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Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy
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Reconstructing the three-dimensional (3D) size and shape distribution of randomly oriented grains using only
images of cross sections remains an important challenge. Even for ellipsoids, a solution is only possible when they
are solids of revolution, and may still be numerically unstable. Here we show that crystallographic orientation
data, for example from electron back-scatter diffraction (EBSD), provides enough additional information to obtain
moments of the 3D grain distribution, provided grain shapes can be assumed to align with crystal axes. We show
that this moment method can give an average 3D grain size and shape (with error estimate) which is rigorous
for ellipsoids and a good approximation for cuboidal grains, indicating that it may be a useful technique for
polycrystalline materials in general. High throughput image analysis and EBSD now make the necessary sample
sizes practical. We illustrate by applying the method to a basaltic rock specimen.

DOI: 10.1103/PhysRevMaterials.2.073804

I. INTRODUCTION

An optical- or electron-microscopy image of a polycrys-
talline material typically represents a two-dimensional (2D)
section through a complex three-dimensional (3D) geometry.
Reconstructing statistics of the 3D structure from these 2D
data remains a major challenge since Wicksell [1] first studied
the “corpuscle” problem of deducing the size distribution of
randomly placed spheres from the circles seen in a planar cross
section. Although this simplest of problems is mathematically
well posed, solving it for the 3D distribution by direct inversion
of the Wicksell integral is numerically challenging [2]. Instead,
moment methods, which reconstruct moments of the 3D
structure from moments in 2D [1,3], are a more practical
method for obtaining useful 3D information, such as average
grain sizes and the width of the size distribution.

In metals and ceramics, grains or crystals (which in this
contribution we assume to be equivalent) are rarely even
approximately spherical, being often strongly triaxial, with all
three axes of different length. It may however be a reasonable
approximation that they are oriented randomly in space. If all
the 3D shapes are known to be identical, it is possible to fit
the distribution of aspect ratios of the 2D sections to examples
of 3D shapes from a database [4–6]. For the more realistic
case of polydisperse crystals, even if we approximate their
shapes, for mathematical simplicity, as ellipsoids (Fig. 1), we
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are presented with the problem of computing a 3D ellipsoid size
and shape distribution from the elliptical outlines obtained in
section. For special cases where certain types of orientation
can be assumed [7], or where the grains are known to be
ellipsoids of revolution [8] (two of the axes are equal), the
inversion is mathematically possible. However, for randomly
oriented triaxial ellipsoids, this generalized Wicksell problem
is ill-posed: more than one 3D size and shape distribution can
yield statistically the same population of elliptical sections.
This is easy to see from the dimensionality of the data and
target; for let F (A,B,C) δA δB δC be the fraction of the
number of ellipsoids per unit volume with major axes of lengths
A, B, and C, where A is in the range A to A + δA, and
similarly for B and C. The function F (A,B,C) depends on
three variables, while the corresponding distribution of ellipse
sizes and shapes depends only on the two ellipse axis lengths.
Deducing a probability distribution over three independent
variables from one over two is in general not possible.

So far we have considered only the shapes and sizes of
grains visible on a section. However, electron back-scatter
diffraction (EBSD) is a method that provides information
about the crystallographic orientation of grains [9,10], usually
expressed as a set of Euler angles [11].

In this contribution we show that if the major axes of each
grain’s shape are aligned with the crystallographic axes of its
lattice (see later for a more detailed discussion), the extra data
available from EBSD provides enough information to solve
most of the Wicksell problem for triaxial ellipsoids. We also
show (using synthetic data) that the same analysis works to a
good approximation for triaxial cuboids, and so may be useful
for grains in general polycrystalline materials whenever the
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FIG. 1. (a) A collection of randomly oriented polydisperse el-
lipsoids. (b) A plane section through the collection produces a set
of ellipses (black) from which we wish to reconstruct statistical
information about the 3D structure.

crystallographic axes can be assumed to align with the principal
axes of the grain shapes.

Specifically, through Eq. (40), we are able to deduce many
of the moments of the ellipsoid size and shape distribution from
corresponding moments taken from a 2D section. As a simple
example of what this information captures, we suggest a set
of moment ratios which estimate an average 3D grain size and
shape.

