optical stack in Koi fish. The disorder in these
structures is manifest in the randomly varying thicknesses of
either or both of these materials. As discussed in Refs. [32,33],
wave localization provides a natural framework to study the
reflection spectra of these disordered stacks.

The guanine-cytoplasm stack in Koi fish consists of cy-
toplasm layers whose thicknesses are normally distributed
with a mean dc = 230 nm and standard deviation σc = 94 nm,
whereas the guanine layers are also normally distributed
with a mean dg = 19 nm and variation of σg = 5 nm [11].
Consequently, we will make the working assumption that the
guanine-cytoplasm stack in Koi fish may be well approximated
by a one-dimensional system of scatterers (guanine) placed
randomly in a medium of cytoplasm implying that the trans-
mission spectrum is well approximated by Eq. (11) with a
localization length given in Eq. (12).

For comparison, we also discuss the case of Ribbon fish,
which is another fish that displays silver coloration. The
guanine-cytoplasm stack in Ribbon fish consists of cytoplasm
layers whose thicknesses are uniformly distributed between
75 and 225 nm, whereas the thickness of the guanine layer
is also uniformly distributed between 55 and 165 nm [10].
Defining the perturbation parameter ε = 2π

λ
σ , we find that,

for a typical λ = 500 nm and a standard deviation of σ ≈
40 nm, ε ≈ 0.5. As discussed and derived in Ref. [19], we
can therefore consider this system weakly disordered, and by
expanding the transfer matrices Mi to second order in ε, we
obtain the localization length (note, the corresponding statistics
for Koi fish is Gaussian with ε ≈ 1.1, and therefore the disorder
regime for Koi is more appropriately classified as strongly
disordered)—

lr = (dg + dc)

[
sin2(γ λ)

4π2
[
n2

gσ
2
g sin2(δc) + n2

cσ
2
c sin2(δg)

]
α2

]
.

(15)

Here, ng,c are the refractive indices for the guanine (g),
cytoplasm (c) layers, dc,g’s are their mean thicknesses, δc,g =
2π
λ

dc,g’s are the mean optical phases, whereas σg,c are their
respective standard deviations. As discussed in Sec. II, the bare
reflection coefficient is defined as

r =
∣∣∣∣ng − nc

ng + nc

∣∣∣∣, (16)

in terms of which, α = 2r
1−r2 , whereas γ is the mean complex

Bloch wave vector, see Appendix A, Eq. (A13).
In Fig. 3, we have compared the numerically evaluated re-

flection spectrum (dotted curves) for normal incidence against
the analytic expression (solid curves) given by

R = 1 − e−(2L/lr,k ), (17)

where L is the system size and lr,k are the localization lengths
for the Ribbon fish (red curves) and for the Koi fish (blue
curves), respectively, and find a reasonably good agreement
over the visible spectrum. In Appendix D, we further study
how the reflection spectrum of fish changes as we vary the
thickness of the guanine layer (both the mean and its variance)
which could help compare with other species of fish and future
experimental data.

We stress that what we have considered is still a simplified
model where the guanine-cytoplasm stack is assumed to
be nearly one dimensional, and the effects of any spatial
correlations are ignored. In the regime of strong disorder as
defined in our paper, we do not anticipate spatial correlations
to play any role since the localization length is independent of
the amount of disorder, see Eq. (12). However, in the regime
of weak disorder, Eq. (15) can be modified to incorporate
correlations [19]. More accurate experimental data may reveal
the actual regime to which the various fish parameters belong
and in an ongoing work, we explicitly study the role of such
spatial correlations in biological systems [34].
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FIG. 3. The power reflected by a one-dimensional disordered
stack of guanine crystals (ng = 1.83) interspersed with layers of
cytoplasm (nc = 1.36). The blue curves correspond to parameters
of the Koi fish with the thicknesses of cytoplasm layers Gaussian
distributed between 230 nm and standard deviation 94 nm and
the thickness of the guanine layer nearly constant at 19 nm for a
total of 64 layers. For comparison, the red curves correspond to
parameters of the Ribbon fish with thicknesses of cytoplasm layers
uniformly distributed between 150 ± 75 nm and the thickness of the
guanine layer uniformly distributed between 110 ± 55 nm for a total
of 200 layers. Here, the square symbols are obtained numerically
by ensemble averaging the logarithm of the transmitted power (T )
over 1000 samples to evaluate the reflected power 1 − exp(〈ln T 〉),
whereas the dashed curves are the analytical expression given in
Eq. (17). The reflection spectrum corresponds to normal incidence.

