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Zirconia and hafnia polymorphs: Ground-state structural properties from diffusion Monte Carlo
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Zirconia (zirconium dioxide) and hafnia (hafnium dioxide) are binary oxides used in a range of applications.
Because zirconium and hafnium are chemically equivalent, they have three similar polymorphs, and it is important
to understand the properties and energetics of these polymorphs. However, while density functional theory
calculations can get the correct energetic ordering, the energy differences between polymorphs depend very
much on the specific density functional theory approach, as do other quantities such as lattice constants and
bulk modulus. We have used highly accurate quantum Monte Carlo simulations to model the three zirconia and
hafnia polymorphs. We compare our results for structural parameters, bulk modulus, and cohesive energy with
results obtained from density functional theory calculations. We also discuss comparisons of our results with
existing experimental data, in particular for structural parameters where extrapolation to zero temperature can
be attempted. We hope our results of structural parameters as well as for cohesive energy and bulk modulus can
serve as benchmarks for density-functional theory based calculations and as a guidance for future experiments.
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I. INTRODUCTION

Zirconium dioxide (zirconia), ZrO2, is a simple oxide
with a range of interesting properties that makes it useful
for important current as well as potential future applications.
Zirconia has high mechanical strength and stability at elevated
temperatures, high wear resistance, and is chemically inert.
While originally used in refractory applications, it now also
has application in a wide range of areas, ranging from medical
devices to cutting tools and solid electrolytes [1,2]. Zirco-
nia is also interesting—and important—for another reason.
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Zirconium alloys are used as cladding in nuclear fuel rods in
nuclear power stations. During fuel burn-up with the fuel rods
immersed in water, the zirconium will oxidize because of con-
tact with the water, and hydrogen migrates into the zirconium
metal alloy. The oxide is mostly protective in that it prevents
water from being in direct contact with metallic zirconium, and
further oxidation depends on diffusion of oxygen and hydrogen
through the zirconia. However, the zirconia tends to crack along
grain boundaries, at which oxidation continues unabated [3].

Hafnium dioxide (hafnia), HfO2, is also of great interest
because of its unique electronic and structural properties. Its
wide band-gap, high thermal stability, and large dielectric
constant make HfO2 thin films important in applications
such as optical coatings and resistive random-access memory
[4–13]. Hafnia also has good chemical compatibility with
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FIG. 1. Structures of the three zirconia and hafnia polymorphs
with oxygen in red and Zr or Hf in blue. The Zr (Hf) transition
temperatures are indicated above (below) the arrows.

silicon, and a higher heat of formation than SiO2. This makes
hafnia ideal to replace SiO2 in integrated electronic devices.
Its high dielectric response enables reduction of the gate
thickness of the gate dielectric layer in oxide-semiconductor
field effect transistors while suppressing leakage currents
through quantum mechanical tunneling through the dielectric
layer [12]. Because thin films of hafnia may exhibit a wide
range of crystallographic phases and size-dependent phase
transitions across several polymorphs, an accurate energetic
analysis of the different crystalline forms with the best level of
theory at hand is crucial for their theoretical characterization.

Zirconium and hafnium are in the same column, column 4,
of the periodic table and therefore have very similar chemical
properties. They have similar ionic and atomic radii due to the
lanthanide contraction; the almost identical bonding nature and
electronic properties of the ZrO2 and HfO2 molecules stem
from the similarities of the atomic properties of Zr and Hf
[14–16]. Another consequence of the nearly indistinguishable
chemical natures of the Hf and Zr atoms is that bulk hafnia
and zirconia have similar crystal phases and phase diagrams
[17–20]. However, experimental and theoretical studies of
the Si:HfO2(ZrO2) interface have shown that the Si:HfO2 is
more thermodynamically stable than the Si:ZrO2 interface
[21]. This indicates that there are some differences in the
bulk properties of ZrO2 and HfO2, in contrast to the very
similar zirconia and hafnia molecular systems. Zirconia and
hafnia both have several polymorphs: at ambient pressure a
low-temperature monoclinic (m-ZrO2 and m-HfO2) phase, a
subsequent transformation to a tetragonal phase (t-ZrO2 and
t-HfO2) at 1478 K for ZrO2 and about 2000 K for HfO2, and to
a high-temperature cubic phase at (c-ZrO2 and c-HfO2) at 2650
K and 2870 K, respectively, as illustrated in Fig. 1; the melting
temperatures are about 2950 K and 3118 K, respectively.

For ZrO2, the m-ZrO2 to t-ZrO2 transition is particularly
important as this can bring about catastrophic fracture because
of the accompanying shear strain of about 0.16 and 4% volume
change at the transition. Such strain can be accommodated
by metals, but usually not by ceramics. However, it was
realized that this transformation can be controlled and used
as a source of transformation plasticity and transformation
toughening in engineered two-phase microstructures. This
led to much expanded applications from its original limited
use in refractory applications. Because of the large volume
changes not only in m-ZrO2 to t-ZrO2, but also in t-ZrO2

to c-ZrO2 (3%), and their implications for applications, it is
of fundamental interest to understand the energetics of these
phases.

While there exist accurate experimental data for struc-
tural and electronic properties, such as lattice parameters,
bulk modulus, and cohesive energy, for zirconia polymorphs
obtained using x-ray or mass spectrometric measurements,
there does not exist a similar large body of experimental
data for hafnia [22–25]. Structural and electronic properties
of the low-temperature m-HfO2 phase have been determined
at room temperature using x-ray diffraction [26–32]. Lattice
parameters have been reported for t-HfO2 and c-HfO2, but
detailed structural and electronic characterizations are still
lacking [26,27,33,34]. Because of difficulties in experimental
measurements of the high-temperature HfO2 polymorphs, it is
necessary to use a theoretical approach to accurately establish
structural and electronic properties of t-HfO2 and c-HfO2.

From a modeling perspective, the question is then how to
accurately obtain the energetic ordering and stability of the zir-
conia polymorphs, as well as the basic structural and electronic
properties of hafnia polymorphs. There have been a number of
density functional theory-based studies of the energetics of
the zirconia polymorphs [25,35–47]; Jiang et al. also included
many-body perturbation theory (GW approximation) in their
study of the electronic properties of zirconia [37]. While DFT
can get the energetic ordering right [40–42], the calculated
energy differences between the polymorphs depend very much
on the specific exchange-correlation functional that is used.

Several works have attempted to determine the equation
of state (EOS) of hafnia polymorphs using density functional
theory (DFT) within the local density approximation (LDA) or
generalized gradient approximation (GGA) [48–50]. However,
neither LDA nor GGA exchange-correlation (XC) functionals
can simultaneously obtain good results for lattice parameter
and bulk modulus; for example, in Ref. [48], the LDA lattice
parameters a, b, and c for m-HfO2 were computed to be 5.12,
5.17, and 5.29 Å, respectively, which are in excellent agree-
ment with experimental values [27]. However, the estimated
bulk modulus of 251 GPa is significantly smaller than the
experimental value of 284 GPa [51]. Jiang et al. [37] also
studied the electronic structure of hafnia polymorphs within
the LDA approximation as well as within the G0W0 and GW0

many-body perturbation schemes with good results for the
latter for t-HfO2.