Lastly, we show the analysis applied to a real rock section
imaged using EBSD. Of particular petrological interest is the
distribution of shapes of the mineral plagioclase. Plagioclase
forms up to 50 vol. % of rocks of basaltic bulk composition and
is commonly an early crystallizing phase. Under the conditions
of interface-controlled growth that pertain to most geological
environments, plagioclase forms variably elongated tabular
facetted grains, with elongation commonly along the c axis,
and tablets flattened parallel to the b axis. In basaltic rocks in
which the plagioclase is randomly oriented (i.e., those in which
the grains have not been rearranged by the action of magmatic
currents or by gravitational instability and slumping of a crystal
pile) the average grain size and shape carries key information
about the cooling and crystallization history [12]. Currently,
these data are invariably extracted from 2D sections through
the rock. Relating these robustly to 3D grain geometries could
shed better light on fundamental processes in rock formation.

II. BACKGROUND: MOMENTS IN 3D AND 2D

A. Calculating moments

Suppose we have a collection of randomly positioned,
randomly oriented ellipsoids in space, with N such grains per
unit volume. Let F (A,B,C) be the probability distribution, by
number, for the polydisperse ellipsoids over their major axis
lengths A, B, and C (which we assume to be tied to particular
crystallographic directions). Thus F is normalized:∫∫∫

O+
F (A,B,C) dAdB dC = 1, (1)

with O+ being the positive octant of (A,B,C) space; that is to
say 0 � A � ∞, 0 � B � ∞, and 0 � C � ∞. The function
F (A,B,C) carries all the information about the size and shape
of the grains, and any correlation between size and shape.

We can capture information about F through finding various
moments of the distribution:

Mα,β,γ ≡
∫∫∫

O+
AαBβCγ F (A,B,C) dAdB dC, (2)

where the indices α, β, and γ need not be integers. Instead of
using an integral, we can calculate each moment by sampling:
suppose that in some sufficiently large volume of space there
are ν3D grains in total, then we could also write Eq. (2) more
simply as

Mα,β,γ = 1

ν3D

∑
i

Aα
i B

β

i C
γ

i , (3)

where the summation is over grains in space, and grain i has
major axes of length Ai , Bi , and Ci .

The moments of F capture a great deal of (indeed in
many cases all) the information about the size and shape of
the ellipsoids. For example, ratios of moments can be used
to calculate average diameters (see Ref. [3] for the case of
spheres), or aspect ratios.

Naturally, from a microscopy image, we have no direct
access to F , nor to any of the moments Mα,β,γ . What we
have instead is a collection of elliptical cross sections through
grains. Suppose that we have an image that contains a very large
number ν2D of grain cross sections, and suppose that the area
of the cross section with label j is aj . We can consider this as
a vector area aj ≡ aj n̂, where n̂ is a unit vector perpendicular
to the image plane.

In addition to the area, we may also have information
about the crystallographic orientation from EBSD. Suppose
that the major axes of the 3D ellipsoid (to which the ellipse in
question belongs) are aligned respectively in the directions of
the orthonormal (unit) vectors eA, eB , and eC . Let us adopt
Bunge’s convention (see Ref. [11], page 52) for the Euler
angles (ϕ1,�,ϕ2). We therefore also know the projections of
the area aj onto the directions of each of the major axes of the
ellipsoid:

aA,j ≡ aj n̂ · eA = aj sin � sin ϕ2, (4)

aB,j ≡ aj n̂ · eB = −aj sin � cos ϕ2, (5)

aC,j ≡ aj n̂ · eC = aj cos �. (6)

These data allow us to calculate any of the 2D moments

mα,β,γ = 1

ν2d

∑
j

a4
j |aA,j |α|aB,j |β |aC,j |γ . (7)

In Eq. (7) note that there is an “extra” factor of a4
j , and also

that, once more, the numbers α, β, and γ do not need to be
integers.

The key result of this paper (derived below) is that there is a
mathematical relation between the 2D moments mα,β,γ (which
can be calculated from microscopy data), and different 3D
moments Mα′,β ′,γ ′ . This allows 2D microscopy data to be used
to directly calculate properties of the 3D ellipsoid distribution.
The exact relation is given in Eq. (40).

B. Which moments are useful?

For spheres, one might typically characterize the distribu-
tion of sizes through the volume-weighted mean diameter D4,3

[3,13] (which is the ratio of the fourth to the third moment of
the diameters), or the surface-weighted mean diameter D3,2.
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Equation (40) shows that for triaxial ellipsoids, not all ratios
of moments can be calculated. This is because some of the
factorials may diverge, but also because if there is a negative
index in mα,β,γ , then for some grain orientations, values of
aA,j , aB,j or aC,j in Eq. (7) may be close to zero, and so cause
numerical problems, even if the overall power of aj is not
problematic. Large moment indices do not have this issue with
mathematical divergence; however, they are mostly determined
by the largest grains in the sample, and so do not capture the
properties of a typical grain, and may furthermore have poor
statistics due to the small numbers involved.