IV. DESIGN OF NARROW PASSBAND DISORDERED
ACOUSTIC METAMATERIALS

In the previous section, we discussed how wave localization
could explain the main mechanisms of the origin of silver
coloration in two species of fish. These constitute examples
of natural occurring disordered systems where disorder has
been harnessed to achieve broadband reflectance, important
for the survival of many species of fish in their environment.
In this section, we will discuss how the results in Eq. (11)
can be used to open a narrow band of transmittance in an
otherwise reflecting layer thereby utilizing disorder to design
narrow passband transmittance filters. Since disorder-induced
wave localization is a generic wave phenomena, we will discuss
the design of narrow passband transmittance for the acoustic
case. However, the same idea may be applied for the design of
optical or microwave filters.

In Fig. 4, we compare the analytical results (dashed line)
in Eq. (11) with the ensemble averaged power transmitted
calculated numerically (square symbols) by evaluating the
product of random transfer matrices comprising the disordered
metamaterial. Here, the thickness of the disordered layer is
drawn from a uniform distribution in the range of 0.1–0.9 m.

As we change the thickness of the fixed length scatterer
d2, the frequencies which are transmitted by the disordered
metamaterial are the ones which make the localization length
in Eq. (12) infinity and these occur when sin2 δ2 = 0, i.e., at
frequencies of f = n

2
c2
d2

, where n is a positive integer, f is
the frequency in hertz, and c2 is the speed of sound through
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FIG. 4. The average power transmitted as a function of frequency
through a disordered metamaterial consisting of a periodic on average
alignment of 100 bilayers where the thickness of one of the layers
(scatterer) is held constant at a value of d2, whereas the thickness of
the disordered layer is drawn from a uniform distribution between 0.1
and 0.9 m and we have chosen material sound speeds as c1 = 5.33 and
c2 = 4 m/s and linear densities as ρ1 = 0.225 and ρ2 = 0.4 kg/m.
As we change the thickness of the fixed length scatterer d2, the channel
allows the transmission of harmonics f = n

2
c2
d2

, where n is a positive
integer. For illustration, we have chosen two values:d2 = 0.05 m (top)
and d2 = 0.075 m (bottom). The symbols (yellow square) correspond
to numerical data obtained after ensemble averaging 100 realizations
of the logarithm of the power transmitted obtained by calculating the
product of transfer matrices comprising the disordered metamaterial,
the solid curve (blue) corresponds to the analytical expression derived
in Eq. (11), whereas the dashed-dashed curve (black) corresponds to
the Gaussian approximation given in Eq. (13).

the scatterer. The plots shown in Fig. 4 correspond to d2 =
0.05 m (top) and d2 = 0.075 m (bottom). For instance, if d2 =
0.075 m, c2 = 4 m/s, the frequencies which are transmitted
within the range of 20–60 Hz are f1 = n 80

3 for n = 1,2, i.e.,
harmonics of f0 = 80

3 Hz. As can be observed in Fig. 4, we
have two peaks around f1 = 26.6 Hz (n = 1) and around f2 =
53.3 Hz (n = 2). All other frequencies within the range of 20–
60 Hz are reflected. The material parameters chosen here or
other values of sound speeds could, for instance, be realized
using metamaterials with tunable elastic constants, such as a
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FIG. 5. The blue curve shows the power transmitted as a function
of frequency through a periodic ordered bilayer (ten bilayers) chan-
nel formed from two materials with sound speeds c1 = 5.33, c2 =
4.0 m/s and with thicknesses tuned to quarter-wavelengths, whereas
the red curve shows the power transmitted through a similar ordered
bilayer (ten bilayers) after the introduction of a half-wavelength cavity
tuned to give a transmittance peak near the center of the reflection
band.

linear chain of elastic spheres [35] or quasi-one-dimensional
spring networks [36].

Next, we compare the results of the disordered setup with
those of an ordered system with a defect—effectively creating
a cavity. Figure 5 shows the transmission spectrum of a purely
ordered structure (blue curve) with layer thicknesses tuned
to quarter-wavelengths creating a reflective layer centered
around f = 40 Hz. This scenario can be solved exactly, and
for completeness we derive the transmission of this setup
in Appendix A. Upon insertion of a half-wave cavity in
the otherwise quarter-wavelength reflecting stack [37,38], a
narrow Lorentzian-shaped transmission peak is created [see
Fig. 5 red curve] near the middle of the reflection band. One
approach to analyze the transmission of this setup is to “lump”
all the multilayers leading up to the defect into one element
with reflection r̃ and transmittance t̃ , which will also be the
reflection and transmittance of the layers following the defect.
Now the transmission coefficient is mathematically equivalent
to that of a Fabry-Pérot setup and can readily be evaluated to
give [26]

T ≈ 1

1 + 4R
(1−R)2 sin2(δL)

, (18)

with R ≡ |r̃|2 and δL as the phase accumulated in the defect
layer. For wavelengths within the stop bands of the ordered
multilayer, 1 − R will be exponentially small in the number of
layers, and we find

T ≈ 1

1 + 4eN� sin2(δL)
, (19)

with � = iγ real and positive in the stop-band region, see
Eq. (A13). The structure will thus show transmittance peaks
when nLd = nλ

2 , i.e., at integer multiples of half-wavelengths.
In contrast to Eq. (13), this has a Lorentzian form as is the
typical case for resonances.