The problem in obtaining quantitatively accurate results
from such calculations stems from the fact that Zr and Hf have
4d and 5d electrons. In oxides, 3d, 4d, and 5d electrons are
rather localized and lead to electronic correlation effects that
are very difficult to capture using DFT. Hybrid functionals can
often do a better job for semiconductors than more standard
GGA or so called DFT+U calculations, in which a Hubbard U

parameter is added to the d orbitals in addition to the regular
GGA (or LDA) functional. However, there is no guarantee
that hybrid functionals will give quantitatively more accurate
results for transition metal oxides than do other exchange-
correlation functionals [52]. In addition, hybrid functionals are
much more computationally expensive than local or semilocal
functionals.

It is obviously of great interest to establish computa-
tional benchmarks both to guide DFT-based developments and
modeling, but also to help guide experimental measurements
where obtained results have great uncertainties. This is for
example the case with measurements of the bulk modulus
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of zirconia polymorphs, especially t-ZrO2 and c-ZrO2, with
the latter having experimental uncertainties of almost 100%
[23,46]. In this work, we have performed quantum Monte Carlo
(QMC) simulations in order to establish such benchmarks and
also to help establish properties with better certainty where
experimental uncertainty is quite large, e.g., the bulk modulus
of c-ZrO2. Of course, the computational results are for T = 0
K. We will therefore discuss our results from two different
perspectives. The first one is just to compare and discuss
our DFT and DMC calculations with other calculated values
in the literature—such comparisons are unambiguous insofar
as all calculations are at 0 K. The second perspective is to
compare with experimental data. One possible way to do so
is to add the effects finite temperatures to the calculations
using the quasiharmonic approximation to add entropic con-
tributions from lattice vibrations. However, such calculations
cannot presently be done within QMC. Therefore, the finite-
temperature contributions would have to be done using DFT
and would then add to the QMC 0 K electronic energy the same
DFT-based contribution at finite temperatures as it would to
some other DFT calculations. That makes such comparisons
rather meaningless since one would add the same finite-
temperature contributions to DMC and DFT and so still end
up comparing 0 K electronic energies. Instead, we will focus
on using available experimental data for thermal expansion
to extrapolate lattice parameters to 0 K for comparison with
calculated lattice parameters [23,25,39]. This works rather well
for the monoclinic and tetragonal phases, for which there exist
rather extensive measurements, but is a bit more difficult for
the cubic phases, for which there are fewer experimental data.
There are also experimental data on bulk moduli and for some
values of cohesive energies [22]. We will briefly discuss these
from the perspective of first-principle modeling.

We also examine the energetics of tetragonal distortions
of oxygen columns in t-ZrO2 and t-HfO2. In t-ZrO2, these
distortions play an important role in the tetragonal to cubic
transition, and also greatly affect the optical gap (at the �

point) in t-HfO2 [37,47]. We compare the energetics of such
distortions obtained from DFT with the energetics from DMC.
Because of the computational expense of the DMC calcula-
tions, we had to restrict the motion of the oxygen columns
to be strictly along the c axis. Nevertheless, a comparison
between the DFT and DMC results is instructive. We did also
perform full structural optimization, including lattice vectors,
for the tetragonal structure using the PBE0 hybrid functional
to confirm that the distortion of the oxygen columns along the
c axis is the only relevant degree of freedom in the tetragonal
distortion.

II. QMC METHODS

A. Variational and diffusion Monte Carlo

The properties and behavior of materials and molecules can
be accessed at the quantum level through solving the time-
independent Schrödinger equation, H�(R) = E�(R), where
H is the Hamiltonian describing the interactions between the
N electrons at coordinates r1, . . . ,rN and the atomic nuclei,
�(r1,...,rN ) is the many-body wave function and E the energy.

The Hamiltonian describing electrons in a solid is

H =
N∑

i=1

[
−1

2
∇2

i + vext(ri)

]
+

N∑
i<j

1

rij

, (1)

where the first two terms are the kinetic energy and the external
single-particle potential from the nuclei, respectively, and the
last term describes the electron-electron interactions. This last
term is responsible for moving the Schrödinger equation from
a 3D partial differential equation to a 3N -dimensional partial
differential equation, where N is the number of electrons.
The goal becomes to find the lowest eigenvalue in the 3N

dimensional space of the electrons. Many methods tend to
reduce the complexity by approximating the last term. The
approach in DFT is to study the equations of an auxiliary
system of N noninteracting electrons in a potential constructed
to give the same ground state density as the system of inter-
acting electrons [53,54]. The ground state energy can then be
evaluated, provided the exact energy functional of the density
is known. The great advantage of DFT is that the complexity of
the problem is reduced to that of N noninteracting electrons,
but the accuracy depends on the accuracy of the approximate
energy functional. DFT is considered the workhorse of elec-
tronic structure methods and has proven to be very robust [55],
but at the same time the accuracy of the method is strongly
dependent on the choice of the approximation.

In contrast, real-space QMC focuses on the many-body
electronic wave function, but instead of performing integrals
by explicit quadrature, one samples the many-body wave
function by performing a random walk in the 3N -dimensional
coordinate space of the electrons. Variational Monte Carlo
(VMC) is a direct application of the Rayleigh-Ritz varia-
tional method. If the trial wave function �T ({R}), where {R}
denotes the collection of 3N electron coordinates, satisfies
the requisite symmetries and boundary conditions, then the
ratio EV = ∫

d{R}�∗
T ({R})H�T ({R})/ ∫

d{R}|�T ({R})|2 is
an upper bound to the exact ground state energy. In this
work, we consider only the commonly-used generalized Slater-
Jastrow function:

�T ({R}) = exp [−J ({R})]
∑

k

ckdetk(φi(rj )), (2)

where the Jastrow function J ({R}) is a real function of all
the electron coordinates and is symmetric under electron
exchange; it serves to correlate the electrons. The determinants
keep the wave function antisymmetric, and the 3D functions
φi in the determinants are the orbitals selected in some
suitable way. The Jastrow function J ({R}) and the orbitals
are parameterized and their values optimized to minimize EV .
By avoiding the need to use forms that facilitate numerical
quadrature, Monte Carlo sampling allows the use of much
more complex trial wave functions encapsulating the electronic
correlations. This is essential in order to describe the physics of
the system, and most electronic structure methods lack accurate
descriptions of correlations.

