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AlxGa1−xAs crystals with direct 2 eV band gaps from computational alchemy
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We use alchemical first-order perturbations for the rapid yet robust prediction of band structures. The power
of the approach is demonstrated for the design challenge of finding AlxGa1−xAs semiconductor alloys with large
direct band gap using computational alchemy within a genetic algorithm. Dozens of crystal polymorphs are
identified for x > 2

3 with direct band gaps larger than 2 eV according to HSE approximated density functional
theory. Based on a single generalized gradient approximated density functional theory band-structure calculation
of pure GaAs we observe convergence after visiting only ∼800 crystal candidates. The general applicability of
alchemical gradients is demonstrated for band-structure estimates in III-V and IV-IV crystals as well as for H2

uptake in Sr and Ca-alanate crystals.
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I. INTRODUCTION

Major advancements of many technologies hinge upon
the performance of underlying materials. The efficiency of
photovoltaic materials, for example, heavily depends on the
electronic properties of the solid-state or organic semicon-
ductors, or the stability of energy storage materials is gov-
erned by their energy landscapes and vibrational modes.
With the help of modern computer hardware and ab initio
theories, properties of materials can nowadays be predicted
in silico before their assessment is carried out experimentally
[1–7]. Subsequent synthesis and characterization is costly and
should focus only on those materials predicted to exhibit the
most promising properties. Computational materials design
procedures therefore hold much promise to lift some of the
chemical challenges the world is facing today.

Finding materials with superior properties in chemical
compound space (CCS), the space consisting of all possible
materials [8,9], can be seen as a numerical optimization prob-
lem. Due to the immense amount of possible compounds and
atomic configurations in CCS naive screening is prohibitive.
The combinatorial nature of CCS implies that fast yet accurate
property estimates, as well as efficient algorithms for search-
ing, are desirable [10–13]. Alchemical derivatives provide
useful, chemically local, gradient information, suggesting the
applicability of gradient-based algorithms to design new mate-
rials. Alchemical derivatives were already employed to model
the stability of binary solid mixtures within virtual crystal
approximations [14,15]. They have also afforded accurate
predictions of various properties and compound classes within
less approximate perturbation theory [16–23]. Here, we present
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numerical evidence which suggests that alchemical first order
derivatives can also be used for the rapid yet robust prediction
of band structures. For molecules and ionic crystals, even
chemical accuracy can be achieved in terms of alchemical
first-order based estimates of relative energies when fixing
the number of valence electrons and geometry [24,25]. Such
constraints can also be met by several material classes of
great interest, such as III-V semiconductors. Here, we rely
on a materials design algorithm which combines alchemical
gradients with stochastic sampling and which holds promise
for general computational materials design campaigns. Using
this algorithm, we have optimized III-V solid alloy solution
mixtures consisting of AlxGa1−xAs with respect to band
structure, arguably one of the most important properties of
semiconductors due to their many electronic applications
[26–29]. The algorithm is illustrated in Fig. 1.

II. THEORY

Alchemical gradients are obtained as first-order perturba-
tion of the ground-state energies and resulting from a linear
interpolation between reference (ref) Hamiltonian Ĥ ref and
target (tar) Hamiltonian Ĥ tar,

Etar ≈ Epred = 〈�ref |Ĥ tar|�ref〉, (1)

where |�ref〉 is the wave function of the reference system
[9,18,24]. To estimate changes in band structure, the same
formula is applied to each eigenvalue of Ĥ tar at any given wave
vector k using the corresponding eigenfunction |φref

k 〉. In Fig. 2,
the predictive performance for band structures is illustrated
using GaAs (AlAs) as a reference in order to predict AlAs
(GaAs): Note how most of the details in the band structure are
faithfully reproduced, and how the estimates can even account
for the change from direct band gap with conduction-band
minimum at � for GaAs to indirect band gap with minimum at
X for AlAs. The prediction error �εLUMO(�) = ε

pred
LUMO(�) −

εtar
LUMO(�) amounts to 0.25 (−0.2) eV, and �εLUMO(X) =

0.14 (−0.15) eV for AlAs (GaAs) using GaAs (AlAs) as a

2475-9953/2018/2(7)/073802(9) 073802-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.073802&domain=pdf&date_stamp=2018-07-23
https://doi.org/10.1103/PhysRevMaterials.2.073802
https://creativecommons.org/licenses/by/4.0/