What, if any, are the design advantages of the disordered
analog of the half-wave cavity? Even though the disordered
design is not inherently superior to the ordered half-cavity
effect in terms of performance, it has the advantage that it might
be easier to fabricate since, if we have a way to synthesize layers
of constant thickness, the Onsager mechanism of creating
order based on entropic considerations alone could help self-
organize a layered structure [39]. Such ordering may also arise
due to flow as is the case in rheoscopic fluids [40].

To conclude, we have studied the localization of waves
in a one-dimensional disordered metamaterial composed of
fixed length scatterers placed randomly along a homogenous
medium. As an interplay between order and disorder, we have
identified a new regime of strong disorder where the localiza-
tion length becomes independent of the amount of disorder
but depends on the frequency of the wave excitation and on
the properties of the fixed length scatterer. As an example of
a naturally occurring disordered system, we have compared
our analytical results with numerical results evaluated using
experimentally obtained parameters for two species of fish
and used the formalism of wave localization to explain the
emergence of their silver structural coloration. Furthermore,
we have discussed the design of a disordered narrow passband
acoustic filter which gives a performance analogous to a
half-wave cavity inserted in a quarter-wavelength reflecting
stack. We believe our results could stimulate further analysis
and experimental work harnessing disorder to engineer useful
materials.
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APPENDIX A: REVIEW OF TRANSFER-MATRIX
FORMULATION FOR AN ORDERED METAMATERIAL

Consider a dielectric bilayer composed of materials with
refractive indices n1,n2 and thicknesses d1,d2, respectively,
stacked along the z direction. The total electric field in any
layer is a superposition of forward and reflected electric fields,

Ẽ1 = E+
1 eik1·r + E−

1 eik′
1·r. (A1)

Here, E
+,−
1 are the electric-field amplitudes where the super-

scripts +,− denote forward and backward traveling waves,
respectively, and k1,k′

1 are the wave vectors specifying the
direction of propagation of incident and reflected waves.
Likewise, the total electric field in layer 2 is as follows:

Ẽ2 = E+
2 eik2·r + E−

2 eik′
2·r. (A2)

Next, assume that the incident wave makes an angle θ1

with the normal to the interface situated at z = d1. Then, from
the boundary conditions, we obtain |k1| = |k′

1|, |k1| sin θ1 =
|k2| sin θ2, where θ2 is the angle of refraction. For a plane-
polarized wave we obtain the following constraints between
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the electric-field amplitudes [41]:

1

α1
E+

1 eiδ1 + 1

α1
E−

1 e−iδ1 = E+
2 + E−

2 , (A3)

1

β1
E+

1 eiδ1 − 1

β1
E−

1 e−iδ1 = E+
2 − E−

2 , (A4)

where r = d1ẑ (along the direction of the stack) and we have
defined δ1 = |k1|d1 cos θ1. Here, α1 = cos θ2

cos θ1
and β1 = μ1n2

μ2n1
. It

is convenient to express these relations in the form of a transfer
matrix relating the electric-field amplitudes to the left and right
of a dielectric layer—(

E+
2

E−
2

)
=

( α1+β1

2α1β1
eiδ1 β1−α1

2α1β1
e−iδ1

β1−α1

2α1β1
eiδ1 α1+β1

2α1β1
e−iδ1

)(
E+

1
E−

1

)
.

Note, due to energy conservation (we have assumed no absorp-
tion) and time-reversal invariance, the transfer matrix has a real
trace and a unit determinant [42]. Consequently, any product
of these matrices will also have a unit determinant.

Likewise, for the wave incident from medium 2 to medium
1, β2 = 1

β1
, α2 = 1

α1
, and δ2 = |k2|d2 cos θ2, and we find the

matrix relation,(
E+

3

E−
3

)
=

(
α1+β1

2 eiδ2 − β1−α1

2 e−iδ2

− β1−α1

2 eiδ2 α1+β1

2 e−iδ2

)(
E+

2

E−
2

)
.