Here we suggest that the simplest practical averages for the
three major axis lengths are the ratios

A4,3 ≡ M4,3,4 M4,4,3

M3,3,3 M4,4,4
≈ 1.231

(
m0,1,0 m0,0,1

m0,0,0 m 1
2 , 1

2 , 1
2

)
, (8)

B4,3 ≡ M3,4,4 M4,4,3

M3,3,3 M4,4,4
≈ 1.231

(
m1,0,0 m0,0,1

m0,0,0 m 1
2 , 1

2 , 1
2

)
, (9)

C4,3 ≡ M3,4,4 M4,3,4

M3,3,3 M4,4,4
≈ 1.231

(
m1,0,0 m0,1,0

m0,0,0 m 1
2 , 1

2 , 1
2

)
. (10)

These use 3D moments that are as small as possible, without the
indices of the corresponding 2D moments being negative. We
have used the subscript “4,3” to indicate which 3D moments
are involved; however, they are not equivalent to D4,3 for
spheres, but depend upon substantially higher moments of
the population. The high moments mean that these averages
depend almost entirely on the larger grains in the distribution,
and also means that many grains need to be sampled to achieve
good statistics.

We note that with enough grain data, moment ratios might
be taken to characterize other properties, such as the width of
the polydisperse shape distribution.

III. THEORY: RELATION BETWEEN 3D AND 2D
MOMENTS

A. Plane sections through spheres

We begin the derivation with a simple case: suppose that
instead of being polydisperse, triaxial ellipsoids, all of the
grains in the 3D sample were identical (monodisperse) spheres,
all of diameter D0. As before, let N be the number of grains per
unit volume of space. Let us consider sampling this distribution
by passing a plane section through it, perpendicular to a unit
vector n̂. Whenever a plane section passes through a crystal, it
produces an ellipse (in this case always a circle).

The maximum thickness of the sphere in the direction n̂ is
of course D0, so the number of ellipses per unit area of the
section is n, where

n = ND0. (11)

Let the fraction of the ellipses that have areas between a and
a + δa be fa(a)δa [so f is normalized in that

∫
fa(a)da =

1]. Suppose the section lies at a perpendicular distance r ∈
(0,D0/2) from the center of a sphere, then we know that the
fraction of ellipses that have r in the range r to r + δr is simply

fr (r) = 2/D0. (12)

Noting that fa(a)|da| = fr (r)|dr| and from Pythagoras’ the-
orem πr2 + a = πD2

0/4, we find

fa(a) =
{

[4a0(a0 − a)]−1/2 if 0 � a � a0,

0 otherwise,
(13)

where a0 = πD2
0/4 is the maximum area of a cross section.

We now make two observations about this formula: First, if
we are considering plane sections perpendicular to all possible
directions n̂, then we can define a vector area of each ellipse as
a ≡ an̂. Let the fraction of the ellipses that have vector areas in
a small region of a-space δa around a be f (a)δa, and suppose
f to be normalized: ∫∫∫

f (a) d3a = 1. (14)

Then f and fa are related through

fa(a) = 4πa2f (a). (15)

Second, suppose we are once again considering the ellipses
that lie perpendicular to a specific direction n̂, but that all the
spheres have been deformed into ellipsoids by stretching or
compressing in the two directions perpendicular to n̂, so that
n̂ is the direction of one of the principal axes (which remains
unchanged by this deformation). We suppose the deformation
to be the same for all ellipsoids, then a0 takes a new value,
but the thickness D0 of the ellipsoid is unchanged. We observe
that, despite this change, both Eqs. (11) and (13) still apply
(the latter with the new value of a0.)

B. Affine transformation of ellipsoids

Consider a general ellipsoid, which in Cartesian coordinates
(x,y,z) is represented by the equation

rT A r = 1, (16)

where

r ≡

⎛
⎜⎝

x

y

z

⎞
⎟⎠ and A ≡

⎛
⎜⎝

A11 A12 A13

A12 A22 A23

A13 A23 A33

⎞
⎟⎠. (17)

Suppose that there are N of these ellipsoids per unit volume
of space, all identical, and identically oriented, but placed
randomly without overlapping. Imagine that we are interested
in taking a cross section through this distribution perpendicular
to the n̂ direction, which we take for the present to be the
Cartesian z-coordinate direction.

