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Modeling the long-term evolution of dilute solid solutions in the presence of vacancy fluxes
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This work investigates the long-term evolution of dilute solute atoms in face-centered-cubic (fcc) alloys driven
by sustained vacancy fluxes, as for instance in the case of materials subjected to energetic particle irradiation.
Employing the five-jump frequency framework, we provide compact analytic expressions of the Onsager matrix
for dilute vacancy-solute systems in form of a ratio of polynomial functions of jump frequencies. The drag ratio
is found to be a function of only two independent variables, which enables a systematic study of both the flux
coupling and trapping behavior between solutes and point defects. Using an existing diffusivity database for a
total of 182 solutes in 5 fcc solvents, we show that, while most vacancy-binding solutes have indeed a positive
drag ratio, there are some solutes with positive, but small, or even negative drag ratio. This previously unnoticed
feature is interesting as it would ensure that the trapping solute remains in the matrix despite the accumulation
of irradiation dose. In the case where the drag ratio is positive, we propose a kinetic model of solute depletion
over time due to flux coupling with vacancies and apply it to a Cu-1 at. % Sb alloy. This study reveals that solutes
are not simply dragged to sinks by point defects, but affect the flux of point defects to sinks by modifying the
transport coefficients and the driving force for point-defect elimination.
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I. INTRODUCTION

Materials’ properties are generally controlled by thermome-
chanical treatments and chemical composition optimization.
In the case of materials subjected to irradiation by energetic
particles, for instance in nuclear reactors, alloy compositions
are carefully chosen to ensure, as much as possible, that these
materials retain their properties despite the damage introduced
by irradiation. For instance, small amounts of solutes can
be added to a matrix to trap point defect [1,2], without
affecting much the bulk properties of the material. A potential
issue, however, is that a high solute-defect binding energy
is required to create strong traps, and it is therefore likely
that the added solute will eventually migrate along with the
defect [3], a phenomenon known as flux coupling [4–6]. There
are many situations where flux coupling plays an important
role, both on the kinetics and steady state of the system,
such as quenching [4,7,8], irradiation [5,6,9,10], ball-milling,
severe plastic deformation, carburization, surface oxidation,
etc. This flux coupling could result in a gradual loss of solute to
point-defect sinks, and thus in a progressive degradation of the
materials properties. Hence, accurate and efficient modeling
tools are needed to take flux coupling effects into account at
the alloy design stage.

Theoretical developments over the last decade [11–13]
combined with the increasing capacities of ab initio calcu-
lations make it now possible to compute flux coupling coef-
ficients between solutes and point defects from atomic-scale
processes in a wide range of materials [14–23], while older
models [24,25] are still widely used by the community because

*Corresponding author: thomas.schuler@cea.fr

of the small number of input parameters they require [26–34].
The difficulty in using these methods more systematically
lies in the inherent complexity of the problem: while it is
possible to directly compute transport coefficients for a given
alloy system and a given composition, these calculations are
computationally demanding. It is challenging to obtain these
properties for a broad range of alloy systems, thus making
it problematic to consider and compare many alloy systems.
Materials’ design would greatly benefit from simplified tools
that rely on a small subset of alloy data. These tools, in
conjunction with high-throughput calculations of atomic-scale
properties, would then allow for an efficient screening across
possible alloying elements before performing more accurate
calculations.

The aim of this paper is to introduce one such practi-
cal tool for systematic investigation of solute diffusion in
face-centered-cubic (fcc) solvents. The problem of vacancy-
mediated diffusion of substitutional solutes in the face-
centered-cubic lattice was first addressed with the five-
frequency model which is essentially a first-nearest-neighbor
approximation of vacancy-mediated solute diffusivity [35,36].
The full expression for transport coefficients was obtained later
on using linear response theory [37] and then the so-called
self-consistent mean field (SCMF) method [12]. Building on
the latter, Garnier et al. [16] proposed a complete analysis
of the drag ratio for Ni-Si systems in a so-called 3NN3NN
approximation of the SCMF method. This approximation,
which considers solutes up to the third-nearest neighbors of
the third-nearest neighbors of a vacancy, provided a detailed
insight into the effect of each jump frequency on transport
coefficients for this specific alloy [16]. However, the drawback
of this study lies in the complexity of the analytic expressions
which depend on 16 jump frequencies, thus preventing one
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from gaining a general physical understanding of the most
important jump frequencies. It is also possible to derive
models with interactions of arbitrary range [13,38], which
would require even more input parameters. These models,
as well as the one by Garnier [16], allow for an accurate
computation of transport coefficients but they are unsuitable
for screening a large number of systems since there is no
appropriate database available at present. In contrast, this paper
focuses on developing an efficient screening tool to analyze
simultaneously vacancy trapping by solutes and solute drag
by vacancy flux in dilute fcc systems, using existing DFT
data which are limited to first-nearest-neighbor interactions
[39]. Note that in the five-frequency framework, models in
Refs. [12,13,16,37,38] and the one developed in this paper
give identical results.