The overall transfer matrix for the bilayer is now

M =
(

A B

B∗ A∗

)
, (A5)

where

A = 1

1 − r2
(ei(δ1+δ2) − r2ei(δ1−δ2)), (A6)

B = 2ir

1 − r2
e−iδ1 sin δ2, (A7)

where r = β1−α1

β1+α1
. (An identical calculation for a wave that is

polarized perpendicular to the plane leads to the same form for
the transfer matrix with the replacement r = α1β1−1

α1β1+1 ).
Next, we define the product of N − 1 matrices as MN =

MN−1MN−2 · · ·M1 to obtain the overall relation between
the incident wave amplitude and the wave amplitude after
traversing N bilayers—(

E+
N

E−
N

)
= MN

(
E+

1
E−

1

)
. (A8)

Upon normalizing the columns in Eq. (A8) with respect to
the incident wave amplitude E+

1 , we find⎛
⎝E+

N

E+
1

E−
N

E+
1

⎞
⎠ = MN

(
1

E−
1

E+
1

)
. (A9)

By definition, the (complex) transmitted amplitude is τ = E+
N

E+
1

,

and the complex reflection amplitude is ρ = E−
1

E+
1

, whereas there
is no backward propagating wave at the end of the N layers,

i.e., E−
N

E+
1

= 0. Solving the matrix equations, we find

τ = MN (1,1) + MN (1,2)ρ,

0 = MN (2,1) + MN (2,2)ρ,

where, in addition, M∗
N (1,1) = M∗

N (2,2) and M∗
N (1,2) =

M∗
N (2,1). Solving these, we obtain

ρ = −MN (2,1)

MN (2,2)
, (A10)

and

τ = MN (2,2)MN (1,1) − MN (2,1)MN (1,2)

MN (2,2)
.

Since det{MN } = 1, the above expression simplifies to

τ = 1

MN (2,2)
. (A11)

Therefore, the overall power transmitted is |τ |2 = T =
1

|MN [1,1]|2 = 1
|MN [2,2]|2 . By energy conservation, the power re-

flected is R = 1 − T .
For the ordered case, where all the layers have the same

thicknesses, we have the following analytic expression for the
overall power transmitted [24]:

TN = 1

1 + |M(1,2)|2( sin(Nγ )
sin(γ )

)2 , (A12)

where γ is the complex Bloch wave vector that satisfies the
condition,

2 cos γ = Tr{M}. (A13)

An analogous derivation follows for one-dimensional me-
chanical displacement fields (acoustic) where we identify the
parameter β = ρ2c2

ρ1c1
where ρ1,2 are the densities of the two

layers comprising the bilayer and c1,2 is the corresponding
speed of sound in the respective layers.

APPENDIX B: LOGARITHMIC AVERAGING

To intuitively appreciate the advantage of taking the loga-
rithm of a product of random variables, consider the product
of N -independent (positive) random variables—

S = x1x2x3 · · · xN . (B1)

Under general assumptions where the central limit theorem
holds, we would expect the sum of logarithms,

ln(S) = ln(x1) + ln(x2) + ln(x3) · · · ln(xN ) (B2)

to obey the central limit theorem. Consequently, ln(S) in
Eq. (B2) will be normally distributed whose mean and mode
coincide, whereas the distribution of S will be a lognormal.
If the mean and mode coincide, then the most likely value
of the random variable coincides with the average, which is a
good feature. A generalized version of the central limit theorem
for a product of 2×2 random matrices with entries which are
complex numbers is given in Ref. [43].

Furthermore, for a disordered one-dimensional system, it
can be shown that the ratio of variance of ln(S) in Eq. (B2) to
its mean-squared value (relative fluctuations) decays linearly
with the system size whereas for the variable S in Eq. (B1), the
relative fluctuations grow exponentially with the system size,
see Ref. [44] for a derivation of this result. Thus, the logarithm
of the power transmittance has better self-averaging properties.
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APPENDIX C: ALTERNATE DERIVATION
OF LOCALIZATION LENGTH

In this appendix, we re-derive the localization length
Eq. (12) by following the derivations in Ref. [18], albeit,
keeping track of an additional wavelength-dependent factor
which, in this case, comes from the barrier layer having a nearly
constant thickness. Since the random variations occur in only
the background medium, we write the transfer matrix given in
Eq. (1) for the nth bilayer as

Mn = |E|e−iδn

1 − r2

(
E
|E|zn

�
|E|

�∗
|E|zn

E∗
|E|

)
,

= |E|e−iδn

1 − r2
M̃n,

where E = eiδ2 − r2e−iδ2 , � = 2ir sin δ2, and zn = e2iδn .
Here, δ2 is a constant phase across the barrier layer (no random
variation), whereas δn is the random phase accumulated as the
wave propagates through the background layer after n bilayers.