Now, whatever the distribution of elliptical cross sections
may be for this set of ellipsoids, it must be unchanged
by applying an affine transformation to space consisting of
a simple shear which moves points only perpendicular to
the z direction. In other words, we must obtain the same
distribution for ellipse areas (provided n̂ is fixed) if we make
the transformation r �→ r′, where

r =

⎛
⎜⎝

1 0 p

0 1 q

0 0 1

⎞
⎟⎠r′ (18)

for any real numbers p and q, and consider the trans-
formed ellipsoid in r′ space. Choosing the special values
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p = (A23A12 − A22A13)/(A11A22 − A2
12) and q = (A13A12 −

A11A23)/(A11A22 − A2
12) leads to a new equation for the

ellipsoid in the transformed space:

(r′)T

⎛
⎜⎝

A11 A12 0

A12 A22 0

0 0 det A/(A11A22 − A2
12)

⎞
⎟⎠r′ = 1. (19)

This describes an ellipsoid which has one of its major axes
aligned in the z′ direction, and we wish to know two things:
First, the length D0 of this major axis, because for the untrans-
formed ellipsoid, this is the widest separation of two planes
(both perpendicular to n̂) which intersect the ellipsoid. Second,
we wish to know the maximum cross-sectional area a0 of the
transformed ellipsoid perpendicular to the z′ direction (which
is also the maximum cross-sectional area of the untransformed
ellipsoid perpendicular to the z direction). These quantities can
be read directly from Eq. (19), but it is useful to have them
in coordinate-independent form. To aid this, we define a new
matrix

B ≡

⎛
⎜⎝

A11 A12 0

A12 A22 0

0 0 1

⎞
⎟⎠ = n̂n̂T + (I − n̂n̂T )A(I − n̂n̂T ).

(20)

We then see, from Eqs. (19) and (20), that

D0 = 2

(
det B

det A

)1/2

, (21)

a0 = π

(det B)1/2
, (22)

which can be used in Eqs. (11) and (13).

C. The distribution of ellipse areas

Suppose we have N ellipsoids per unit volume, all identical,
with major axis lengths (A0,B0,C0) and all initially with the
same orientation, so that (with δ̂ being the Kronecker delta
function)

F (A,B,C) = δ̂(A − A0) δ̂(B − B0) δ̂(C − C0). (23)

If we now choose Cartesian coordinate axes in the direction of
the major axes of the ellipsoids, and choose the origin at the
center of one of them, then the equation for this ellipsoid is

4x2

A2
0

+ 4y2

B2
0

+ 4z2

C2
0

= 1. (24)

Let us take a comprehensive set of plane sections through
space. By comprehensive we mean choosing many random
orientations n̂ (over the full solid angle of 4π steradians),
and for each orientation, densely and uniformly filling space
with parallel plane sections perpendicular to this direction.
Whenever a plane passes through an ellipsoid, we note the
area a of the ellipse formed, so that we can define a vector

a ≡ an̂ (25)

specifying both its area and direction. Averaged over all these
plane orientations and positions, we wish to calculate the

number n of ellipses per unit area of cross section, and also
the normalized function f , defined such that the fraction of
the total number of ellipses that have values of the vector a
within a small neighbourhood δa is f (a)δa.

The number of ellipses per unit area in the cross section with
vector areas within a region δa around a specific a is n f (a) δa.
Thus from Eqs. (11), (13), and (15),

4πa2nf (a) =
{
ND0[4a0(a0 − a)]−1/2 if 0 � a � a0,

0 otherwise.

(26)

From Eqs. (24), (21), (22), and (20), we find

D0 = (
A2

0n
2
x + B2

0n2
y + C2

0n2
z

)1/2
, (27)

a0 = πA0B0C0

4
(
A2

0n
2
x + B2

0n2
y + C2

0n2
z

)1/2 , (28)

so from Eqs. (13), (23), (25), and (26),

nf (a) = N D
3/2
0 π−3/24−1a−2

(A0 B0 C0)1/2[π A0 B0 C0/(4D0) − a]1/2 (29)

for

4
(
A2

0a
2
x + B2

0a2
y + C2

0a2
z

)1/2

πA0 B0 C0
< 1 (30)

and zero otherwise. Therefore

nf (a) =
∫∫∫


′
A∩O+

N F ABC �

32a4(1 − �1/2)1/2
dAdB dC, (31)

where

� ≡ 16
(
A2a2

A + B2a2
B + C2a2

C

)
π2A2B2C2

. (32)

In Eq. (32) we have relabeled (ax,ay,az) as (aA,aB,aC), to
emphasize that aA (for example) is the projection of a onto the
A axis of the ellipsoid it belongs to. Furthermore, 
′

A is the
region of the space (A,B,C) which, for fixed a, lies outside the
sextic surface 16(A2a2

A + B2a2
B + C2a2

C) = π2A2B2C2 (the
prime being used to indicate the complement of the set 
A
which lies inside the sextic surface). As above, O+ is the
positive octant of the space (A,B,C).