In this paper, we focus on the five-frequency framework
and derive simple analytic expressions for the drag ratio,
which ends up being a function of two independent variables
with clear physical meaning. The framework is presented in
Sec. II A and analytic expressions of drag ratio are given in
Sec. II B. A universal drag ratio map is built in Sec. III A,
taking advantage of a diffusion database for 182 solutes in
5 distinct fcc metals [39]. Surprisingly, we find that defect
trapping does not necessarily result in positive flux coupling:
there are solutes with attractive binding energy to vacancies
and low or even negative flux coupling (Sec. III B). In the
case of positive flux coupling, we propose a kinetic model
to quantify the rate of solute depletion under irradiation due
to flux coupling with vacancies. This model is applied to a
dilute Cu-Sb system since Sb is an effective vacancy trap which
promotes interstitial-vacancy recombination (Sec. IV). Using
this model, we then show that solutes are not passively dragged
by defects, but they modify both defect transport coefficients
and driving forces for elimination to sinks, hence altering
point-defect fluxes (Sec. V).

II. DIFFUSION MODEL

A. Five-frequency framework for dilute fcc systems

The kinetic properties of the system are described within
the framework of the five-frequency model [35,36] because
it is simple enough to obtain analytic expressions of the drag
ratio, which makes it a powerful screening tool to identify
solutes with specific diffusion properties. Moreover, a recent
high-throughput ab initio study provides the data required for
this model for a total of 182 solutes, considering 5 distinct fcc
matrices: Al, Cu, Ni, Pd, and Pt [39]. The five-frequency model
aims at computing kinetic properties of a dilute solid solution
where solute migration occurs via solute-vacancy exchanges.
The system is assumed to be dilute both in vacancies V and
solutes B, so that there are only two contributions to matter
transport: the first contribution is that of an isolated vacancy in
the bulk, and the second is that of a vacancy interacting with
one solute atom. The V -B interaction, quantified by a binding
energyEb, is assumed to be restricted to first-nearest neighbors.
A transition between two states being characterized by the
couple {initial state; final state}, it follows that there are five
different jump frequencies, shown in Fig. 1: V bulk migration
(ω0); V jump around the solute linking two configurations

FIG. 1. Five-frequency framework for dilute fcc systems. The
blue sphere, gray spheres, and white square represent a solute, matrix
atoms, and a vacancy, respectively. The number on matrix atoms is the
nearest-neighbor distance with respect to solute B. Arrows indicate
the five different jump types considered in this model.

where V and B are first-nearest neighbors (ω1); vacancy-solute
exchange (ω2); V jump away from the solute (ω3); and the
reverse jump to a first-nearest-neighbor site of the solute (ω4).
Note that all dissociation jumps are assumed to be equivalent,
regardless whether the V jumps towards a second-, third-,
or fourth-nearest-neighbor configuration. From transition-state
theory [40], these jump rates are expressed using the Arrhe-
nius law ωi = νi exp (−Ei

m/kBT ), where νi is the attempt
frequency and Ei

m is the migration energy, kB is the Boltzmann
constant, and T is the absolute temperature.

In the original framework of the five-frequency model,
an analytic expression was given for the solute diffusivity
[35,36]. This coefficient alone does not describe the full kinetic
properties of the system. Indeed, following the thermodynam-
ics of irreversible processes [25,41,42], n(n + 1)/2 transport
coefficients are required to fully describe the flux of species
resulting from an arbitrary set of driving forces in an isotropic
and isothermal system containing n defects or solutes. Here,
the only driving forces that we need to consider are chemical
potential gradient and the fluxes of V and B are expressed as(

JV

JB

)
= −

(
LV V LV B

LBV LBB

)(∇(μV −μM )
kBT∇(μB−μM )
kBT

)
, (1)

where LV V , LBB and LV B = LBV are the transport coefficients
and μM is the chemical potential of a matrix atom. Analytic
expressions of these transport coefficients can be obtained, for
instance, using the self-consistent mean field theory (SCMF)
[11,12], as we recall below.