K. Y. SAMUEL CHANG AND O. ANATOLE VON LILIENFELD PHYSICAL REVIEW MATERIALS 2, 073802 (2018)

FIG. 1. Illustration of hybrid alchemical perturbation based ge-
netic optimization used for AlxGa1−xAs alloys in 3 × 3 × 3 and
4 × 4 × 4 supercells. (a) Given 20 top crystal candidates (parents)
with largest direct band gap, children are iteratively bred until they
outperform at least one of the 20 top parents. The inset exemplifies
the mating of randomly picked parent A and B which produce a top-
performing child C in the third generation. C subsequently enters the
updated pool of parents. This process is repeated until convergence,
based on rankings exclusively obtained through alchemical pertur-
bation estimates. Initialization corresponds to a single unperturbed
self-consistent density functional theory (DFT) calculation and 20
random perturbations. (b) Self-consistent DFT validation is carried
out for all converged parents, leading to a slightly altered ranking.

reference. This implies a low band-gap prediction error of only
�Eg = 0.14 eV and �Eg = −0.2 eV for AlAs and GaAs,
respectively. A scatter plot for estimates corresponding to every
k point and every band is shown in Fig. 2(c), indicating a very
good correlation. The mean absolute error (MAE) made when
predicting eigenvalues for all occupied bands and k points is
as low as 0.11 eV.

III. COMPUTATIONAL DETAILS

Alchemical derivative and the results of Perdew-Burke-
Ernzerhof (PBE) functional [30] are computed using the
ABINIT package [31] with Goedecker norm-conserving pseu-
dopotentials [32,33] and plane-wave cutoff of 100 Ry.

FIG. 2. AlAs band structures (solid) predicted from alchemical
predictions (dashed) using GaAs (dotted) as reference (a). GaAs
band structures (solid) predicted from alchemical predictions (dashed)
using AlAs (dotted) as reference (b). Fermi level shifted to zero.
(c) Scatter plot of alchemical prediction on every k point for all
unoccupied and occupied bands. The mean absolute error for the latter
amounts to 0.11 eV.

TABLE I. Lattice constants of III-V and IV-IV semiconductors in
Å. Most of the lattice constants are taken from Ref. [39], while SnSi
is from Ref. [40], GeSn is from Ref. [41], and SiGe is from Ref. [42].

AlP 5.464 AlAs 5.660 AlSb 6.136 Si 5.431 SiGe 5.432
GaP 5.451 GaAs 5.654 GaSb 6.090 Ge 5.658 GeSn 6.076
InP 5.860 InAs 6.050 InSb 6.470 SnSi 5.961 Sn 6.489

Monkhorst-Park [34] 6 × 6 × 6 mesh for fcc primitive cell
band structure, and 3 × 3 × 3 mesh for band-structure opti-
mization (both for 3 × 3 × 3 and 4 × 4 × 4 fcc supercell) are
used respectively. VASP [35] package with projector augmented
wave (PAW) [36] pseudopotentials with default cutoff are
used for Heyd-Scuseria-Ernzerhof (HSE) [37,38] results for
AlxGa1−xAs 3 × 3 × 3 fcc supercell. Ten and 16 virtual
orbitals are used for fcc primitive and supercells respectively.
Experimental lattice constants (if available) are used for
every crystal considered in this paper. Otherwise calculated
values are used from the literature (see Table I). Alchemical
derivatives are printed by restarting with the reference wave
function in ABINIT, and setting the SCF iteration step to 0
to evaluate ∂λE. Three independent optimizations have been
carried out for 3 × 3 × 3 fcc supercells, and one optimization
for a 4 × 4 × 4 fcc supercell. Gradient sampling is carried
out with population size of 20 and mutation rate of 0.5%.
Pseudocode and convergence criteria have been included in
the Appendix. The 3 × 3 × 3 fcc supercell crystal is extended
to the 9 × 9 × 9 fcc supercell to compute the periodic Coulomb
matrix in order to account for all possible periodic images.