VMC gives the lowest upper bound of the ground state
energy consistent with the assumed trial wave function in
Eq. (2). Diffusion Monte Carlo (DMC) goes further by finding
the lowest energy consistent with the nodes (or phase if it is
complex) of the assumed trial function; only the nodal surface
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of the trial wave function is preserved to maintain the required
antisymmetry of the wave function. We define the many-body
phase of the trial function by �({R}) = Im{ln([�T ({R})]}.
Then in the class of functions exp[−J ({R}) + i�({R})], we
minimize the ground state energy with respect to J ({R}). This
can be mapped to a random walk problem where instead of
working in a space of a single system, it is formulated in
an ensemble {Ri} of P “walkers.” Each walker executes a
random walk for a certain number of steps, then based on its
accumulated weight branches by either dying or making one or
more copies of itself. DMC has been found to lower the VMC
error by roughly an order of magnitude [56].

We use QMCPACK for the QMC calculations, and Quan-
tum Espresso 5.3.0 for all DFT calculations with kinetic energy
cutoffs of 350 Ry (450 Ry) for calculations of Zr and zirconia
(Hf and hafnia). DFT calculations using Quantum Espresso
were also used to generate the trial wave functions. Cohesive
energies for hcp Zr and Hf were calculated by subtracting the
calculated energy per atom of the bulk system from energy of
an isolated single atom. For oxides, we calculated the energy
per atom of the bulk oxide and subtracted the energy of a single
isolated metal (Zr or Hf) atom and that of two isolated oxygen
atoms. We did also use FHI aims [57–59] to do full structural
relaxations of t-ZrO2 and t-HfO2 using the “default light”
settings and numerical orbitals, 4 × 4 × 4 k-point meshes, and
the PBE0 hybrid functional [60].

B. Pseudopotentials, validation, and verification

DMC is very expensive because many walkers are needed to
reduce statistical noise. On the other hand, because the walkers
are statistically independent, DMC codes scale superbly on
leadership-class computers [61,62]. However, even on leader-
ship computers it is prohibitively expensive to include all elec-
trons in calculations of, e.g., transition metal oxides; instead,
pseudopotentials are used. In our work, scalar-relativistic pseu-
dopotentials for zirconium and hafnium were generated with
a plane-wave basis set, as implemented in OPIUM package
[63]. The pseudopotentials were created using the local density
approximation (LDA) exchange-correlation functional of DFT,
with semicore states included into valence. The zirconium
(hafnium) pseudopotential was based on 28 (60) core electrons
and 12 (12) valence electrons, and the oxygen pseudopotential
was based on six valence electrons. The electronic configura-
tions for the pseudopotentials were [Ar + 3d10]4s24p64d25s2,
[Pd + 4f14]5s25p65d26s2, and [He]2s22p4 for Zr, Hf, and O,
respectively.

In order to ascertain the accuracy of the pseudopotentials,
we first calculated the atomic properties of the zirconium and
hafnium atoms using DMC. To avoid interactions with spurious
periodic image atoms stemming from the periodic boundary
conditions in Quantum Espresso, we used a sufficiently large
computational cubic cell of side 20 Å with a single atom being
located at the center of the cell.

The first and second ionization potential and electron affin-
ity of an isolated atom can be calculated as E(N − 1) − E(N ),
E(N − 2) − E(N − 1), and E(N ) − E(N + 1), respectively.
Here, E(N − 1), E(N − 2), E(N + 1), and E(N ) represent
the total energy of charge-1 and charge-2 cations, anion, and
neutral atom, respectively. We did not compute the DMC

TABLE I. Estimated values of 1st-, 2nd ionization potential (IP),
and electron affinity (EA) in units of eV for an isolated Zr and Hf
atom.

LDA GGA DMC Expt.

Zr atom 1st IP 5.35 5.03 6.43(2) 6.63a

EA 2.03 1.75 0.41(3) 0.43(1)b

Hf atom 1st IP 5.98 5.72 6.78(2) 6.83a

2nd IP 11.88 11.84 14.55(2) 14.90a

aReference [64].
bReference [65].

electron affinity for Hf because the electron configuration of
an anion Hf, which is stabilized as the mixed state of 5d36s6p

and 5d26p3, is difficult to fully implement in a Slater-Jastrow
wave function, and instead we computed the first and second
ionization potentials. Table I shows the ionization potential
and electron affinity for Zr, and first and second ionization
potentials for Hf. The DMC results are in excellent agreement
with corresponding experimental values, while LDA and GGA
underestimate the atomic properties.

We also calculated properties of bulk hcp zirconium and
hafnium in order to verify the accuracy for the bulk systems
of our DMC calculations with the pseudopotentials we used.
For Zr, the initial DFT LDA trial wave functions were obtained
using a 6 × 6 × 6 k-point mesh, which provided k-point con-
vergence. The DMC calculations used a supercell consisting
of 16 Zr atoms (eight primitive unit cells). Twist-averaged
boundary conditions with a total of 64 twists were applied
to reduce one-body finite size effects [70]. In order to obtain
the equation of state of bulk hcp zirconium, we computed the
total energy as a function of unit cell volume (Fig. 2), keeping
c/a fixed at the experimental value of 1.59 for Zr. By using a
Vinet fit [71], we obtained equilibrium lattice constant, bulk
modulus, and cohesive energy, as shown in Table II. Even
though we did not perform a two-body finite size analysis for
Zr, the results for both lattice constant and bulk modulus are
in good agreement with experimental values, and the DMC

FIG. 2. Total DMC energy for hcp Zr as a function of unit cell
volume. The Vinet fit to the calculated points is indicated.
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TABLE II. Estimated values of the lattice constant (a), bulk
modulus(B0), and cohesive energy (Ecoh) for hcp zirconium and
hafnium computed with DFT and DMC.

LDA GGA DMC Expt.

hcp Zr a (Å) 3.16 3.24a 3.22(1) 3.23a

B0 (GPa) 104 96a 96(1) 92(3)b

Ecoh (eV/atom) 7.46 5.94(2) 6.25c

hcp Hf a (Å) 3.13 3.19 3.20(1) 3.19d

B0 (GPa) 119 108 110(1) 110e

Ecoh (eV/atom) 7.56 6.47 6.51(2) 6.44c

aReference [66].
bReference [67].
cReference [68].
dReference [69].
eReference [64].

cohesive energy for Zr is calculated to be just 0.31(2) eV/atom
smaller than the experimental one.