B. Analytic expression of the drag ratio

We use the SCMF theory to compute the drag ratio, defined
as LV B/LBB , for dilute fcc systems. This method has already
been applied to such systems [12,16] but this work establishes
that, within the five-frequency framework, the drag ratio is only
a function of two independent variables. In the SCMF theory,
a chemical potential gradient is applied to the system which
thus deviates from its equilibrium state. A thermodynamically
averaged master equation enables the computation of the flux
that results from this driving force and then the identification of
transport coefficients as a function of atomic jump rates. The
main steps are given in Appendix A and a general, detailed
description of this method can be found elsewhere [12,19].
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The transport coefficients obtained from the SCMF theory
depend on the probability that a given jump occurs, expressed
as piωij , where pi is the probability of being in configuration
i and ωij is the transition frequency from configuration i

to configuration j . Detailed balance at equilibrium leads to
piωij = pjωji . Let Ei

b be the binding energy of configuration
i, with the convention that positive values indicate attraction
with respect to a configuration where solutes and point defects
are infinitely separated from each other:

piωij = exp

(
Ei

b

kBT

)
νij exp

(
− E

ij
m

kBT

)

= νij exp

(
− E

ij
sp

kBT

)
, (2)

where E
ij
sp = E

ij
m − Ei

b is the energy of the saddle-point config-
uration between configurations i and j . Equation (2) is general,
but note that in the five-frequency framework listed above, only
first nearest-neighbor binding is considered, and notations are
simplified since there is only one binding energy Eb and only
one subscript to specify the transitions.

Equation (2) shows that the saddle-point energy between
two configurations (and not migration energies) is the quantity
that matters to characterize a transition, and thus to compute
transport coefficients. In the five-frequency framework, ω3 and
ω4 are reverse jumps from each other; hence, they share the
same saddle-point configuration and should not be considered
as distinct variables. This is why they are both shown in red in
Fig. 1. We choose the reference state for saddle-point energies
as the energy of the saddle-point configuration of an isolated
vacancy migrating in the pure solvent, which is mathematically
equivalent to factorizing out ω0 in each jump frequency. These
ω0 factors then cancel out when taking the ratio of two transport
coefficients. Moreover, the drag ratio does not depend on the ω2

rate because both LV B and LBB coefficients are proportional
to ω2 (see Appendix A). In the end, the drag ratio only depends
on two reduced jump rates in the five-frequency framework:
W1 and W3, where Wi = piωi/p0ω0. For convenience, we use
variable W̃1 = W1/W3 instead of W1 to express the drag ratio

W3 = ν3

ν0
exp

(
E0

m + Eb − E3
m

kbT

)
, (3)

W̃1 = ν1

ν3
exp

(
E3

m − E1
m

kbT

)
. (4)

As shown in Appendix A for the system of interest here, the
transport coefficients can be expressed as Lij = a2ω0Q

θ
ij /Q

θ
0,

where a is the lattice parameter, Qθ is a θ th-order polynomial
function of jump rates {Wi}, where θ is the number of effective
interactions that correspond to configurations from which it
is possible to perform at least one jump that is not bulklike.
Qθ

0 being the same for all transport coefficients, the drag
ratio is simply a ratio of two θ th-order polynomial functions
of reduced jump rates. For vacancy-mediated diffusion in a
dilute isotropic crystal, θ is the number of effective interactions
located in a volume containing all atomic sites that are at most
one jump away from the farthest solute-vacancy interaction
distance. In the five-frequency framework for fcc crystals, the
interaction distance is limited to first-nearest neighbors; one

vacancy jump away from this configuration includes up to
fourth-nearest-neighbor configurations. Lastly, in the out-of-
equilibrium system, there are two nonsymmetrically equivalent
interactions at third-nearest-neighbor distance, and therefore
θ = 5.

Using the notations from Eqs. (3) and (4), we used the
SCMF theory to derive a compact analytic expression of the
drag ratio in dilute fcc systems:

LV B

LBB

= W̃1P0 + P1

W̃1P0 + P2
, (5)

where Pj is a fourth-order polynomial function of variable W3,

Pj =
4∑

k=0

αj,kW
k
3 , (6)

and the αj,k coefficients computed using the SCMF theory are
provided in Table II (see Appendices A and B for details).

III. GENERAL APPROACH TO SOLUTE DRAG
IN fcc ALLOYS

A. Drag ratio map

In the previous section, we have shown that in the five-
frequency framework, the drag ratio depends on two variables
only, and a compact analytic form has been obtained [Eq. (5)].
In Ref. [39], attempt frequencies were computed ab initio
for 182 solutes divided among 5 fcc matrices, using the
hopping-atom approximation [14,43,44]. Direct inspection of
this database [39] shows that the attempt frequency ratios
ν3/ν0 and ν1/ν3 vary between 0.63 and 2.00. Furthermore,
a detailed study in Ref. [14] showed that the hopping-atom ap-
proximation is accurate within a factor of ∼2–3. Thus, we will
consider these ratios equal to unity to simplify the discussion.
This simplification does not reduce the range of applicability
of our results because, at any given temperature, an attempt
frequency ratio distinct from unity can be reexpressed as a shift
in activation energies of the corresponding jump frequencies.
If prefactors are not equal to unity, Fig. 2 remains unchanged
but the energy values of each axis are shifted by some entropy
value ln(νj/νi).