For a stack of N bilayers, we use the following definition for
the Lyapunov exponent (which is proportional to the inverse
Anderson localization length):

ζb = 2 lim
N→∞

Re〈ln Tr{MN }〉
N

, (C1)

whereby we need to evaluate the expression,

Re

〈
ln

[( |E|
1 − r2

)N

e−i(δ1+δ2···+δn)Tr{M̃n · · ·M̃1}
]〉

. (C2)

Upon taking the real part of Eq. (C2), the exponential factor
containing random phases drops out. The expectation value
can now be evaluated by assuming that, due to strong disorder,
the phases δn take all possible values from 0 to 2π . Thus, we
convert the phase integral into a contour integral in terms of
the complex random variable zn (where |zn| = 1 over the unit
circle) to obtain the expression [18],

ζb = 2 ln

( |E|
1 − r2

)
+ 2 lim

N→∞
1

(2πi)N

∮
dz1

z1
· · ·

∮
dzn

zn

× ln Tr

[(
E
|E|z1

�
|E|

�∗
|E|z1

E∗
|E|

)
· · ·

(
E
|E|zn

�
|E|

�∗
|E|zn

E∗
|E|

)]
. (C3)

The contour integrals on the right-hand side are given by
the residues at zk = 0 (k = 1 · · · n) and therefore vanish [18].
Consequently, the exponent is

ζb = ln

(
1 + 4r2

(1 − r2)2
sin2(δ2)

)
, (C4)

from where the localization length in the strongly disordered
regime is

lb = d

ζb

, (C5)

recovering Eq. (12) given in the main text.
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FIG. 6. We compare the spectrum of reflected power obtained
analytically (solid curves) as given in Eq. (17) where the localiza-
tion length is given in Eq. (12) with the numerical data obtained
after ensemble averaging 100 realizations of the logarithm of the
power transmitted obtained by calculating the product of transfer
matrices comprising the disordered medium (square symbols). Here,
the colors correspond to thicknesses of the guanine layers dg =
19 nm (blue), dg = 50 nm (maroon), dg = 80 nm (orange), and dg =
110 nm (black) with no random variations whereas the thickness of
cytoplasm layer is drawn from a Gaussian distribution with mean
dc = 230 nm and standard deviation σc = 94 nm.

APPENDIX D: DEPENDENCE OF THE FISH
REFLECTION SPECTRUM ON THE THICKNESS

OF GUANINE-CYTOPLASM LAYERS

In this appendix, we study how the reflection spectrum of
fish changes as we explore a subset of the guanine-cytoplasm
thickness parameter space. To study the effects of the mean
thickness of the guanine layer on the reflection spectrum
of fish, we assume that the guanine layer has no disorder
and vary its thickness from dg = 19 nm (blue), dg = 50 nm
(maroon), dg = 80 nm (orange) to dg = 110 nm (black) as
shown in Fig. 6. Furthermore, we assume that the statistics
of the cytoplasm layer is drawn from a Gaussian distribution
with mean dc = 230 nm and standard deviation σc = 94 nm.

As we see in Fig. 6, the reflected power evaluated numeri-
cally (square symbols) compares very well with the reflected
power evaluated analytically using Eq. (17) from the main
text—

R ∼ 1 − exp(−L/ζ ), (D1)

where L is the system size and ζ is the localization length,
which for the guanine layer of constant thickness is given in
Eq. (12) of the main text. Barring the change in intensity of the
power reflected, we see that a broadband reflectance is obtained
for dg = 20,50,80 nm. However, when dg = 110 nm (black
curve), we find that a lower cutoff gets introduced in the visible
spectrum at around λ = 400 nm and we expect that this cutoff
will tend to make the appearance of fish silver, see Ref. [45] for
plots of the reflection spectrum of metallic silver. Furthermore,
we have checked that, in this regime of strong disorder, varying
the mean thickness of the cytoplasm layers (from dc = 150 to
240 nm) does not effect the reflection spectrum.
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FIG. 7. Comparison of numerical (symbols) and analytical (solid)
plots of the reflection spectrum with the statistics of the cytoplasm
layer drawn from a Gaussian distribution with mean dc = 230 nm
and standard deviation σc = 94 nm whereas that of the guanine
layer also drawn from a Gaussian distribution with two choices of
mean: (1) dg = 80 nm and standard deviation σg = 0 nm (orange
square symbols), σg = 20 nm (pink square symbols), and σg =
40 nm (green square symbols) and (2) dg = 19 nm and standard
deviation σg = 0 nm (blue square symbols) and σg = 10 nm (yellow
square symbols). Here, the horizontal black line corresponds to the
wavelength- and disorder-independent reflection spectrum obtained
using Eq. (D1) with ζ ∼ −1

ln(1−r2)
as derived in Eq. (14), the solid

maroon curve corresponds to using Eq. (D1) with the localization
length derived in Eq. (12) with the mean thickness of the guanine
layer dg = 80 nm, whereas the solid blue curve corresponds to using
Eq. (D1) with the localization length derived in Eq. (12) with the mean
thickness of the guanine layer dg = 19 nm (the parameters of the Koi
fish are discussed in the main text).