We make a final observation before completing the calcu-
lation: Since the number of ellipses per unit area of plane
section and the number of ellipsoids per unit volume both
combine in a simple, additive manner when distributions
are combined, then provided we always project a onto the
local directions of the major axes of each ellipsoid, Eq. (31)
applies equally to a fully polydisperse distribution of ellipsoids
with random orientations. The necessity to project a onto the
major axis direction of its ellipsoid is the reason we need the
crystallographic orientation data from EBSD.

D. Moments of ellipsoids from moments of ellipses

To obtain the relation between the 2D moments mα,β,γ of
Eq. (7) and the 3D moments Mα,β,γ of Eq. (3), we simply
integrate moments of Eq. (31) over all a space, which needs
to be done in several steps. Remembering that n is the number
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of elliptical sections per unit area, we find from Eq. (7) and
then (31):

nmα,β,γ ≡
∫∫∫

a4 |aA|α|aB |β |aC |γ n f (a) d3a

=
∫∫∫ { ∫∫∫


′
A∩O+

[
|aA|α|aB |β |aC |γ

× N F ABC �

32
√

1 − �1/2

]
dAdB dC

}
d3a. (33)

The next step is to reverse the order of integration, giving

nmα,β,γ =
∫∫∫

O+

{ ∫∫∫

a

[
|aA|α|aB |β |aC |γ

× N F ABC �

32
√

1 − �1/2

]
d3a

}
dAdB dC. (34)

Note that in Eq. (34) we have introduced a new integration
region 
a, which for fixed A, B, and C is the region of a space
that lies inside the ellipsoid 16(A2a2

A + B2a2
B + C2a2

C) =
π2A2B2C2.

Next, we introduce a change of variables from a to

x ≡ (x,y,z) =
(

4aA

πBC
,

4aB

πAC
,

4aC

πAB

)
, (35)

to give

nmα,β,γ =
∫∫∫

O+

{∫∫∫
|x|<1

[
|x|α|y|β |z|γ

×
(π

4

)α+β+γ+3 N F A3+β+γ B3+α+γ C3+α+β

32
√

1 − |x|
]

×|x|2 d3x
}
dAdB dC. (36)

We can then use the definition of the 3D moments in Eq. (3)
to perform the integral in (A,B,C) space:

nmα,β,γ = N

32

(π

4

)α+β+γ+3
Mβ+γ+3,α+γ+3,α+β+3

×
∫∫∫

|x|<1

|x|α|y|β |z|γ |x|2√
1 − |x| d3x. (37)

The integral over x space can be performed by a change of
variables to spherical polars (r,θ,φ):

nmα,β,γ = N

32

(π

4

)α+β+γ+3
Mβ+γ+3,α+γ+3,α+β+3

×
∫ 1

r=0

rα+β+γ+4

√
1 − r

dr

×
∫ π

θ=0
| sin θ |α+β+1| cos θ |γ dθ

×
∫ 2π

φ=0
| cos φ|α| sin φ|β dφ (38)

= N
√

π

16

(π

4

)α+β+γ+3
Mβ+γ+3,α+γ+3,α+β+3

× (α + β + γ + 4)!
(

α−1
2

)
!
(

β−1
2

)
!
(

γ−1
2

)
!(

α + β + γ + 9
2

)
!
(

α+β+γ+1
2

)
!

. (39)

Lastly, since we are interested in obtaining values of 3D
moments from calculated 2D moments, we can switch around
Eq. (39) to read

Mα,β,γ =
(

16n

N
√

π

)(
4

π

) α+β+γ−3
2

×m( −3−α+β+γ

2 ),( −3+α−β+γ

2 ),( −3+α+β−γ

2 )

×
(

α+β+γ

2

)
!(

α+β+γ−1
2

)
!
(−5−α+β+γ

4

)
!