Figure 2 shows the value of the drag ratio LV B/LBB

obtained from Eq. (5), which depends on two variables only:
(E0

m + Eb − E3
m)/kBT and (E3

m − E1
m)/kBT . Because of the

normalization of energies by kBT this map is independent
of temperature. The −1.28 contour corresponds to the drag
ratio obtained for a tracer matrix atom (i.e., a solute which is
similar to matrix atoms such that there is no vacancy-solute
binding energy) for which LV B/LBB = −1/f0, f0 = 0.78146
being the well-known fcc tracer correlation factor [24]. The fact
that the drag ratio is negative when there is no solute-vacancy
interaction comes from the vacancy-mediated migration mech-
anism, where solute and vacancy flow in opposite directions
when they exchange positions. The drag ratio becomes positive
when the vacancy has a higher probability to diffuse around the
solute and exchange again with it rather than to diffuse away
from the solute. From Fig. 2, vacancy-solute drag (positive
drag ratio) occurs if at least one of two conditions is met:
(1) the energy barrier for V to diffuse away from the solute
is at least ∼2kBT higher than the energy barrier to diffuse
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FIG. 2. Numerical evaluation of the drag ratio computed with
the SCMF method in the five-frequency framework [see Eq. (5)].
Contour lines are represented for several values of the drag ratio:
−2.00, −1.28, −1.00, 0.00, +0.80.

around the solute; (2) the saddle-point energy associated with
a dissociation jump (E3

m − Eb) is at least ∼3kBT lower than
the saddle-point energy associated with the migration of an
isolated vacancy (E0

m). The LV B = 0 contour does not exactly
consist of two straight lines (one vertical at 3kBT and one
horizontal at 2kBT ), as vacancy-solute drag can also occur
when both of these conditions are nearly met simultaneously.
Physically, these conditions express the fact that positive drag
ratio requires a correlated motion of V around the solute. If
the vacancy systematically dissociates after exchanging with
the solute, vacancy-solute exchanges become random which
leads to negative flux coupling (as in the tracer matrix atom
example). Successive solute-vacancy exchanges are possible
if the vacancy dissociation probability is low compared with
the exchange probability. In the five-frequency framework,
this dissociation requires basically two jumps: first V has to
jump from a first-nearest-neighbor configuration to second-,
third-, or fourth-nearest-neighbor configurations, and then V

must not come back to a first-nearest-neighbor site, which is
consistent with the above conditions for positive drag ratio:
condition 1 corresponds to the fact that V has a higher
probability to perform ω1 jumps than ω3 jumps, and condition
2 corresponds to the fact that, following a ω3 jump, V has
a higher probability to jump back to a first-nearest-neighbor
configuration than to diffuse away from the solute. Note that
the calculation also includes more complicated trajectories,
involving dissociation, one or more bulklike jumps away from
the solute, and then the same number of jumps back towards the
solute and a reassociation jump. The maximum extent of these
kinetic trajectories is parametrized by the correlation radius
(see Appendix B).

B. Drag ratio vs fraction of trapped defects

In this section, we show that contrary to what might be
expected, there exist solutes able to trap a significant fraction
of vacancies while having a negative vacancy-solute flux
coupling. This is surprising at first since a high binding energy
is required to trap a significant fraction of vacancies, and this

high binding energy is expected to create a deep energy basin
from which it is hard to escape, so that the vacancy does not
dissociate from the solute very often but rather migrates along
with the solute, hence creating a positive flux coupling between
vacancies and solutes.

First, we show that for correlating drag ratio to vacancy
trapping efficiency, it is reasonable for most solutes to assume
that E3

m = E0
m, which enables to express the drag ratio as a

function of variables W̃3 = exp (Eb/kBT ) and W̃1 [instead of
W3 and W̃1, see Eqs. (3) and (4)]. This will be convenient
because the fraction of vacancies trapped by solutes FT (V )
directly depends on W̃3,

FT (V ) = [V B]

[V ] + [V B]
= 1

1 + 1

12[B]W̃3

, (7)

where [V ], [B], and [V B] are the concentrations of isolated
vacancy, isolated solute, and vacancy-solute pair, respec-
tively. To be consistent with the five-frequency framework,
we assume that trapping only occurs when V and B are
first-nearest neighbors, and there are 12 such configurations
per site on the fcc lattice. The second equality in Eq. (7)
stems from the assumption of local equilibrium: [V B] =
12 exp (Eb/kBT )[V ][B].

In order to apply our approach to a large number of alloy
systems, we took advantage of the migration energy data com-
puted ab initio for 182 solutes divided among 5 different fcc
matrices (Al, Cu, Ni, Pd, Pt) [39]. The first-nearest-neighbor
binding energy is determined as the difference E3

m − E4
m. This

approximation holds as long as the fourth-nearest-neighbor
binding is small (this configuration was used to compute
dissociation barriers). Figure 3 shows the correlation between
binding energies and three migration energies differences:
E1

m − E0
m (left), E2

m − E0
m (center), and E3

m − E0
m (right). The

difference E1
m − E0

m is, on average, roughly proportional to
the binding energy, but there are significant deviations from
this linear relation. The difference E2

m − E0
m does not seem to

be correlated to the binding energy, except from a qualitative
trend: solutes with higher binding energy tend to have lower
exchange energy barriers. This is expected because solutes with
high binding energies to vacancies usually relax toward the
vacancy. As a result, they are closer to other symmetrically
equivalent first-nearest-neighbor configurations, and jumping
to these configurations is easier. For the third possible correla-
tion investigated here, however, it is found that there exists a
strong correlation E3

m � E0
m±0.11 eV for nearly all solutes.