IV. RESULTS AND DISCUSSION

A. Band structures of III-V and IV-IV semiconductors

Alchemical prediction from the reference material
of lattice constant a to any target material (tar) on
the ith band at a given crystal momentum k is
constructed as follows: ε

pred
i,a (k) = εref

i,a (k) + ∂λε
ref→tar
i,a (k),

where the derivative is a three-dimensional (3D) integral,
∂λε

ref→tar
i,a (k) = 〈φref

ik |HT − HR|φref
ik 〉a , calculated from the ith

orbital of the reference material of lattice constant a with crys-
tal momentum k. The prediction of the band gap is defined as

Epred
g,a = min

k

[
ε

pred
LUMO,a (k) − ε

pred
HOMO,a (�)

]
, (2)

where the maximum of the conduction band of materials
investigated is located at the � point. A predicted band gap
is direct if the predicted minimum of εLUMO is located at the
� point. Lattice constants for the semiconductors are scanned
from 5.4 to 6.5 Å in steps of 0.05 Å including extra points
corresponding to the lattice constant reported in the literature.
This range covers all equilibrium constants reported for all
the semiconductors considered.

We quantify the performance of our predictions using the
mean absolute error (MAE) of a prediction to the entire ith
band of a target material at lattice constant a, made from some
reference material as

MAEi,a (ref, tar) =
∑

k

∣∣εpred
i,a (k) − εtrue

i,a (k)
∣∣w(k), (3)
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FIG. 3. Averaged MAEs for alchemical band-structure predic-
tions among III-V (upper left) and IV-IV (upper right) semi-
conductors. Errors less than 0.2 eV and combinations with∫

dr|�ρ(r)| < 0.5 a.u. are highlighted by white circles and crosses,
respectively. Bottom left: Averaged MAE vs integrated density differ-
ence for III-V and IV-IV semiconductors. The error bars correspond to
variations due to changes in lattice constants. Bottom right: Predicted
vs true band gap [gray area corresponds to

∫
dr|�ρ(r)| < 0.5 a.u.].

where εi,a (k) is the ith eigenvalue of the Hamiltonian at lattice
constant a and crystal momentum k. w(k) is the corresponding
Monkhorst-Pack [34] weight for the sampled special k points.
Throughout this paper, the error reported corresponds to the
average over all bands and lattice constants. The subscripts i

and a are omitted unless noted otherwise.
The averaged MAE over all lattice constants and bands

for all combinations of reference/target pairs, or alchemical
paths, is on display in the upper panels in Fig. 3. Overall,
decent agreement is found with most predictions deviating
from target by less than 0.5 eV. Alchemical estimates with
averaged MAE less than 0.2 eV are highlighted by the white
circles. A general trend can be observed: Predictions using
semiconductors containing third-row elements in the reference
give overall the largest averaged MAE, when the target material
has elements from the fifth row, as can be seen by the red/orange
corner of the upper panels (left for III-V semiconductors and
right for IV-IV semiconductors) in Fig. 3. A similar target-
reference pattern has been observed for alchemical predictions
of covalent bonding, and is governed by the similarity of
electron densities [24,25].

A scatter plot between averaged MAE and inte-
grated absolute electron density difference, defined as
|�ρ(r)| = |ρtar (r) − ρref (r)|, is shown in the lower left panel
in Fig. 3. The results suggest that there is an upper error
bound: Any alchemical path with small density changes will
give a small predictive error to band structure, as all the
points lie beneath the red dotted line. However, a small error
does not necessarily imply small density changes, as many
results with small predictive error correspond to large density

changes. This is because the band structure is determined by
the relative differences in Hamiltonian eigenvalues and the
corresponding orbital structure. Cancellation of higher-order
(curvature) effects along the alchemical path can lead to a
small predictive error for first-order estimates for large density
changes. Similar error cancellation has also been discussed
in the context of covalent bonding Ref. [24]. The fact that
small density changes imply accurate predictions can be used
as a sufficient condition to detect good predictive power. This
might be useful for future studies if decent approximations to
inexpensively estimate electron-density changes can be found.
The region with

∫
dr|�ρ(r)| < 0.5 a.u. electron/primitive cell

is highlighted by the white background in the lower left panel.
The band-gap predictions of the corresponding alchemical
paths are highlighted as white crosses in the upper panels of
Fig. 3. A scatter plot versus the true band gap is shown in the
lower right panel; remarkable agreement is found with MAE
of less than 0.05 eV. The linear fit gives Etrue

g ≈ 0.93Epred +
0.019 eV, with R2 = 0.93, root mean square error (RMSE) =
0.047 eV and MAE = 0.036 eV. The negative Eg in the lower
right panel of Fig. 3 corresponds to GaSb and InSb with small
lattice constants. In such environment, the conduction-band
minimum is lower than the valence-band maximum. Notice
that decent predictive power can be achieved by alchemical
predictions, satisfying the sufficient condition above, even at
such an extreme situation.