×
(

α+β+γ−7
4

)
!(−5+α−β+γ

4

)
!
(−5+α+β−γ

4

)
!
. (40)

Equation (40) is the main result of this paper. We note
that although we do not know N , this is no impediment to
calculating averages of the crystal sizes and shapes in 3D, since
these depend on ratios of moments rather than the moments
themselves. so the factor of N cancels out.

IV. SYNTHETIC DATA: HOW MANY GRAINS ARE
NEEDED?

A. Synthetic distribution of ellipsoids

As with any moment method, the results above are exact in
the limit of infinite sample size. However, it is useful to have
some indication as to how many grain cross sections should
be measured in order to obtain a required level of accuracy for
the estimates of average 3D grain sizes and shapes.

In order to do this, and also test the results above, we
generated randomly oriented monodisperse ellipsoids in space
(Fig. 2), and accumulated statistics for the various moments
mα,β,γ . We note that in order to generate a random orientation
for the orthonormal vectors eA, eB , and eC specifying the
directions of the ellipsoid’s principal axes, one needs to choose
ϕ1 and ϕ2 to be uniformly distributed on the interval (0,2π ), but
cos � needs to be uniformly distributed on the interval (−1,1).
Figure 3 shows results where we have chosen the major axes
of every ellipsoid to have the values (A,B,C) = (9,3,1).

We see that the fractional error in the major axis lengths,
which we have estimated using (A4,3,B4,3,C4,3) from Eqs. (8)
to (10), falls roughly as 5ν

−1/2
2D , where ν2D is the number of

grain cross sections used in the estimate.

B. Synthetic distribution of cuboids

Grains in real samples are unlikely to be ellipsoids, so it is
interesting to ask whether the moment method developed here
can be applied to other grain shapes, and if so, in what sense
we should interpret the results?
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FIG. 2. Top: Random distribution of randomly oriented monodis-
perse ellipsoids in space. Each ellipsoid has major axes of length
(A0,B0,C0) = (9,3,1). Bottom: The same distribution cut by a plane,
showing (in black) the elliptical cross sections produced.

To this end, we consider synthetic data for cuboids, which
are again monodisperse, and placed with random positions and
orientations in space (see Fig. 4). We consider a cuboid to be
“equivalent” to an ellipsoid if they have the same volume, and
if the ratios of edge lengths of the cuboid are the same as
the ratios of major axis lengths of the ellipsoid. We therefore
choose the edge lengths of the cuboids in the new synthetic
data set to be 9(π/6)1/3, 3(π/6)1/3, and (π/6)1/3, so that the
equivalent cuboid has (A,B,C) = (9,3,1). We will consider
the moment method applied to the cuboids a success, if the
calculated estimates (A4,3,B4,3,C4,3) are close to the values
for the equivalent ellipsoid, namely (9,3,1).

Figure 5 shows that the fractional error in the equivalent
major axis lengths, which we have estimated using Eqs. (8) to
(10), falls roughly as 7ν

−1/2
2D , where ν2D is the number of grain

cross sections used in the estimate. For very large values of
ν2D, we expect this correlation to break down, and the errors to
stop decaying, since there is likely to be a residual, systematic
error when naively applying a result for ellipsoids to cuboids.
Nevertheless, we propose that 7ν

−1/2
2D provides a reasonable

first estimate of the relative error when applying the moment
method here to real samples.
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FIG. 3. Reconstructed major axis lengths for monodisperse ellip-
soids with major axes (A0,B0,C0) = (9,3,1). The vertical bars in the
left panel show the range (mean plus or minus one standard deviation)
for ten repeats. Right-hand panel shows the fractional error in the
reconstructed axis lengths, in the sense of the greatest distance of the
standard deviation bar from the true value, divided by the true value.
We see that the standard deviation of predictions falls as the number
of ellipses ν2D increases. Furthermore, the predictions become more
and more accurate in the same limit, with a fractional error falling
roughly as 5ν

−1/2
2D .

V. MATERIALS AND METHODS

A. Definitions for real samples

For real-world rock samples, we need to address some
definitions, in order for our results to be meaningful. The
method here is concerned with the statistics of grains, where
each grain is a single crystal, with an atomic lattice whose
orientation can be identified with EBSD.

Each grain is considered to be equivalent to a particular
ellipsoid, in a sense which we have described so far only for
cuboids. For more general grain shapes, we adopt the following
definition: Let a grain occupy a set G of points r in 3D space.
Define a symmetric positive-definite tensor

gij ≡
∫

G

(ri − 〈ri〉)(rj − 〈rj 〉)d3r. (41)

The equivalent ellipsoid which corresponds to this grain has
the same volume as the grain, has principal axes aligned with
the eigenvectors of gij , and has major axis lengths proportional
to the square roots of the corresponding eigenvalues of gij .