There are only three exceptions that fall out of this range:
La and Y in Pt and S in Al. For comparison, bulk vacancy
migration energies E0

m amount to 0.58 eV (Al), 0.72 eV (Cu),
1.09 eV (Ni), 0.96 eV (Pd), and 1.22 eV (Pt) [39].

Next, we illustrate that assuming E3
m = E0

m is not detrimen-
tal to the prediction of the sign of the drag ratio. To this end,
Fig. 4 displays the contour obtained from Eq. (5) assuming
E3

m = E0
m (black line). In that figure, each symbol corresponds

to one solute in each matrix, and specifies the “true” sign of
the drag ratio at T = 0.5Tm, i.e., obtained without assuming
E3

m = E0
m: an empty symbol indicates negative flux coupling

and a filled symbol indicates positive flux coupling. The five
different host matrices are identified by different symbol types
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FIG. 3. Correlation between solute-vacancy binding energy and the migration barriers for vacancy jump around the solute (left), vacancy-
solute exchange (center), and vacancy jump away from the solute (right). Each of the 182 points corresponds to a solute in a fcc matrix (matrices
are distinguished by the color and type of symbol) and all the required data are taken from Ref. [39]. The coordinates of each point are provided
as Supplemental Material [45].

and Tm is the melting temperature of the host matrix. Hence, if
the above assumption leads to the correct sign of flux coupling,
there should be only empty symbols below the solid curve, and
only filled symbols above it. This is mostly true, except for a
small number of solutes located near the boundary, where the
sign of the flux coupling can be very sensitive to small changes
in migration barriers. In this narrow region, however, the flux
coupling is close to zero. Overall, we thus conclude that the
qualitative nature of the flux coupling phenomenon is well
reproduced using the simplifying assumption E3

m = E0
m.

Finally, using the fact that E3
m = E0

m is a safe approxima-
tion, Fig. 5 shows the drag ratio as a function of the fraction of
vacancies trapped by solutes for a solute concentration [B] = 1
at. %. As a baseline for trapping efficiency, we define the
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FIG. 4. The black line shows the analytic contour for LV B =
0, assuming E3

m � E0
m. At T = 0.5Tm, for all 182 solutes in fcc

matrices contained in Ref. [39], the sign of the drag ratio without this
simplifying assumption is negative for empty symbols and positive
for filled symbols. There are only a few solutes for which assuming
E3

m � E0
m would predict the wrong sign forLV B . Note that the abscissa

of each data point is reported assuming E3
m = E0

m. The coordinates
of each point are provided as Supplemental Material [45].

fraction of randomly trapped vacancies as the probability for a
vacancy to be next to a solute when there is no binding energy
between them and this condition is represented as a solid black
line in Fig. 5:

F 0
T (V ) = 1

1 + 1

12[B]

� 0.107. (8)

The dashed contour lines are the same as in Fig. 2. For each
solute in fcc matrices in Ref. [39] there is a corresponding
data point on the plot (where the coordinates are evaluated
at 0.5Tm for each matrix). The background color for drag
ratio values assumes E3

m � E0
m, which predicts the correct drag

ratio sign for most solutes (see Fig. 4) but not necessarily the
correct magnitude. The main result in this figure is that there
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FIG. 5. The color map shows the magnitude of the drag ratio as a
function of the fraction of trapped vacancies FT (V ) and the migration
energy difference (E3

m − E1
m)/kBT . The fraction of trapped vacancies

is computed for a solute concentration [B] = 1 at. %. The solid black
line corresponds to F 0

T (V ), the fraction of trapped vacancies when
Eb = 0. The open symbols show the location of all 182 solutes in
fcc matrices computed at T = 0.5Tm with data from Ref. [39]. The
coordinates of each point are provided as Supplemental Material [45].
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exist solutes with significant trapping efficiency with weakly
positive or even negative drag ratio. Note that the trapped
fraction of vacancies is a function of temperature [Eq. (7)] and
converges towards F 0

T (V ) as temperature increases [Eq. (8)].