Similarly, we computed DMC total energies for various
volumes of a Hf hcp unit cell with the ratio of c/a fixed at
the experimental value of 1.58 [69]. We generated trial wave
functions with DFT calculations using LDA and GGA XC
functionals on a 12 × 12 × 12 k-point mesh for k-point con-
vergence using the hcp primitive unit cell. We also performed
a finite-size analysis for the DMC result of bulk hcp Hf by
twist-averaging DMC total energies over total 64 twists to
reduce the one-body finite size effect. We then extrapolated the
twist-averaged DMC total energies computed at different hcp
Hf supercells containing 8 (192 electrons), 15 (360 electrons),
and 22 (528 electrons) atoms to the thermodynamic limit
(N → ∞) using a single linear regression fit, as shown in the
inset of Fig. 3. Figure 3 shows DMC and DFT (LDA and GGA)
total energies as a function of the Hf unit cell volume. From this
EOS, the equilibrium lattice parameter, bulk modulus, and co-
hesive energy for a bulk Hf were obtained using a Vinet fit [see

FIG. 3. DMC total energy of a hcp Hf as a function of a unit
cell volume. The dotted lines represent Vinet fits. (Inset) DMC total
energy of hcp Hf as a function of 1/N , where N is the total number
of atoms in the computational supercell. The dotted line indicates a
single linear regression fit.

dotted lines in Fig. 3]. The results in Table II show that DMC
results for the structural parameters considered here are in good
agreement with experimental values. These results allow us to
conclude that the Hf pseudopotential is appropriate to describe
physical and electronic properties of a bulk Hf system, as well
as the Hf atomic properties, within the QMC framework.

III. RESULTS AND DISCUSSION

In order to generate single-particle orbitals for trial wave
functions, we used DFT within the LDA+U scheme, where
the Hubbard U parameter is treated as a variational parameter
to optimize the DMC nodal surface of the wave function. The
basis for this is the fact that DMC satisfies a strict variational
principle. Therefore, by varying U and calculating the DMC
ground state energy as a function of U , we can find an
optimal nodal surface that minimizes the DMC ground state
energy within the subspace spanned by the LDA+U trial wave
functions. This has in practice proven to be an efficient way to
generate DMC ground state properties in excellent agreement
with experimentally accessible values [72–74]. We computed
the DMC total energy of cubic, tetragonal, and monoclinic
phases of ZrO2 and HfO2 as a function of U in the trial wave
function using experimental lattice parameters (see Tables III
and IV). Using a quartic fit (see Fig. 4), the optimal values of U

for c-ZrO2, t-ZrO2, and m-ZrO2 are calculated to be 3.54(12),
3.34(14), and 3.13(8) eV, respectively. Using these values for
U to generate DFT trial wave functions, we then calculated the
DMC energies for the c-ZrO2, t-ZrO2, and m-ZrO2 structures
as a function of lattice constant, as shown in Fig. 5. For m-ZrO2

(t-ZrO2), the ratios between a, b, and c (a and c) axes were
fixed while the volume of the unit cell was varied. For t-ZrO2

the ratio was fixed at c/(
√

2a) = 1.02. Equations of state were
obtained using Vinet fits to the calculated data.

In t-ZrO2 (as well as in t-HfO2) an additional degree of
freedom is the distortion of pairs of oxygen atoms located
in columns in the tetragonal unit cell [47,75,76]. Carbogno
et al. [47] showed, using the HSE06 hybrid functional, that
displacements of the oxygen atoms in the tetragonal basal
plane are important for the tetragonal to cubic transformation.
Because the thermodynamics of this transition is beyond the
scope of our work, and because of the great expense in the DMC
calculations, we restricted the displacements to be along the c

direction (see Fig. 6). This excludes possibilities of obtaining
the minimum energy barrier for distortion of the oxygen atoms
[47] but does allow us to find the distortion at which the
t-ZrO2 structure has minimum energy. We calculated the total
energy, both DMC as well as for a variety of DFT schemes,
of t-ZrO2 as a function of a distortion parameter dz, defined
as zO = (0.25 ± dz)c where zO is the location of the oxygen
atoms along the c direction. Note that in these calculations we
kept the lattice parameters a and c fixed at their extrapolated
or measured low-temperature experimental values [23,25] of
3.57 Å and 5.18 Å while varying dz. Using a quartic fit, we
found the equilibrium distortion of the oxygen pairs for DMC
as well as for DFT using a variety of XC functionals, as shown
in Fig. 7(b). The minimum value of the DMC total energy is
attained at dz = 0.047(1), which is in excellent agreement with
experimental value of 0.047 [77]. For t-ZrO2, the location of
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TABLE III. Fully optimized lattice parameters and dz for t-ZrO2 and t-HfO2 using FHI aims (FHI aims) and Quantum Espresso [Q.E.
(fr)]. Note that only atomic coordinates were optimized in Q.E. (fr), with fixed lattice parameters obtained from FHI aims. “Q.E. (s)” indicates
manually optimized dz values using fixed experimental lattice parameters in Tables IV and VI, and fixed Zr atomic coordinates.

t-ZrO2 t-HfO2

PBE0 a (Å) c (Å) dz a (Å) c (Å) dz

FHI aims 3.59 5.19 0.054 3.58 5.17 0.050
Q.E. (fr) 3.59 5.19 0.051 3.58 5.17 0.057
Q.E. (s) 3.57 (fixed) 5.18 (fixed) 0.051 3.64 (fixed) 5.29 (fixed) 0.069

the minimum energy is rather insensitive to which DFT hybrid
functional is used.

As mentioned earlier in the Methods section, we did a
full optimization of the six-atom t-ZrO2 unit cell, including
relaxing the lattice vectors using FHI aims [57–59] with the
PBE0 hybrid functional [60] and the default “light” setting until
the maximum force on any atom was less than 0.006 eV/Å. We
then used the FHI-aims optimized lattice vectors as input to a
QE relaxation with PBE0 of the internal atomic coordinates,
keeping the lattice vectors fixed (see Table III). In addition,
we performed a manual optimization of the oxygen distortion
using QE and PBE0 in which we used fixed experimental lattice
parameters from Tables IV and VI and kept the Zr positions
fixed. There is some difference between the optimizeddz values
using FHI aims and QE using the same lattice vectors. We
attribute this difference to the smaller basis set used in FHI
aims in these calculations compared to the very large kinetic
energy cutoff in QE. Taking these differences into account, we
take these calculations to confirm that the motion of the oxygen
columns along the c axis is the only relevant internal degree of
freedom, justifying the one-parameter sweep of dz discussed
earlier. Note the larger variation in dz for t-HfO2, especially
when the finite-temperature experimental lattice parameters
are used (to be discussed later).