In Fig. 7, we explore how the reflection spectrum of fish
changes if the thickness of the guanine layer also varies
randomly. Here, we continue to assume that the thickness of
the cytoplasm layer is drawn from a Gaussian distribution
with mean dc = 230 nm and standard deviation σc = 94 nm
whereas that of the guanine layer is also drawn from a Gaussian
distribution with two choices of the mean thickness and varying
disorder: (1) dg = 80 nm with standard deviation σg = 0 nm

(orange square symbols), σg = 20 nm (pink square symbols),
and σg = 40 nm (green square symbols) and (2) dg = 19 nm
with standard deviation σg = 0 nm (blue square symbols)
and σg = 10 nm (yellow square symbols). Here, the horizon-
tal black line corresponds to the wavelength- and disorder-
independent reflection spectrum obtained using Eq. (D1) with
localization length,

ζ = − (dg + dc)

ln(1 − r2)
, (D2)

as derived in Eq. (14), whereas the blue and maroon curves
correspond to the localization length derived in Eq. (12) with
mean thicknesses of 19 and 80 nm, respectively.

As we see from Fig. 7, for zero or small values of disorder
in the thickness of the guanine layer (blue, orange, and pink
squares), the numerical data continue to agree reasonably
well with the regime of localization derived in the text for
Koi fish. However, for dg = 80, σg = 40 nm (green square
symbols), we find a crossover in the reflection spectrum with
the localization length agreeing better with Eq. (D2) at lower
wavelengths and with the weak disorder regime described by
Eq. (15) at higher wavelengths (around 1500 nm and above,
not shown in the figure).

Furthermore, when dg = 19 and σg = 10 nm (yellow
square symbols), i.e., the case of thin guanine layers discussed
in the main text but with disorder added, we see that the
reflection spectrum continues to follow the curve described
by the wavelength-dependent localization length derived in
Eq. (12) except that the intensity of the power reflected is
higher. Note that, in the case of such thin layers, we do
not see a crossover to a wavelength-independent reflection
spectrum described by Eq. (14). In order to see such a crossover
within the visible spectrum, the mean thickness of both layers
comprising the bilayer should be greater than around 100 nm
so that, in a disordered sample, the ratio of standard deviation
to wavelengths is at least unity (strong disorder for both layers
comprising the bilayer). Qualitatively however, we continue
to expect a white-silver appearance for the fish within the
parameter space explored in Fig. 7.

We further explore the effects of disorder and spatial
correlations in biological systems in an ongoing work [34].

[1] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and
Engineering Explorations (Wiley, Hoboken, NJ, 2006).

[2] Acoustic Metamaterials and Phononic Crystals, edited by P. A.
Deymier, Springer Series in Solid-State Sciences Vol. 173
(Springer, Berlin/Heidelberg, 2013).

[3] W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals
and Applications (Springer, New York, 2009).

[4] J. B. Pendry and D. R. Smith, Reversing light: Negative refrac-
tion, Phys. Today 57(6), 37 (2003).

[5] D. Schurig et al., Metamaterial electromagnetic cloak at mi-
crowave frequencies, Science 314, 977 (2006).

[6] A. Alu and N. Engheta, Guided modes in a waveguide filled with
a pair of single-negative (SNG), double-negative (DNG), and/or
double-positive (DPS) layers, IEEE Trans. Microwave Theory
Tech. 52, 199 (2004).

[7] K. Bertoldi, P. M. Reis, S. Willshaw, and T. Mullin, Nega-
tive poisson’s ratio behavior induced by an elastic instability,
Adv. Mater. 22, 361 (2009).

[8] S. Zhang, C. Xia, and N. Fang, Broadband Acoustic Cloak for
Ultrasound Waves, Phys. Rev. Lett. 106, 024301 (2011).

[9] C. Q. Cook and A. Amir, Theory of chirped photonic crystals in
biological broadband reflectors, Optica 3, 1436 (2016).

[10] D. R. McKenzie, Y. Yin, and W. D. McFall, Silvery fish skin as
an example of chaotic reflector, Proc. R. Soc. London, Ser. A
451, 579 (1995).

[11] A. Levy-Lior et al., Guanine based biogenic photonic crystal
arrays in fish and spiders, Adv. Funct. Mater. 20, 320 (2010).

[12] M. van Hecke, Jamming of soft particles: Geometry, mechanics,
scaling and isostaticity, J. Phys.: Condens. Matter 22, 033101
(2009).