IV. APPLICATION: MODEL FOR SOLUTE DEPLETION
UNDER IRRADIATION

When solutes are added to a system to provide defect
trapping, or solution strengthening, it is of prime importance
that they remain in the solid solution but, as discussed in the
previous section, flux coupling may drag these solutes towards
point-defect sinks such as dislocations, grain boundaries, free
surfaces, or precipitate-matrix interfaces. Figure 5 shows that
there exist solutes acting as efficient vacancy traps while having
a negative or small positive drag ratio. Our analysis conducted
for vacancy-solute interactions suggests that it might also occur
for self-interstitial defects. As one would expect, Fig. 5 also
shows that most solutes that are efficient vacancy traps have a
positive drag ratio. It does not mean that these solutes cannot
be used for radiation enhancement or solution strengthening
purposes, but that the rate at which such solute would be leaving
the matrix must be taken into account when selecting a given
solute, and its concentration.

In this section, we supplement the information captured
in Fig. 5 by deriving a kinetic model to predict the rate of
solute depletion from the matrix. We will focus here on a solute
that results in a positive drag ratio and consider the situation
where this alloy is subjected to irradiation because we can
use well-established homogeneous rate equations to compute
all needed quantities [1,2]. Regardless of the density, type,
efficiency, and geometry of point-defect sinks, we assume that
they can be represented altogether by an effective sink strength
k2. Point defects created by irradiation in the solid solution
can either recombine or eliminate at sinks. Only the latter will
lead to long-range solute redistribution and potentially solute
depletion in the solid solution. The ratio of point defects that
recombine to the ones created is the fraction of recombined
point defects FR , which is obtained from standard rate theory
equations. Let φ be the irradiation flux in displacement per
atom (dpa) per second and γ the fraction of the point defects
produced as isolated point defects. With these definitions, the
total loss of point defects to sinks per unit time is given by
γφ(1 − FR). The overall rate of solute depletion from the
matrix is the result of two contributions, namely, the solute
dragged to sinks due to flux coupling and the possible solute
diffusion back to the matrix owing to the solute concentration
profile built by the first contribution. In deriving the expression
for the first contribution, it is assumed that there is no solute
chemical potential gradient between the bulk and sinks. From
Eq. (1), the flux ratio between vacancies V and solute B is

JB

JV

=
−LBV ∇μV − μM

kBT

−LV V ∇μV − μM

kBT

= LBV

LV V

= LBV

LBB

LBB

LV V

, (9)

where the last equality isolates the contribution from the drag
ratio LBV /LBB .

The LV V coefficient can be written in the form (see
Appendix A or Ref. [2])

LV V = [V ]a2ω0

�
+ zV B[V ][B]LV B

V V

�
, (10)

where LV B
V V is the vacancy-solute pair contribution to the

LV V coefficient and the first term is the contribution from
isolated vacancies. � is the atomic volume and zV B =
12 exp (Eb/kBT ) is the pair partition function, i.e., the ratio of
the probability of V and B being first-nearest neighbors over
the probability of V and B being isolated. Similarly, LBB =
zV B[V ][B]LV B

BB/� and LBV = zV B[V ][B]LV B
BV /�, such that

the flux ratio becomes

JB

JV

=
LBV

LBB

LV B
V V

LV B
BB

+ a2ω0

zV B[B]LV B
BB

= 1

η

LBV

LBB

, (11)

whereη characterizes the efficiency of the drag ratioLBV /LBB .
Now, we write the time derivative of the total (isolated B and
V B pairs) bulk solute concentration [B̄]bulk due to vacancy
drag:

d
[
B̄

]bulk

dt

∣∣∣∣∣
drag

= −LBV

LBB

γφ(1 − FR)

η
. (12)

As solute diffuses to point-defect sinks, the solute concen-
tration at sinks increases, while the bulk solute concentration
decreases, creating a solute concentration gradient, which is a
driving force for solutes to come back to solid solution. The
second step in our derivation is to quantify this second kinetic
contribution. Starting from the continuity equation integrated
over space and applying the divergence theorem

dNB

dt
= SsinkJ

sink→bulk
B , (13)

where NB is the total number of B atoms in the solid solution,
Ssink is the total surface of point-defect sinks, and J sink→bulk

B

is the flux of atoms B from point-defect sinks (segregated
regions) towards the bulk:

J sink→bulk
B = − Lsink

BB

a + λ

μbulk
B − μsink

B

kBT

= Lsink
BB

a + λ
ln

(
[B]sink

zsink
B [B]bulk

)
, (14)

where a is the average half-width of the segregation zone
around point-defect sinks, which is typically on the order of
the lattice parameter; λ is the average half-distance between
two point-defect sinks; [B]sink and [B]bulk correspond to
the isolated solute concentration at sinks and in the solid
solution, respectively; zsink

B = exp (Esink
B /kBT ) with EBsink

the segregation energy of solutes B at sinks. Assuming
that point defects are at equilibrium around sinks, Lsink

BB =
zV B[V ]eq[B]sinkLV B

BB/�, hence,

J sink→bulk
B = zV B[B]sink[V ]eqLV B

BB

�(a + λ)
ln

(
[B]sink

zsink
B [B]bulk

)
.