A. Zirconia

1. Zirconia—comparisons between computed results

Our main results for the zirconia structural parameters are
summarized in Table IV, both for DMC as well as for various
DFT schemes and functionals, including representative recent
values from the literature. In general, the hybrid functionals
PBE0 and HSE06 give lattice parameters that are in good
agreement with each other as well as with the DMC values.
The results by Ricca et al. [46] are an exception. We suspect
the origin of this is the basis set used in that work, given that
the FHI aims and QE calculations generally agree very well
with each other. As is usually the case, LDA tends to overbind
and GGA (e.g., PBE) underbind, with too small and too large
lattice parameters, respectively. It is interesting to note that
LDA+U corrects (increases) the lattice parameters compared
to LDA but then substantially reduces the bulk modulus while
LDA gets the bulk modulus right. In contrast, all other DFT
flavors underestimate the bulk modulus, especially for the
cubic and tetragonal phases. All DFT calculations by us and
those quoted here (as well as many others), except for one, get
the energetic ordering correctly, withm-ZrO2 having the lowest
energy, followed by t-ZrO2 and c-ZrO2 in increasing energy.
The exception is the calculation by Ricca et al., which gets

TABLE IV. Results for structural parameters, bulk modulus, and cohesive energy from DFT calculations together with DMC data. �Et,c

and �Em,t are the cohesive energy differences between t-ZrO2 and c-ZrO2, and between m-ZrO2 and t-ZrO2, respectively.

phase LDA LDA+U GGA PBEa PBE0 PBE0b B3LYP HSE06 HSE06a DMC

c-ZrO2 a (Å) 5.03 5.09 5.10 5.03 5.06 5.11 5.10 5.06 5.08 5.07(1)
B0 (GPa) 279 247 242 270 254 269 278(2)

Ecoh (eV/f.u.) 25.84 23.36 22.11 21.65 20.76 21.50 23.15(2)

t-ZrO2 a 3.56 3.58 3.61 3.63 3.58 3.62 3.62 3.58 3.60 3.58(1)
c 5.16 5.19 5.24 5.29 5.19 5.245 5.25 5.19 5.20 5.19(2)

c/
√

2a 1.02 1.02 1.02 1.03 1.02 1.023 1.02 1.02 1.02 1.02
dz 0.048 0.027 0.049 0.056 0.051 0.052 0.049 0.051 0.051 0.047(1)
B0 263 244 234 259 244 258 265(1)

Ecoh 26.20 23.51 22.21 21.73 20.86 21.60 23.19(2)
�Et,c 0.36 0.15 0.10 0.14 0.08 −0.025 0.10 0.10 0.08 0.04(3)

m-ZrO2 a 5.10 5.16 5.17 5.13 5.18 5.17 5.13 5.14(1)
b 5.16 5.22 5.23 5.19 5.24 5.23 5.19 5.20(1)
c 5.27 5.33 5.34 5.30 5.32 5.34 5.30 5.30(1)
B0 255 232 227 251 237 253 254(1)

Ecoh 26.25 23.67 22.33 21.82 20.99 21.71 23.26(2)
�Em,t 0.05 0.16 0.12 0.13 0.09 0.062 0.13 0.11 0.075 0.07(4)

aReference [47].
bReference [46].
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FIG. 4. Total DMC energy for m-ZrO2, t-ZrO2, and c-ZrO2 as a
function of Hubbard U value in the initial trial wave function obtained
from DFT using LDA+U .

the ordering of the tetragonal and cubic phases wrong. Again,
we suspect this error stems from the basis set used in that
calculation. We note that LDA+U gets very good agreement
for the cohesive energy compared to DMC, while the other
DFT flavors underestimate the cohesive energy for the three
phases. This clearly suggests that the shape and self-interaction
corrections of the 4d orbitals play a central and sensitive role in
getting both geometry and energetics right. LDA+U improves
both geometry and cohesive energy relative to LDA, meaning
that the location of the energy minima for the three phases
in configuration space are improved by adding a Hubbard-U
on the 4d orbitals, but the steepness of the potential wells
about the minima then becomes much too small. The hybrid
functionals, which include a range-dependent exact exchange
energy, end up somewhere in between LDA+U and DMC:
The lattice parameters are good, but the cohesive energies
and bulk moduli are too small. It should also be pointed out
that the properties of the LDA+U calculations depend very
much on the values of the Hubbard U ; ours were selected by

FIG. 5. Total DMC energy for m-ZrO2, t-ZrO2, and c-ZrO2 as a
function of volume ratio.

FIG. 6. Directions of the oxygen pair distortion in the tetragonal
phases of ZrO2 and HfO2. The blue and red spheres indicate Zr, or
Hf, and O atoms, respectively.

minimizing the DMC total energy which serendipitously gave
good values for lattice parameters and cohesive energy. Using
another scheme to selectU , e.g., by adjustingU to fit the optical
band gap, would no doubt give different results for geometry
and energetics. Finally, we note that the energy differences
between the different phases are very small. Therefore, small
errors in cohesive energies will give large relative errors in
energy differences. The DMC energy difference between the
monoclinic and tetragonal phases is larger, 0.07 eV, than the
uncertainty in the DMC energy difference, 0.04 eV. In contrast,
the energy difference between the tetragonal and cubic phases
is much smaller, 0.04 eV, and barely larger than the uncertainty,
0.03 eV.

2. Zirconia—comparison with experiments

Table V shows the results from our HSE06 and DMC
calculations together with experimental data. As can be ex-
pected, the agreement is generally best for the low-temperature
monoclinic phase, for which thermal motion would have the

FIG. 7. Total energy for t-ZrO2 as a function of dz away from
its equilibrium value. The dotted line represents quartic fits. The
equilibrium DMC value of dz is estimated to be 0.047(1), which is in
excellent agreement with the experimental value of 0.047 [77].
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TABLE V. Results for structural parameters, bulk modulus, and cohesive energy from HSE06 and DMC together with available experimental
data. �Et,c and �Em,t are the cohesive energy differences between t-ZrO2 and c-ZrO2, and between m-ZrO2 and t-ZrO2, respectively.

Phase HSE06 DMC Expt.a Expt.b Expt.c Expt.d Expt.e Expt.f Expt.g Expt.h Expt.i

c-ZrO2 a (Å) 5.06 5.07(1) 5.09
B0 (GPa) 269 278(2) 248

t-ZrO2 a 3.58 3.58(1) 3.59 3.57
c 5.19 5.19(2) 5.18 5.18

c/
√

2a 1.02 1.02 1.02
dz 0.051 0.047(1) 0.057 0.047
B0 258 265(1) 172(6) 170–200

�Et,c 0.10 0.04(3) 0.057

m-ZrO2 a 5.13 5.14(1) 5.15
b 5.19 5.20(1) 5.21
c 5.30 5.30(1) 5.31
B0 253 254(1) 212(24)

Ecoh 21.71 23.26(2) 22.85
�Em,t 0.11 0.07(4) 0.063

aReference [79] room T measurements of yttrium-stabilized c-ZrO2 extrapolated to 0% yttrium.
bReference [78] at room T using nanocrystalline t-ZrO2.
cReference [25] extrapolation to zero T using data in Ref. [23].
dReference [77] low-temperature measurement of nanocrystalline t-ZrO2.
eReference [80] used yttria-stabilized t-ZrO2 at room T ; Ref. [81] used nanocrystalline t-ZrO2 at room T .
fReference [24] at room T .
gReference [51] at room T .
hReference [82].
iEstimated in Ref. [25] from measured enthalpy differences in pure t-ZrO2 in Ref. [22].

smallest effect. In addition to the lattice parameters, the DMC
cohesive energy for m-ZrO2 is also in good agreement with
the experimental value, while the experimental bulk modulus
is much smaller than the calculated one; we note, how-
ever, the large experimental uncertainty in the measurement.