075201-9

https://doi.org/10.1063/1.1784272
https://doi.org/10.1063/1.1784272
https://doi.org/10.1063/1.1784272
https://doi.org/10.1063/1.1784272
https://doi.org/10.1063/1.1784272
https://doi.org/10.1126/science.1133628
https://doi.org/10.1126/science.1133628
https://doi.org/10.1126/science.1133628
https://doi.org/10.1126/science.1133628
https://doi.org/10.1109/TMTT.2003.821274
https://doi.org/10.1109/TMTT.2003.821274
https://doi.org/10.1109/TMTT.2003.821274
https://doi.org/10.1109/TMTT.2003.821274
https://doi.org/10.1002/adma.200901956
https://doi.org/10.1002/adma.200901956
https://doi.org/10.1002/adma.200901956
https://doi.org/10.1002/adma.200901956
https://doi.org/10.1103/PhysRevLett.106.024301
https://doi.org/10.1103/PhysRevLett.106.024301
https://doi.org/10.1103/PhysRevLett.106.024301
https://doi.org/10.1103/PhysRevLett.106.024301
https://doi.org/10.1364/OPTICA.3.001436
https://doi.org/10.1364/OPTICA.3.001436
https://doi.org/10.1364/OPTICA.3.001436
https://doi.org/10.1364/OPTICA.3.001436
https://doi.org/10.1098/rspa.1995.0144
https://doi.org/10.1098/rspa.1995.0144
https://doi.org/10.1098/rspa.1995.0144
https://doi.org/10.1098/rspa.1995.0144
https://doi.org/10.1002/adfm.200901437
https://doi.org/10.1002/adfm.200901437
https://doi.org/10.1002/adfm.200901437
https://doi.org/10.1002/adfm.200901437
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101


NITIN UPADHYAYA AND ARIEL AMIR PHYSICAL REVIEW MATERIALS 2, 075201 (2018)

[13] V. F. Nesterenko, Dynamics of Heterogeneous Materials
(Springer-Verlag, New York, 2001).

[14] O. Brandt and K. H. Ploog, Solid-state lighting: The benefit of
disorder, Nat. Mater. 5, 769 (2006).

[15] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[16] W. S. Diederik, B. Paolo, A. Lagendijk, and R. Righini, Local-
ization of light in a disordered medium, Nature (London) 390,
671 (1997).

[17] V. Baluni and J. Willemsen, Transmission of acoustic waves in
a random layered medium, Phys. Rev. A 31, 3358 (1985).

[18] M. V. Berry and S. Klein, Transparent mirrors: Rays, waves and
localization, Eur. J. Phys. 18, 222 (1997).

[19] F. M. Izrailev and N. M. Makarov, Localization in Correlated
Bilayer Structures: From Photonic Crystals to Metamaterials
and Semiconductor Superlattices, Phys. Rev. Lett. 102, 203901
(2009).

[20] E. Abrahams, 50 years of Anderson Localization (World
Scientific, Singapore, 2010).

[21] Optical Properties of Photonic Structures: Interplay of Order
and Disorder, edited by M. F. Limonov and M. Richard (CRC
Press, Boca Raton, FL, 2012).

[22] Shi et al., Strong localization of surface plasmon polaritons with
engineered disorder, Nano Lett. 18, 1896 (2018).

[23] E. Maguid et al., Disorder-induced optical transition from spin
Hall to random Rashba effect, Science 358, 1411 (2017).

[24] G. A. Luna-Acosta, F. M. Izrailev, N. M. Makarov, U. Kuhl, and
H. J. Stöckmann, One dimensional Kronig-Penney model with
positional disorder: Theory versus experiment, Phys. Rev. B 80,
115112 (2009).

[25] P. Markoš and C. M. Soukoulis, Wave Propagation: From
Electrons to Photonic Crystals and Left-Handed Materials
(Princeton University Press, Princeton, 2008).

[26] A. Amir and P. Vukusic, Elucidating the stop bands of struc-
turally colored systems through recursion, Am. J. Phys. 81, 253
(2013).

[27] Regarding the notation here, we are not implying that mean (T )
is the same as exp[mean(ln T )], rather, Eq. (11) is simply to
suggest that the value of transmission we expect to observe is
exp[mean(ln T )].

[28] P. Herring, The Biology of the Deep Ocean (Oxford University
Press, New York, 2002).

[29] E. J. Denton, On the organization of reflecting surfaces in some
marine animals, Philos. Trans. R. Soc., B 258, 285 (1970).

[30] Lord Rayleigh, On the reflection of light from a regularly
stratified medium, Proc. R. Soc. London, Ser. A 93, 565 (1917).

[31] S. Kinoshita, Structural Colors in the Realm of Nature (World
Scientific, Singapore, 2008).

[32] T. M. Jordan, J. C. Partridge, and N. W. Roberts, Non-polarizing
broadband multilayer reflectors in fish, Nat. Photon. 6, 759
(2012).

[33] T. M. Jordan, J. C. Partridge, and N. W. Roberts, Disordered
animal multilayer reflectors and the localization of light, J. R.
Soc., Interface 11, 20140948 (2014).

[34] K. Zhou and A. Amir, Theory and Design of Photonic Crystals
in Broadband Biological Reflectors (unpublished).

[35] V. F. Nesterenko, Dynamics of Heterogeneous Materials
(Springer-Verlag, New York, 2001).