It is possible to use III-V semiconductor reference calcu-
lations to predict the band structure of other IV-IV semicon-
ductors. However, such interpolations do not provide satisfac-
tory predictive power when using only first-order alchemical
derivatives, due to the dissimilarity of the electronic density.
Similar conclusions hold when attempting to predict band
structures of II-VI semiconductors using III-V reference den-
sities.

B. Band-gap maximization in AlxGa1−xAs

Numerical results with such predictive power suggest that
first-order alchemical estimates are sufficiently accurate for
robust yet efficient optimizations of AlxGa1−xAs based band
structures. Unfortunately, due to the large dimensionality of the
problem, it is still challenging to optimize the band structure
even when using reliable gradients alone. For example, mod-
eling a 3 × 3 × 3 supercell of pure GaAs, corresponding to 27
Ga atoms, implies a total compositional space of 227 ∼ 134
million possible AlxGa1−xAs combinations (not accounting
for symmetry). Therefore, we have used the genetic optimiza-
tion algorithm, described in Fig. 1 and based on alchemical
perturbations towards the pseudopotential of Al at all Ga sites.
Starting with a single unperturbed reference PBE DFT calcula-
tion, the corresponding direct band-gap maximization history,
on display in Fig. 4, indicates rapid convergence towards
predicted PBE band gaps of ∼1.6 eV after less than 800 gener-
ations. The optimization history for each generation [Fig. 4(a)]
clearly illustrates how the average trend of direct E

pred
g is

moving upward as the gradient sampling iterations proceed.
These results imply that the mating procedure during hybrid
optimization [Fig. 1(a)] systematically steers the population
towards larger direct Eg . Since the band structure is determined
by the structure of occupied and unoccupied orbitals, this
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FIG. 4. (a) Band-gap maximization history of genetic algorithm
(see Fig. 1) based on alchemical perturbations to pure 3 × 3 × 3
GaAs supercell. Predicted values, current best, average of top 20
crystals, and average mole fraction are indicated as gray crosses, black
crosses, solid blue line, and dashed blue line, respectively. Randomly
selected alloys with predicted worst, bad, good, and best band gap are
respectively denoted by lower triangle, square, diamond, and circle.
(b) Scatter plot of Etar

g vs Epred
g for best, good, bad, and worst alloys

indicates that the overestimation of predicted band gap increases with
true band gap. (c) Unfolded target band structure (circle size indicates
weight) of converged Al0.67Ga0.33As alloy with largest direct gap; the
corresponding HSE calculation yields EHSE

g = 2.1 eV.

also indicates that crystal truncation and catenation roughly
preserve the local structure of orbitals around each atom. As
a result, the algorithm identifies alloys with E

pred
g of around

1.6 eV after only several hundred iterations. Among the best
ten alloys out of 1444 identified (Table II, structures shown in
Table III) within hybrid optimization, a crystal Al0.67Ga0.33As
(structure shown in Fig. 5) with direct Etar

g = 1.4 eV has
been selected, and its unfolded [43,44] target band structure
is plotted in Fig. 4(c), where the spectral weight at � is
70.7%, and the band-gap prediction error |�Eg| = 0.18 eV.
We also note that the average value of the top 20 candidates
converges quickly within ∼1000 generations. Picture for four
best crystals are given in Fig. 8.

For select examples (best, good, bad, worst) a decent corre-
lation between E

pred
g and Etar

g is shown in Fig. 4(b) with a linear
fit yielding MAE = 0.014 eV. Since the trends are preserved
between Etar

g and E
pred
g , one genetic optimization is sufficient to

identify the maxima. Optimization performance obtained for
other starting structures or larger supercells corroborates this
observation, indicating significant robustness and generality
of the design approach. Consecutive optimizations confirm
that the best alloys identified during each hybrid optimization
are structurally similar [see Fig. 5(b)]. HSE band gaps are
known to be in better agreement with experiments than PBE
[45,46]. We have therefore calculated the corresponding HSE
band gaps [47] for the ten best converged candidates, listed in

TABLE II. Direct band gaps of the ten best alchemically op-
timized AlxGa1−xAs alloy candidates, at HSE (EHSE

g ), PBE (Etar
g ),

and alchemically (Epred
g ) calculated (using the PBE band structure of

pure GaAs as reference) level of theory. Entries are ordered by EHSE
g ,

ranking for PBE (tar) and alchemical (pred) estimates are given, as
well as mole fraction x, and spectral weight at bottom of conduction
band at � point (w�). Pictures and structures for four best and all ten
crystals are given in Fig. 8 and Table III.