Also, we suspect that even at room temperature the bulk
modulus is softened by thermal motion, while presumably
relatively small anharmonicity in the thermally induced lat-
tice vibrations leads to no significant increase of the lattice
parameters.

TABLE VI. Results for structural parameters, bulk modulus, and cohesive energy for hafnia polymorphs from DFT calculations together
with DMC data. �Et,c and �Em,t represent the cohesive energy difference between t-HfO2 and c-HfO2, and that between m-HfO2 and t-HfO2,
respectively.

Phase LDA LDA+U LDA+U a GGA PBEb GGA+U PBE0 B3LYP HSE06 HSEc DMC

c-HfO2 a (Å) 4.97 5.01 5.03 5.08 5.07 5.00 5.04 5.00 5.04(1)
B0 (GPa) 299 273 268 258 238 287 271 286 297(1)

Ecoh (eV/f.u.) 26.83 24.73 22.97 20.76 22.65 21.79 22.61 24.32(3)

t-HfO2 a 3.54 3.54 3.58 3.59 3.60 3.56 3.59 3.57 3.58(2)
c 5.14 5.14 5.20 5.23 5.23 5.17 5.22 5.19 5.20(3)

c/
√

2a 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
dz 0.067 0.063 0.068 0.055 0.054 0.069 0.068 0.070 0.064(1)
B0 273 265 245 244 226 267 253 267 271(9)

Ecoh 26.93 25.96 23.02 20.54 22.67 21.88 22.65 24.47(4)
�Et,c 0.10 0.05 0.02 0.09 0.04 0.15(4)

m-HfO2 a 5.03 5.07 5.39 5.09 5.15 5.14 5.07 5.10 5.05 5.12 5.09(1)
b 5.08 5.12 5.33 5.15 5.19 5.19 5.12 5.15 5.10 5.16 5.15(1)
c 5.21 5.25 5.49 5.28 5.33 5.32 5.25 5.28 5.23 5.28 5.28(2)
B0 275 253 248 238 223 270 255 269 276(3)

Ecoh 27.07 24.99 23.15 20.63 22.82 22.02 22.81 24.64(3)
�Em,t 0.14 0.13 0.15 0.14 0.16 0.17(5)

aReference [88].
bReference [89].
cReference [90].

075001-8



ZIRCONIA AND HAFNIA POLYMORPHS: GROUND-STATE … PHYSICAL REVIEW MATERIALS 2, 075001 (2018)

The agreement between the calculated lattice parameters
and the measured ones is also quite good for the tetragonal
phase. Reference [25] presented lattice parameters for t-ZrO2

extrapolated to zero temperature based on the thermal expan-
sion measured in Ref. [23], and Refs. [77,78] presented data
from room- or low-temperature measurements of nanocrys-
talline t-ZrO2. Therefore, in both of these measurements,
the effects of thermal expansion on the lattice parameters
are eliminated or are negligible. The tetragonal distortion dz

measured at low temperatures [77] is also in good agreement
with the DMC value. However, as can be expected, the
measured bulk modulus is much lower than the calculated
ones, even room-temperature measurements (up to 200 GPa)
of nanocrystalline t-ZrO2 [78]; thermal motion significantly
softens the bulk modulus.

Finally, the calculated lattice constant for the cubic phase
is smaller than the measured one, 5.27 Å [23] at high tem-
peratures (2410 ◦C)—here thermal expansion clearly plays a
role. The extrapolated lattice constant in Ref. [25] as well as
our own extrapolation of the lattice constants using thermal
expansion data (Fig. 12) give a lattice constant of 5.09 Å,
in very good agreement with the calculated one. We caution
that because of the few available data the result—and its very
good agreement with DMC—based on our simple linear fit
may be accidental. However, our own similar extrapolations
for the tetragonal and monoclinic phases, for which there
are more experimental data, yield very good agreement with
DMC values as the actual measurements (Fig. 12). Finally, the
measured high-temperature bulk modulus for the cubic phase
is much smaller than the calculated ones, as is to be expected.

It is remarkable that the calculated DMC energy differences
�Et,c and �Em,t agree rather well with the measured enthalpy
differences in Ref. [23]. This could either be fortuitous, or an
indication that the entropic contributions to the enthalpy dif-
ferences are substantially equal at the transition temperatures.

B. Hafnia

As with zirconia, we started by optimizing the DMC nodal
surface by calculating the DMC ground state energy of the
three hafnia polymorphs as a function of U in the LDA+U

DFT trial wave function. We used supercells consisting of
four primitive unit cells with lattice parameters and geometries
fixed at experimental values and using a total of 64 twists (see
Table VI). The self-consistent DFT LDA+U calculations for
cubic, tetragonal, and monoclinic phases were done with 6 ×
6 × 6, 6 × 6 × 6, and 4 × 4 × 4 k-point meshes, respectively.

Figure 8(a) depicts the DMC total energy as a function of the
variational U parameter using an LDA+U trial wave function
for the hafnia polymorphs. The DMC ground state energy
for t-HfO2 behaves quite differently from that of the other
hafnia polymorphs, as well as that of ZrO2 or TiO2 polymorphs
[72,73]: It does not exhibit a pronounced minimum at the
optimal value Uopt of U , but a shallow minimum at a small
value of about 1 eV and a dimple that is almost a local minimum
at a value of U of about 6 eV. Also, in comparison of the DMC
energy as a function of U for zirconia and hafnia polymorphs
with that of antiferromagnetic NiO [74], the difference between
the minimum DMC energy at Uopt and that at U = 0 is very
small, less than 0.1 eV/f.u. compared to about 0.7 eV/f.u. for

FIG. 8. DMC total energy as a function of U in the LDA trial
wave function. Dotted lines indicate quartic fits.

NiO. This indicates that the on-site Coulomb repulsion is less
significant in zirconia and hafnia compared to NiO, consistent
with the fact that the on-site repulsion drives NiO to a Mott
insulator antiferromagnetic ground state, while zirconia and
hafnia do not have magnetic ground states. Using a quartic fit
for the DMC total energy as a function of U in the LDA+U

trial wave function, we find Uopt to be 2.7(3), 1.1(3), and 2.4(2)
eV for c-HfO2, t-HfO2, and m-HfO2, respectively.