A critical assumption is that the major axes of the ellipsoid
are aligned with the crystallographic axes of the lattice.
This assumption is, strictly speaking, only meaningful for
orthorhombic, tetragonal, or cubic symmetry groups, which
have three orthogonal crystallographic axes. For the hexagonal
group, if the grains adhere to the symmetry of the crystal,
the ellipsoids will be ellipsoids of revolution, and it will be
sufficient for the crystallographic c axis to align with the axis
of rotation of the ellipsoid.

In the case of the rock sample studied here, the two minerals
analyzed are triclinic (plagioclase; which is a solid solution
between anorthite and albite, and in our case, close to the
anorthite end of the series) and monoclinic (the pyroxene
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FIG. 4. Top: Random distribution of randomly oriented monodis-
perse cuboids in space. The equivalent major axes (in the sense defined
in the text) are (A0,B0,C0) = (9,3,1). Bottom: The same distribution
cut by a plane, showing (in black) the polygonal [4] cross sections
produced.

augite, which is close to the diopside end-member of a
complex solution series). For such crystal systems, care must
be exercised in defining an initial orientation to be operated on
by the Euler rotations [14]. In this case however, both minerals
have crystallographic axes that are not far from being mutually
orthogonal: for anorthitic plagioclase, the unit cell angles are
[15]: α = 93.13◦, β = 115.89◦, and γ = 91.24◦; while for
diopside [16]: α = 90◦, β = 105.63◦, and γ = 90◦. Within the
uncertainties stated here, we therefore believe that alignment of
ellipsoids to crystallographic axes is sufficiently well defined;
but we must also ask whether is is likely to be true? For anor-
thitic plagioclase, which crystallizes first and thus directly from
abundant liquid, this alignment assumption is believed to be
commonly the case. However, it will be more questionable for
late-crystallizing minerals which are forced to accommodate
their shapes to interstices between existing grains.

B. Rock sample

The sample we examine is from the Lupchinga dolerite
dyke, which belongs to a NNE-trending swarm about 10 km
wide and 60 km long, and is exposed on the southern coast of
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FIG. 5. Reconstructed major axis lengths for monodisperse
cuboids with equivalent major axes (A0,B0,C0) = (9,3,1). The ver-
tical bars in the left panel show the range (mean plus or minus
one standard deviation) for ten repeats. Right-hand panel shows the
fractional error in the reconstructed axis lengths, in the sense of the
greatest distance of the standard deviation bar from the true value,
divided by the true value. We see that the standard deviation of
predictions falls as the number of ellipses ν2D increases. Furthermore,
the predictions become more and more accurate in the same limit, with
a fractional error falling roughly as 7ν

−1/2
2D . We expect that for very

large ν2D the errors would eventually cease to fall further.

Lupchinga Island in Pääjärvi Lake, Karelia, NW Russia, where
it is 22.4 m wide (it is inaccurately described as 21 m wide
in Ref. [17]: R. Latypov, private communication, 2016). We
examined a sample collected 6.05 m from the eastern margin.
The bulk geochemical composition of this sample is reported
in Ref. [17] (their sample number 1/36). The composition
of the dyke is generally uniform (with MgO concentration
approximately 5.5 wt. %) with a compositionally distinct
chilled margin (only the eastern margin is accessible as the
western margin is covered by the sea) with MgO increasing
to 5.8 wt. %. No phenocrysts (crystals carried by the magma
from its source, identifiable by their abnormally large size) are
present in the dyke.

FIG. 6. Image of basaltic rock sample, segmented by mineral
type. We apply the analysis here separately to the plagioclase and
clinopyroxene grains.
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TABLE I. Some of the individual grain data for anorthite from a basaltic rock sample. Note that the four rightmost columns are calculated
from data in the other columns, using Eqs. (4) to (6). The data for ϕ1 are not needed for these calculations.

Grain no. Area/μm2 ϕ1 � ϕ2 a4
j /m8 |aA,j |/m2 |aB,j |/m2 |aC,j |/m2

1 8 099 157.72◦ 136.23◦ 295.91◦ 4.303 × 10−33 5.040 × 10−9 2.448 × 10−9 5.849 × 10−9

2 20 250 292.65◦ 130.12◦ 284.24◦ 1.681 × 10−31 1.501 × 10−8 3.809 × 10−9 1.305 × 10−8

...
...