EHSE
g (eV) No. (tar) Etar

g (eV) No. (pred) Epred
g (eV) x w� (%)

2.100 4 1.400 8 1.583 0.67 70.72
2.099 1 1.414 9 1.583 0.74 61.39
2.098 3 1.406 3 1.594 0.74 62.34
2.098 2 1.413 2 1.601 0.74 59.77
2.098 5 1.400 6 1.589 0.74 59.43
2.098 8 1.390 10 1.582 0.67 67.89
2.096 7 1.396 1 1.601 0.70 65.48
2.096 10 1.376 4 1.593 0.67 67.63
2.096 6 1.397 5 1.590 0.70 63.40
2.095 9 1.382 7 1.585 0.70 63.47

Table II. Due to HSE being computationally more demanding,
we used the PBE weights for unfolding, assuming that they will
negligibly affect the HSE gap. Throughout the optimization
history, E

pred
g values cover a range of 0.9–1.6 eV, as plotted

as a sorted sequence in Fig. 5(a). The crossover from direct to
indirect gap occurs, in line with previous calculations [48–50],
for mole fractions exceeding x ≈ 0.7, substantially larger than
what has been realized in experiments so far, i.e., x ≈ 0.4.

To better understand what and how structural features
impact changes in direct band gap, we have analyzed the crystal
structures visited throughout the alloy optimization history. We
compare alloys with large and small band gaps using a periodic
variant of the sorted Coulomb matrix representation C [51,52],

FIG. 5. (a) Sorted alchemically predicted Epred
g from optimization

history in descending order (black dashed), superimposed with mole
fraction x in same order (dotted gray). (b) Normalized sorted Coulomb
matrix based distance distribution between best crystal (shown as inset
with Al, Ga, As in blue, green, and red, respectively) and crystals from
three colored bands highlighted in (a) (200 crystals from each band).
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where

CIJ =
{

0 for I = J
ZI ZJ

min(RIJ ) else
(4)

with nuclear charges Z and minimal distances min(RIJ )
between periodic images of atom positions RI and RJ . C
represents any crystal in a unique fashion and allows us to
quantify the similarity between crystals CA and CB by the
normalized matrix norm ||CA − CB||/||CB||. Ranking as well
as distributions of similarities to the top alloy (crystal structure
shown as inset) with the widest alchemically predicted direct
band gap (see Tables II and III) are presented in Fig. 5 for
all alloys falling into the 2–200 (blue), 500–700 (green), and
1000–1200 (red) windows of candidate rank. Overall, and not
surprisingly, the top alloys clearly indicate higher probability
of being more similar to the best candidate (blue bars larger
than green than red for decreasing dissimilarity values). The
histogram even suggests that for similarity values smaller than
0.45, the sorted periodic Coulomb matrix alone can be used
as a descriptor to identify large direct band-gap crystals with
high probability. Encouragingly, the relative mutual similarity
distributions for intermediate (green) and distant (red) crystal
ranks also coincide with the corresponding trends in band gaps.

C. H2 uptake in Ca and Sr alanates

While large band-gap semiconductors are of widespread
interest, one might wonder if the alchemical approach is also
applicable to other materials design problems. In order to
explore the general applicability of alchemical derivatives
for ranking crystals, we now also consider the alchemically
predicted ranking among Ca and Sr alanates with respect to
their potential for H2 uptake. Ca(AlH4)2 and Sr(AlH4)2 release
hydrogen when heated, and have been proposed as reversible
hydrogen storage materials [53,54]. We have investigated
42 Ca and 44 Sr alanate crystal polymorph structures from
Ref. [55]. We comply with the aforementioned constraint
of fixed structure by generating all Sr alanate (Ca alanate)
crystals with identical crystal structures for each Ca alanate
(Sr alanate) crystal. The H2 absorption energy of a Ca alanate
Ĥ tar is alchemically estimated using the Sr alanate Ĥ ref in
the same crystal structure. Results in Fig. 6 indicate that
the alchemical estimates correctly predict the energetically
strongest Ca alanate, and the three strongest Sr alanates. Decent
predictive power regarding the H2 absorption energy ordering
is also illustrated in Figs. 6(c) and 6(d) for the 60 most stable
alanate crystals with a linear fit corresponding to a MAE
of only 0.02 eV. The ranking error distribution [Fig. 6(d),
inset] and a Spearman’s rank correlation coefficient of 0.96
also indicate substantial predictive power, sufficient for most
materials design purposes.