1. Hafnia—comparisons between computed results

We then continued to calculate the EOS and structural
parameters for the HfO2 polymorphs. In order to reduce
structural degrees of freedom in the tetragonal and monoclinic
phases, we imposed constraints on the lattice parameters while
the unit cell volume was changed. The ratio c/a in t-HfO2 was
fixed at its experimental value [83] of 1.45; only a single degree
of freedom, the lattice parameter a, was considered for m-HfO2

because of the large (four) number of structural parameters
that otherwise would have to be optimized. Therefore, b/a,
c/a, and β were fixed at their experimental values [84]. For
t-HfO2, as was the case for t-ZrO2, we calculated the total
energy as a function of oxygen distortion dz at fixed c and
a at their experimental values of a = 3.64 Å and c = 5.29 Å
[83]. Using a quartic fit, we found the equilibrium distortion
for DMC and each of the DFT XC functionals [Fig. 9(b)]. The
minimum value of the DMC total energy is at dz = 0.064(1),
which is a larger value than the experimental value of dz =
0.047 for tetragonal zirconia measured at room T [23–25].
We note that a previously obtained value of dz = 0.05 from
DFT using the Perdew-Wang parametrization of the GGA XC
functional is significantly smaller than both our DMC and
DFT results, including GGA with the PBE parametrization
[85]. We attribute this discrepancy to a sensitive dependence
of the structural optimization on the DFT XC functional
and pseudopotentials (the DMC pseudopotentials are much
“harder” than pseudopotentials commonly used in DFT).
Figure 9(b) shows that the energy difference �E at previously
reported [85–87] DFT equilibrium values of dz ∼ 0.050–0.07
is well below 0.08 eV/f.u. for all of our DFT and DMC
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TABLE VII. Results for structural parameters, bulk modulus, and cohesive energy for hafnia polymorphs from our DFT HSE06 calculations
together with DMC data and experimental values.

Phase HSE06 DMC Expt.a Expt.b Expt.c Expt.d Expt.e

c-HfO2 a (Å) 5.00 5.04(1) 5.08–5.14
Ecoh (eV/f.u.) 22.61 24.32(3)

t-HfO2 a 3.57 3.58(2) 3.63–3.66 3.64
c 5.19 5.20(3) 5.25–5.33 5.18

c/
√

2a 1.03 1.03 1.01

m-HfO2 a 5.05 5.09(1) 5.12 5.12
b 5.10 5.15(1) 5.17 5.18
c 5.23 5.28(2) 5.30 5.29
B0 269 276(3) 284(30)

aReference [34] at high temperatures.
bReference [83] powder diffraction at room T . The data for t-HfO2 are quoted in Ref. [85].
cReference [84] single crystal at room T .
dReference [51] polycrystalline at room T .
eReference [31] powder diffraction at room T .

calculations. Therefore, the changes in total energy as the
oxygen distortion is varied around dz = 0.05–0.07 are very
small, which means that optimization of dz is sensitive to the
choice of XC functional or pseudopotentials because of the
very small contribution ofdz minimization to the total energy of
t-HfO2. This is also evident in the results in Table III, where the
obtained optimal value of dz is much more sensitive to choice of
method (full potential and localized orbitals vs pseudopotential
and plane waves) as well as to lattice parameters. As is also
seen in Table III, with the FHI-optimized lattice parameters of
a = 3.58 Å and c = 5.17 Å, the calculated dz is much smaller,
0.05 Å to 0.057 Å, much more similar to the corresponding
values for t-ZrO2. For t-HfO2 the ratio of c to a was fixed
at c/(

√
2a) = 1.03, and dz fixed at its optimal value as a

fraction of c when calculating total energy. Equations of state
were then obtained using Vinet fits. We considered a series of
supercells (twists) in order to extrapolate DMC twist-averaged
total energies to the thermodynamic limit: 6(64), 22(27), and

FIG. 9. Total energy for t-HfO2 as a function of dz away from its
equilibrium value. Here, the DMC total energies were computed in
eight t-HfO2 supercells with a total of 64 twists. Dotted lines represent
quartic fits.

27(27) for c-HfO2; 8(64), 16(64), and 22(27) for t-HfO2; and
4(64), 6(64), 8(27) for m-HfO2.

Figure 10 shows the computed DMC total energy as a
function of unit cell volume for the three HfO2 polymorphs.
The equilibrium lattice parameters, cohesive energy, and bulk
modulus estimated from Vinet fits are listed in Table VI
together with other representative DFT-based calculations
from the literature. As expected LDA overbinds and its lat-
tice parameters are consistently too small, while the lattice
parameters from our GGA and the PBE calculation in Ref. [34]
are in much better agreement with the DMC values. LDA+U

increases the lattice parameters but still overbinds—this is
probably because the U parameters from our optimization are
quite small, as explained earlier. The lattice parameters from
the hybrid functionals are in good agreement with the DMC
values. The bulk moduli from the hybrid functionals are in quite
good agreement with but consistently smaller than the DMC
values, again with the poorest agreement for the cubic phase.

FIG. 10. DMC total energy of a monoclinic, tetragonal, and cubic
phase of hafnia as a function of volume ratio. V is the unit cell volume
that is varied, and V0 is the equilibrium volume obtained from a Vinet
fit. The dotted lines are Vinet fits.
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As was the case for zirconia, LDA yields bulk moduli in good
agreement with DMC, while LDA+U reduces the overbinding
but substantially softens the bulk modulus. It is interesting to
note that for hafnia, the DMC bulk modulus for the tetragonal
phase is smaller than for the monoclinic phase, although they
are both equal to within one standard deviation; the DFT
hybrid functionals roughly capture this as well. In contrast,
the bulk modulus for tetragonal zirconia is significantly larger
than the bulk modulus for monoclinic zirconia. This and the
shallow minimum in energy vs dz for t-HfO2 compared to
t-ZrO2 indicate subtle differences in the energetics between
the two compounds in spite of their superficial chemical
equivalence. We speculate that this stems from the difference
between the 5d Hf orbitals and the Zr 4d orbitals that lead
to different hybridization with oxygen 2p orbitals. Figure 11
shows our DFT HSE06-calculated density of states (DOS)
and projected densities of states (PDOS) for the zirconia and
hafnia polymorphs. The PDOS for the tetragonal phases show
a shift upward in energy of the oxygen 2p relative to the
valence band edge in t-ZrO2 compared to t-HfO2, consistent
with a difference in the hybridization (see insets in center
panels of Fig. 11). All DFT calculations in Table VI get the
energetic ordering right, with the monoclinic phase having the
lowest energy, followed by the tetragonal and cubic ones. The
cohesive energies for the hybrid functionals are a bit too small
and slightly worse compared to DMC than was the case for
the zirconia polymorphs. The energy differences between the
tetragonal and cubic phases are quite good for all DFT flavors,
while they underestimate the energy difference between cubic
and tetragonal phases. Again, the energy differences are quite
small so small errors in the cohesive energies will give rise to
relatively large errors in the energy differences.