(15)
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To go further, we assume a planar geometry to model
point-defect sinks. The bulk volume is then given by 2λSsink,
while the volume of the segregation zone is 2aSsink. The
overall kinetic equation for the solute evolution is obtained
by superposing Eqs. (12) and (15):

d[B̄]bulk

dt
= − a

λ

d
[
B̄

]sink

dt
= LBV

LBB

γφ(FR − 1)

η

+ zV B[B]sink[V ]eqLV B
BB

2λ(a + λ)
ln

(
[B]sink

zsink
B [B]bulk

)
.

(16)

The parameters in Eq. (16) depend on different physical
variables: a and λ depend on the microstructure; [V ]eq, LV B

BB

and the drag ratio LBV /LBB depend on temperature; η depends
on temperature and chemical composition; γφ depends on
irradiation conditions; and FR is a function of all these
variables, as detailed in Ref. [2]. Once all the values of these
variables are specified, a time integration of Eq. (16) can be
performed to predict the evolution of the solute concentration
in the solid solution as a function of the irradiation dose.

As an example, we consider the case of solute depletion
due to flux coupling in a Cu solid solution with 1 at. % Sb
because all thermodynamic and kinetic parameters have been
computed accurately from ab initio calculations for this system
[2]. Sb solutes bind strongly with vacancies (Eb = 0.38 eV)
but mixed dumbbells containing Sb are unstable in Cu. Hence,
the flux coupling phenomenon under irradiation reduces to
that between vacancies and Sb atoms. The corresponding
drag ratio is positive at low temperature and decreases with
increasing temperature, becoming negative at approximately
1200 K. Figure 6 shows the evolution of the fraction of
recombined point defects FR as a function of the dose for
various temperatures and irradiation fluxes, computed for sink
strengths k2 = 1014 m−2 and k2 = 1016 m−2, corresponding to
average grain diameters of 600 and 60 nm, respectively.

For the sake of simplicity, we chose zsink
B = 1 (no solute

binding to sinks) and γ = 1 (irradiation producing only iso-
lated Frenkel pairs and thus φ corresponding to the so-called
NRT displacement rate [46,47]). However, in particular for
neutron and ion irradiations, γ is lower than 1 [48–51] since
some Frenkel pairs spontaneously recombine or form clusters
in displacement cascades. For a given value of γ , this effect can
be taken into account using the data provided in Fig. 6: in a first
step, one would select the curve obtained for a displacement
rate γ times smaller than the NRT one, and in a second step,
the dose of interest, for instance the inflection point on the
curve, would be increased by γ , yielding the corresponding
NRT dose.

In this work, the value of η was obtained from atomic-
scale jump frequencies using the expressions provided in
Appendix A. Note that when the vacancy solute pair is strongly
bound (Eb � 3kBT ), an approximate but accurate value of η

can be obtained from experimental data that are available for
most binary alloys (self-diffusion D∗

self and solute D∗
B tracer

diffusion coefficients) [2]: η � 1 + D∗
self/[B]f0D

∗
B .

As the system evolves, solutes are lost to sinks due to flux
coupling with vacancies, hence the decrease in the fraction
of recombined point defects. This decrease depends both on
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FIG. 6. Evolution of the fraction of recombined point defects
(which depends on solute concentration) as a function of the irra-
diation dose computed for γ = 1. Displacement rates are given in
dpa/s.

temperature and irradiation flux. For a given irradiation flux,
lower temperatures lead to larger decrease in the fraction of
recombined point defect at steady state, the evolution of FR

with dose is sharper, and starts at a lower dose. At a given
temperature, as the irradiation flux increases, the difference
between initial and steady state FR is larger and solute
depletion starts at higher doses. At temperatures higher than
550 K, the loss of solutes over time becomes smaller because
flux coupling and vacancy trapping decrease. Moreover, for
each temperature, the fraction of recombined point defects is
sensitive to the solid solution solute content over a limited
irradiation flux domain only [2]. Outside of this domain, the
loss of solutes to sink does not affect much FR . Comparing
the two graphs in Fig. 6, one can see that higher sink strength
shifts this irradiation flux domain to higher displacement rates
for a given temperature, but the qualitative features of the FR

decrease with dose remain the same.

V. DISCUSSION

We considered here the case of solutes that are used to
enhance the relative rate of recombination under irradiation, so
as to reduce the potentially detrimental effects brought about

073605-7



SCHULER, BELLON, TRINKLE, AND AVERBACK PHYSICAL REVIEW MATERIALS 2, 073605 (2018)

by long-range diffusion of point defects and chemical species.
Since no solute can be a perfect trap at finite temperature,
it is important to determine whether fluxes of point defects,
and specifically vacancies, to sinks will result in a progressive
removal of the solute from the matrix and segregation at the
sinks. A first important result from our systematic investigation
of 182 solutes in 5 distinct fcc matrices is that there exist
trapping solutes with negative flux coupling with vacancies. As
seen in Fig. 5, it is easier for vacancies to dissociate from these
solutes than to migrate around them, while the corresponding
vacancy-solute binding energy is such that 12[B]Ŵ3 � 1,
meaning that about half of the vacancies in the system are
trapped.