V. CONCLUSIONS

To conclude and summarize, we have presented numerical
evidence for the usefulness of alchemical first-order derivatives
for the prediction of band structures. To illustrate the power
of this method, we have optimized band structures in III-V
semiconductors, namely to maximize the direct band gap in
AlxGa1−xAs semiconductor alloys. Thanks to the compu-

FIG. 6. H2 absorption energy ranking of (a) Ca alanates (tar)
predicted by first-order alchemical derivatives (pred) using Sr alanates
as reference systems (ref), and of (b) Sr alanates (tar) predicted by
first-order alchemical derivatives (pred) using Ca alanates as reference
systems (ref). Crystal space groups and solid lines track individual
crystals. Crystal structures of best Sr and Ca alanates are shown
as an inset. (c) True absorption energy vs alchemically predicted
absorption energy of Ca (Sr) alanates in green (blue) up to 0.8 eV/H2

(relative to the best crystal), and (d) corresponding ranking of H2

absorption energies by target (black line) and alchemically predicted
(green and blue for predicting Ca and Sr alanates, respectively). Error
distributions in predicted ranking (�rank) are shown as inset.

tational efficiency of a gradient based genetic optimization
algorithm, multiple AlxGa1−xAs alloys with direct Eg ≈ 2.1
eV and mole fractionx ≈ 0.7 have been identified. We note that
after having identified such promising materials candidates, the
synthetic procedure to realize them in an experiment remains
a largely outstanding challenge. The qualitative identification
of alloys with the largest Eg within single optimization runs
implies that the Eg surface is fairly flat in the crystal space of
AlxGa1−xAs systems. Alchemical derivatives can also tackle
other challenges in the realm of computational materials de-
sign, such as estimating H2 absorption energy ordering across
Ca and Sr alanates of varying crystal structure. Future work
will deal with (i) extensions to higher orders, and (ii) systematic
comparisons to alternative materials design approaches such
as special quasirandom structures [56], cluster expansion [57],
or machine learning approaches [58].
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APPENDIX: GRADIENT BASED GENETIC OPTIMIZATION

The objective of the gradient-based genetic algorithm (GA)
is to maximize the band gap while the bottom of the conduction
band must be located at the � point in the Brillouin zone.
To this end, we vary the mixing ratio of Al and Ga, as well
as their location. Instead of performing a DFT evaluation for
each candidate crystal, the band structure of a candidate crystal
is estimated using alchemical derivatives. Each alchemical
prediction takes less than 1% of the computational cost for
a full DFT band-structure calculation. This enables the rapid
exploration of many configurations and mixture ratios with
decent accuracy. The Brillouin zone of the supercell is unfolded
and corresponds to the one from a primitive cell using spectral
weights [43,44].

Three independent gradient-based GA optimizations have
been carried out with three starting crystals: pure GaAs and two
random crystals, where either Ga or Al is randomly chosen for
each of 27 III sites. All three optimizations converged within
two optimization steps, which give a total of six GA sampling
histories (see Fig. 7). 3137 crystals have been evaluated in the
first GA sampling history. Out of these, 1444 are predicted to be
direct band-gap crystals. Roughly half of the searched crystals
are of indirect band gap. Etrue

g are calculated for the following
four groups of crystals from the first GA sampling step history,

FIG. 7. Left: Three optimization runs with different initial dis-
tributions of atoms, once pristine GaAs (top), and twice Ga/Al dis-
tributed at random (left), and after restarting the optimization using the
wave function of the converged system (right) in 3 × 3 × 3 supercells.
Right: Optimization run starting with random initial atomic positions
in 4 × 4 × 4 supercell.