[36] S. Ulrich, N. Upadhyaya, B. V. Opheusden, and V. Vitelli, Shear
shocks in fragile networks, Proc. Natl. Acad. Sci. USA 110,
20929 (2013).

[37] S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers
University Press, New Brunswick, NJ, 2002).

[38] S. Noda, M. Fujita, and T. Asano, Spontaneous-emission control
by photonic crystals and nanocavities, Nat. Photon. 1, 449
(2007).

[39] L. Onsager, Statistical hydrodynamics, Nuovo Cimento 6, 279
(1949).

[40] M. Wilkinson, V. Bezuglyy, and B. Mehlig, Emergent order in
rheoscopic swirls, J. Fluid Mech. 667, 158 (2011).

[41] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice
Hall, Upper Saddle River, NJ, 1999).

[42] M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon
Press, New York, 1970).

[43] H. Furstenberg and H. Kesten, Products of random matrices,
Ann. Math. Stat. 31, 457 (1960).

[44] A. A. Abrikosov, The paradox with the static conductivity of a
one dimensional metal, Solid State Commun. 37, 997 (1981).

[45] http://spectrumthinfilms.com/stf/coatings/metallic-coatings-
reflective/

075201-10

https://doi.org/10.1038/nmat1728
https://doi.org/10.1038/nmat1728
https://doi.org/10.1038/nmat1728
https://doi.org/10.1038/nmat1728
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1103/PhysRevA.31.3358
https://doi.org/10.1103/PhysRevA.31.3358
https://doi.org/10.1103/PhysRevA.31.3358
https://doi.org/10.1103/PhysRevA.31.3358
https://doi.org/10.1088/0143-0807/18/3/017
https://doi.org/10.1088/0143-0807/18/3/017
https://doi.org/10.1088/0143-0807/18/3/017
https://doi.org/10.1088/0143-0807/18/3/017
https://doi.org/10.1103/PhysRevLett.102.203901
https://doi.org/10.1103/PhysRevLett.102.203901
https://doi.org/10.1103/PhysRevLett.102.203901
https://doi.org/10.1103/PhysRevLett.102.203901
https://doi.org/10.1021/acs.nanolett.7b05191
https://doi.org/10.1021/acs.nanolett.7b05191
https://doi.org/10.1021/acs.nanolett.7b05191
https://doi.org/10.1021/acs.nanolett.7b05191
https://doi.org/10.1126/science.aap8640
https://doi.org/10.1126/science.aap8640
https://doi.org/10.1126/science.aap8640
https://doi.org/10.1126/science.aap8640
https://doi.org/10.1103/PhysRevB.80.115112
https://doi.org/10.1103/PhysRevB.80.115112
https://doi.org/10.1103/PhysRevB.80.115112
https://doi.org/10.1103/PhysRevB.80.115112
https://doi.org/10.1119/1.4789883
https://doi.org/10.1119/1.4789883
https://doi.org/10.1119/1.4789883
https://doi.org/10.1119/1.4789883
https://doi.org/10.1098/rstb.1970.0037
https://doi.org/10.1098/rstb.1970.0037
https://doi.org/10.1098/rstb.1970.0037
https://doi.org/10.1098/rstb.1970.0037
https://doi.org/10.1098/rspa.1917.0040
https://doi.org/10.1098/rspa.1917.0040
https://doi.org/10.1098/rspa.1917.0040
https://doi.org/10.1098/rspa.1917.0040
https://doi.org/10.1038/nphoton.2012.260
https://doi.org/10.1038/nphoton.2012.260
https://doi.org/10.1038/nphoton.2012.260
https://doi.org/10.1038/nphoton.2012.260
https://doi.org/10.1098/rsif.2014.0948
https://doi.org/10.1098/rsif.2014.0948
https://doi.org/10.1098/rsif.2014.0948
https://doi.org/10.1098/rsif.2014.0948
https://doi.org/10.1073/pnas.1314468110
https://doi.org/10.1073/pnas.1314468110
https://doi.org/10.1073/pnas.1314468110
https://doi.org/10.1073/pnas.1314468110
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1017/S0022112010004441
https://doi.org/10.1017/S0022112010004441
https://doi.org/10.1017/S0022112010004441
https://doi.org/10.1017/S0022112010004441
https://doi.org/10.1214/aoms/1177705909
https://doi.org/10.1214/aoms/1177705909
https://doi.org/10.1214/aoms/1177705909
https://doi.org/10.1214/aoms/1177705909
https://doi.org/10.1016/0038-1098(81)91203-5
https://doi.org/10.1016/0038-1098(81)91203-5
https://doi.org/10.1016/0038-1098(81)91203-5
https://doi.org/10.1016/0038-1098(81)91203-5
http://spectrumthinfilms.com/stf/coatings/metallic-coatings-reflective/