...
...

...
...

...
...

...
3299 4 950 35.99◦ 65.84◦ 145.48◦ 6.004 × 10−34 2.559 × 10−9 3.721 × 10−9 2.026 × 10−9

C. Electron back-scatter diffraction imaging
After standard mechanical polishing using diamond paste

down to 1/4 micron grit size, a 30 μm thick section of rock was
polished for 1 h with 0.06 μm colloidal silica (SiO2 particle
dispersion in an alkaline solution) at Cambridge University,
UK. The sample was analyzed on a FEI sFEG XL30 SEM
at the Department of Physics, University of Cambridge. All
crystallographic data sets were collected, indexed, and ana-
lyzed using Oxford Instruments AZtec acquisition software,
set to detect 7 bands, 60 Hough transform, 75 reflectors, at
4 × 4 binning, and 2.7 s time per frame. A whole thin section
EBSD was carried out using 15 μm step size, over an area
of approximately 20 × 15 mm. Acquisition of the data for the
EBSD map took 150 min and the data was processed by Oxford
Instrument Channel 5 software.

Channel 5 software permits the construction of maps of
mineral phases, shape of grain intersections, and textural
component maps. The phase map is determined using the
crystallographic matching units of each constitutive phase
(for plagioclase we used the matching unit from Angel et al.
[15], while for clinopyroxene we used the AZtec Dioside.cry
reference file [16]).

VI. RESULTS: ANALYSIS OF ROCK SECTION

Figure 6 shows an image of the rock sample, segmented
into grains of diopside and anorthite. We perform a moment
analysis of the two highlighted mineral types. Table I shows
data and calculations applied to a few of the anorthite grains

TABLE II. Grain numbers and 2D moments for mineral popu-
lations, and calculated values of average major axis lengths, using
Eqs. (8) to (10). Relative errors for A4,3, B4,3, and C4,3 are estimated
from 7ν

−1/2
2D .

Anorthite Diopside

ν2D 3299 4303

m0,0,0/m8 4.41 × 10−29 1.17 × 10−29

m 1
2 , 1

2 , 1
2
/m11 3.66 × 10−39 3.29 × 10−40

m1,0,0/m10 7.81 × 10−36 1.52 × 10−36

m0,1,0/m10 1.51 × 10−35 1.22 × 10−36

m0,0,1/m10 5.12 × 10−36 8.73 × 10−37

A4,3/μm 590 ± 70 340 ± 40

B4,3/μm 300 ± 40 420 ± 50

C4,3/μm 900 ± 110 590 ± 60

to illustrate the calculation, and Table II shows the relevant
calculated moments for the two grain populations.

The grains of anorthitic plagioclase are seen to have a mean
shape which is elongated in the C-axis direction and somewhat
flattened in the B-axis direction. This ordering B < A < C of
major axis lengths is expected for interface-controlled growth
of plagioclase, and the method presented here has allowed a
quantitative, 3D measurement of this anisotropy to be obtained.
The shapes of clinopyroxene grains have been less studied
in the literature, and we believe these data represent the first
statistical analysis of their 3D geometry in a rock sample.

VII. CONCLUSIONS

Automated EBSD mapping of material samples has become
a fast and powerful method in recent years, generating large
volumes of data. Image analysis can be brought to bear to
segment the orientation maps so obtained, and these data sets
are ideally suited to the application of moment-based methods
for structure characterization.

We believe that the method presented here gives unique
structural insight into the 3D nature of polycrystalline samples,
provided it can be assumed that the structure is statistically
isotropic. Although we have derived the equations for the
mathematically ideal case of ellipsoids, the fact that the method
also gives accurate results for synthetic data generated for
cuboids suggests that it may be generally applicable to the
less ideal grain shapes encountered in real samples, provided
the results are interpreted as describing equivalent ellipsoids.
Here equivalent means having the same volume and ratios of
major axis lengths.

Lastly, the estimated accuracy of the results is notable:
because we are constrained to moderately large moments, the
method gives information mostly about the bigger grains in a
polydisperse population. Because of the scarcity of big grains,
the method needs a relatively large sample size: to obtain
an average shape for the 3D grains to an accuracy of better
than 10% requires on the order of 5000 grain sections to be
analyzed. This is now within the capabilities of modern EBSD
implementations, so we believe the moment method described
here is a timely addition to the analysis tools available for
electron microscopy.
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