2. Hafnia—comparison with experiments

For the low-temperature monoclinic phase, the DMC result
for the bulk modulus is in good agreement with the corre-

sponding experimental value. However, the DFT HSE06 and
DMC lattice parameters are smaller than the experimental
ones because of thermal expansion at the experimental con-
ditions. It is instructive to compare calculated and measured
lattice parameters for hcp Hf and hafnia. Experimental lattice
parameters for both hcp Hf and m-HfO2 were measured at
room temperature [31,51]. In contrast to the smaller DMC
and DFT lattice parameters for m-HfO2 (with the exception
of GGA+U ), the GGA and DMC lattice parameters for hcp Hf
(see Table II) are in very good agreement with the experimental
value. Hcp Hf is known [91] to have a small thermal expansion
coefficient, about 5.9 × 10−6 K−1. In contrast, the thermal
expansion coefficient for m-HfO2 has been observed [92] to
vary significantly with temperature, and is considerably larger
than for hcp Hf, as much as 32 × 10−6 K−1. This relatively high
sensitivity of the thermal expansion coefficient of m-HfO2, and
therefore of its volume, on temperature supports our argument
that the underestimated DMC and DFT lattice parameters
are due to volume expansion of m-HfO2 in the experimental
measurements performed at room temperature. As a result of
this thermal expansion in hafnia at high temperatures, it is also
not surprising to observe larger experimental lattice parameters
of the tetragonal and cubic phases measured at 1600 K (t-HfO2)
[26,92] and 800 K (c-HfO2) [33], respectively, than our DFT
or DMC results, which represent properties of a (nonphysical
or metastable) zero-temperature phase. This is particularly the
case for x-ray diffraction measurements of t-HfO2 which were
performed at 1600 K, and which shows the largest discrepancy,
about 1.6%, between the DMC and experimental values among
three polymorphs. We attempted to correct for the thermal
expansion in the experimental measurements by extrapolating
the measured lattice constants to 0 K [see Fig. 12(b)]. For
m-HfO2, we obtain an extrapolated value of a = 5.11 Å and
c = 5.28 Å for cubic fits, and for t-HfO2 we obtain a = 3.58 Å,
c = 5.17 Å (5.07 Å) for quadratic (cubic) fits, in good agree-
ment with the DMC values. The extrapolation for the lattice

FIG. 11. DFT density of states (DOS) and projected DOS for (a) cubic, (b) tetragonal, and (c) monoclinic phases of zirconia (top row) and
hafnia (bottom row) obtained using the DFT HSE06 hybrid functional and QE. The insets in the center panels for the tetragonal phases show
enlargements of DOS and PDOS near the conduction band edge.
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FIG. 12. Experimentally measured lattice parameter a as a of temperature for (a) zirconia and (b) hafnia polymorphs. We used cubic and
polynomials to extrapolate lattice parameters to 0 K except for c-ZrO2, for which we used a linear fit. The experimental lattice parameters are
from Refs. [23,33,92–95]. Note that for the tetragonal phases, we are reporting a value for a that is

√
2 larger than the values in Tables IV–VII.

parameter of c-HfO2 is considerably more uncertain because
of the sparsity in temperature-dependent measurements of the
cubic lattice parameter. We obtain an extrapolated value of
about 5.08 Å, which is in the lower range of the measurements
at high temperatures.

IV. SUMMARY AND CONCLUSIONS

We have evaluated bulk properties (lattice constants, bulk
modulus, and cohesive energy) of the monoclinic, tetragonal,
and cubic phases of ZrO2 and of HfO2 using diffusion Monte
Carlo methods, and compared the diffusion Monte Carlo re-
sults with those of ours as well as in the literature obtained using
various DFT schemes (LDA, GGA, LDA+U , GGA+U , hybrid
functionals PBE0, B3LYP, and HSE06). We also examined
the distortion of oxygen columns in the tetragonal phases of
ZrO2 and HfO2 at the experimental unit cell volume. The
obtained DMC values for lattice parameters and distortion of
the oxygen columns are in good qualitative and quantitative
agreement with experimental values extrapolated to 0 K. Such
extrapolations are more reliable for the zirconia phases than
for the hafnia ones, as there exist more data for zirconia, both
measurements of lattice parameters for a range of tempera-
tures as well as low- or room-temperature measurements of
nanocrystalline t-ZrO2; such data are considerably sparser for
the hafnia phases. The DFT results, in comparison with the
DMC results, are inconsistent in that no DFT scheme generally
agrees with DMC both for lattice parameters and bulk modulus.
For example, the lattice constants from the hybrid functionals
PBE0 and HSE06 agree well with the DMC ones, while the
bulk moduli are smaller than the DMC ones; the LDA lattice
parameters are too small while the bulk moduli are in rather
good agreement with the DMC ones. However, the hybrid func-
tionals PBE0 and HSE06 in general yield results in reasonable
agreement with DMC. We note that such agreements should
not be taken for granted: Even HSE06 has been shown to give
dramatically incorrect results for correlated transition metal
oxides [96]. The calculated bulk moduli, both DFT and DMC,
are larger than experimentally measured ones, especially for
the zirconia polymorphs, although we note that there is a lack of
experimental data for the bulk modulus of tetragonal and cubic
hafnia. Direct comparison between calculated bulk moduli that
do not include finite-temperature effects and experiments is

difficult and perhaps not very meaningful; rather, we hope
that the DMC calculations of bulk modulus will be useful
to benchmark DFT calculations. There are many examples
of DFT calculations of bulk moduli for zirconia and hafnia
that do not include finite-temperature corrections [39,43,85].
These results have large spreads depending on what code and
what flavor of DFT was used. Therefore, we believe there is
value in our DMC values to serve as a guide for future DFT
studies, both for bulk modulus as well as for cohesive energy
(and lattice parameters).

The validation of our pseudopotentials for atomic and bulk
hcp Zr and Hf shows that the pseudopotentials give excellent
results, and errors arising from the DMC pseudopotentials
can be neglected. A potential source of error in the DMC
calculation is that the nodal surface may not be optimal. We
routinely use LDA+U and PBE+U to minimize the DMC
ground state energy as a function ofU in the trial wave function.
LDA+U tends consistently to give lower DMC energy than
PBE+U , which is why we used LDA+U here (we did not
here present the results for the PBE+U optimization of U )
to obtain trial wave functions for the QMC calculations. This
is also consistent with other DMC work on transition metal
oxides [72–74] where such optimization of the nodal surface
has shown to be a very efficient way in general yielding results
of structural parameters in very good agreement with available
experimental data. While this optimization does not guarantee
that the true ground state has been obtained, our experience
has shown that it works very well. Future methods under
development will include expansion of the trial wave function
in a large number of determinants selected perturbatively. It is
expected that those methods, when implemented, will obtain
extremely good nodal surfaces.
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