FIG. 8. The best four crystals with EHSE
g ≈ 2.1 eV according to

Table II. The HSE ordering rank and the crystal formula with mole
fraction is shown for each crystal. The 3 × 3 × 3 supercell is extended
to 6 × 6 × 6 to illustrate twofold symmetry, where Al, Ga, and As are
represented by blue, green, and red spheres.

depending on the sorted direct band-gap predictions: the best
50 Ebest

g , the top 491–504 E
good
g , the top 1001–1010 Ebad

g , and
the worst 15 Eworst

g . The analysis of the first GA sampling
history is shown in Fig. 4, while the analysis of all three

Algorithm 1 Gradient-based/genetic algorithm using alchemical
derivative for crystal optimization. The pseudocode of the main
routine, optimization, and two primary functions, full DFT and
GA sampling, are explicitly stated. The variables are denoted by
typewriter font.

procedure optimization (starting_crystal)
E (0)

g ← 0
h ← 1

(E (h)
g , {φ (h)

i }) ← fullDFT (starting_crystal)
while |E (h)

g − E (h−1)
g | > 0.001 eV do

top_5_predicted_crystals ← GAsampling ({φ (h)
i })

(E (h+1)
g , {φ (h+1)

i }) ← fullDFT(top_5_predicted_crystals)
h ← h + 1

function fullDFT crystals

preform full DFT evaluations on every crystals

return (Etrue
g , {φi}) of the best crystal among crystals

function GAsampling {φi}
initialize population of size 20
Epred

g ← alchemicalevaluation ({φi}, population)
s ← 1
while s < 1400 and|Ēpred

g − Ebest
g | < 0.02 eV do

(ParentA, ParentB) ← get parent (population)
Child ← mate (ParentA, ParentB)
if Child is not in population then
Epred

g ← alchemical evaluation ({φi}, Child)
update population
if Epred

g is direct
s ← s + 1

return top 5 crystals in the population
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TABLE III. 3 × 3 × 3 supercells for ten top crystals with large
direct band gap (in the order of predicted gap in Table I in main text).
Each column corresponds to a crystal, each row to the atomic site.
Upper and lower block correspond to III and V elements, respectively.

Rank 1 2 3 4 5 6 7 8 9 10 (x, y, z) (Å)

1 Al Ga Al Ga Ga Al Al Ga Al Ga (0.0, 0.0, 0.0)
2 Ga Al Ga Al Ga Al Al Al Ga Al (4.0, 0.0, 0.0)
3 Al Al Al Ga Al Al Al Ga Al Al (8.0, 0.0, 0.0)
4 Al Al Al Ga Al Ga Al Al Al Al (2.0, 3.5, 0.0)
5 Ga Ga Al Ga Al Ga Al Ga Ga Ga (6.0, 3.5, 0.0)
6 Al Ga Al Al Al Al Ga Al Al Al (10.0, 3.5, 0.0)
7 Al Al Al Al Al Al Al Al Al Al (4.0, 6.9, 0.0)
8 Al Al Ga Al Ga Ga Ga Al Ga Ga (8.0, 6.9, 0.0)
9 Al Al Al Al Al Ga Al Al Al Ga (12.0, 6.9, 0.0)
10 Al Al Al Al Al Ga Al Ga Ga Al (2.0, 1.2, 3.3)
11 Al Al Al Al Ga Al Al Al Al Al (6.0, 1.2, 3.3)
12 Al Ga Ga Al Al Al Ga Ga Al Al (10.0, 1.2, 3.3)
13 Ga Al Al Ga Al Al Ga Al Al Ga (4.0, 4.6, 3.3)
14 Al Al Al Al Ga Al Al Al Al Al (8.0, 4.6, 3.3)
15 Al Al Ga Al Al Al Al Al Al Al (12.0, 4.6, 3.3)
16 Al Al Al Al Al Al Ga Al Ga Ga (6.0, 8.1, 3.3)
17 Ga Al Ga Al Al Ga Al Ga Al Al (10.0, 8.1, 3.3)
18 Al Al Al Ga Al Al Ga Al Al Ga (14.0, 8.1, 3.3)
19 Al Al Al Ga Al Al Al Al Al Al (4.0, 2.3, 6.5)
20 Ga Ga Al Al Al Al Ga Al Al Ga (8.0, 2.3, 6.5)
21 Al Al Ga Al Al Al Al Al Al Al (12.0, 2.3, 6.5)
22 Al Al Al Al Al Al Al Al Al Al (6.0, 5.8, 6.5)
23 Al Ga Al Ga Al Ga Al Al Al Ga (10.0, 5.8, 6.5)
24 Ga Ga Al Al Al Al Al Ga Al Al (14.0, 5.8, 6.5)
25 Ga Al Al Al Ga Al Al Ga Ga Al (8.0, 9.2, 6.5)
26 Ga Al Al Al Ga Al Ga Al Ga Al (12.0, 9.2, 6.5)
27 Al Al Ga Ga Ga Al Al Ga Al Al (16.0, 9.2, 6.5)
28 As As As As As As As As As As (2.0, 1.2, 0.8)
29 As As As As As As As As As As (6.0, 1.2, 0.8)
30 As As As As As As As As As As (10.0, 1.2, 0.8)
31 As As As As As As As As As As (4.0, 4.6, 0.8)
32 As As As As As As As As As As (8.0, 4.6, 0.8)
33 As As As As As As As As As As (12.0, 4.6, 0.8)
34 As As As As As As As As As As (6.0, 8.1, 0.8)
35 As As As As As As As As As As (10.0, 8.1, 0.8)
36 As As As As As As As As As As (14.0, 8.1, 0.8)
37 As As As As As As As As As As (4.0, 2.3, 4.1)
38 As As As As As As As As As As (8.0, 2.3, 4.1)
39 As As As As As As As As As As (12.0, 2.3, 4.1)

optimization histories is presented in Fig. 5. A pseudocode for
the gradient-based optimization is presented in the pseudocode
below, where each of the routines corresponds to the following.

TABLE III. (Continued.)

Rank 1 2 3 4 5 6 7 8 9 10 (x, y, z) (Å)

40 As As As As As As As As As As (6.0, 5.8, 4.1)
41 As As As As As As As As As As (10.0, 5.8, 4.1)
42 As As As As As As As As As As (14.0, 5.8, 4.1)
43 As As As As As As As As As As (8.0, 9.2, 4.1)
44 As As As As As As As As As As (12.0, 9.2, 4.1)
45 As As As As As As As As As As (16.0, 9.2, 4.1)
46 As As As As As As As As As As (6.0, 3.5, 7.3)
47 As As As As As As As As As As (10.0, 3.5, 7.3)
48 As As As As As As As As As As (14.0, 3.5, 7.3)
49 As As As As As As As As As As (8.0, 6.9, 7.3)
50 As As As As As As As As As As (12.0, 6.9, 7.3)
51 As As As As As As As As As As (16.0, 6.9, 7.3)
52 As As As As As As As As As As (10.0, 10.4, 7.3)
53 As As As As As As As As As As (14.0, 10.4, 7.3)
54 As As As As As As As As As As (18.0, 10.4, 7.3)

(i) Optimization: The main routine consist of a stochastic
sampling procedure and a gradient step that updates wave
function by full DFT evaluation, as schematically shown in the
left panel of Fig. 1. The convergence criterion |Eh

g − E(h−1)
g | <

0.001 eV at hth optimization step.
(ii) Full DFT: It performs full DFT evaluations on the

requested crystals and returns the best corresponding true band
gap Etrue

g and orbitals {φi}.
(iii) GA sampling: The routine stochastically samples the

alchemical estimates, using reference orbitals {φi}. The initial
population of 20 crystals is randomly generated. The best
five crystals are used for full DFT evaluation. The sampling
criterion is at least 1400 crystals with direct band gap. And the
difference between the average of the top-20 population Ē

pred
g

and the best-predicted crystal Ebest
g is less than 0.02 eV.

(iv) Get parents: At each iteration during GA sampling, two
parents, ParentA and ParentB, are randomly drawn from the
top 20 of all searched crystals. In other words, the population
size of GA is 20.

(v) Mate: The routine to generate a child from two parent
crystals. The occupancy at each of the III sites in the child
crystal is randomly inherited from either parent with a 50/50
possibility, as illustrated in the right panel of Fig. 1. A mutation
rate of 0.05% is used at each of the III sites, where the atom
type would flip from Al to Ga or vice versa as indicated by the
yellow atom in the right panel of Fig. 1.

(vi) Alchemical evaluation estimate the band structure of the
requested crystal using reference orbital {φi}. If the prediction
of the band gap is indirect, the value of the direct band gap is
set to 0.
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