Since many vacancy-trapping solutes display a positive flux
coupling with vacancies, it is important to estimate how fast
this flux coupling would remove solute from the matrix. We
addressed this question by building a kinetic model for solute
diffusion to and away from sinks under continuous irradiation.
At the onset of irradiation, all the solutes are assumed to
be in solution in the matrix, thus most of the vacancies are
trapped, and only a small fraction of point defects diffuse to
the sinks. As a consequence, at low doses, the solute flux to
sinks is small, and the solute concentration in the solid solution
decreases slowly. However, this removal rate increases with
time because as solutes are removed from the solid solution,
point-defect recombination is less efficient, thus the flux of
vacancies to sinks becomes larger and larger, and consequently
the coupled flux of solutes increases over time. At some
dose, the curve representing the matrix solute concentration
displays an inflection point (see Fig. 6) which stems from
the reverse flux due to solute concentration inhomogeneities
between bulk and sinks. Indeed, the segregation of solutes at
sinks creates a solute concentration gradient between the sinks
and the bulk, and hence a back-diffusion flux of solutes. This
solute flux increases over time, thus, the bulk solute depletion
rate decreases over time, until it reaches some steady-state
value, where the flux of solutes to the sinks due to coupling
with vacancies is balanced by the solute back-diffusion flux
due to solute concentration gradient between bulk and sink.
Note that the lower the initial FR (at θ = 0 dpa), the shorter
the “incubation” period where solute concentration decreases
slowly.

The behavior observed in Fig. 6 is in qualitative agreement
with experimental features observed in Ref. [3], where the
addition of oversized solutes (Hf, Zr) in austenitic steels is
shown to suppress Cr radiation-induced segregation under
proton irradiation, but up to a certain dose only: 3 dpa at
T = 673 K and 1 dpa at T = 773 K. Their observations
were analyzed with a rate-theory model [52] which is in
essence similar to the one we used here except that oversized
solutes were considered as immobile traps for vacancies.
As a consequence, these authors could not reproduce the
experimental observation of solute efficiency fading, unless
assuming that the oversized solute concentration in the solid
solution was decreasing with time, which was experimentally
confirmed by atom-probe tomography measurements [3]. In
contrast, our model captures the full kinetic interplay between
solutes and vacancies, through temperature-dependent flux
coupling parameters obtained from atomic-scale calculations,
thus eliminating the need for any arbitrary assumption on
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FIG. 7. Power-law relation between [Sb]ss , the steady-state bulk
concentration of Sb atoms, and the irradiation flux at various tempera-
tures and sink strengths k2. The power-law fit (solid and dashed lines)
is only valid at low irradiation fluxes, and exponents range between
−0.91 and −0.81, except for the T = 500 K and k2 = 1014 m−2 curve
where the exponent is −1.04. At higher fluxes, the steady-state Sb
concentration shows a flat minimum (see text).

the evolution of the solute concentration in the matrix. As a
result, the present model computes directly the effect of solutes
on point-defect recombination and thus on radiation-induced
segregation and void swelling. Data provided as Supplemental
Material show that Zr in Ni has binding and flux coupling
coefficients that are close to that of Sb in Cu [45]. Hence,
even though our calculations dealt with a model Cu-1 at. %
Sb alloy, it is encouraging that they share the same features
identified in Ref. [3]: there is a dose, the inflection point in
Fig. 6, where solute concentration decreases sharply, such that
beyond this dose, there are not enough solutes left in the solid
solution to slow down vacancies, and the recombination of
point defects decreases. In our model, these solutes disappear
from solid solution because they segregate to point-defect
sinks. In Ref. [3], it was proposed that these sinks could be
matrix-carbide interfaces. In qualitative agreement with exper-
imental observation [3], we find that for a given irradiation flux,
the inflection point appears at lower dose when temperature
increases.

While sink strength is taken constant in our calculations, it
typically increases with time as point defect form larger, nearly
immobile clusters [53]. On the one hand this effect should shift
the inflection point towards lower dose values (see Fig. 8).
On the other hand, however, the trapping of vacancies by
solutes is likely to increase the incubation dose for point-defect
cluster precipitation. This question would thus require to model
simultaneously the evolution of defect clusters and solute under
irradiation. This is left for future study. Finally, in the Cu-Sb
calculations we did not take into account the binding energy
between solutes and sinks, which would reduce the solute
back-diffusion term [Eq. (15)] and thus shift the inflection point
towards higher dose values.
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TABLE I. Power-law parameters for the fits in Figs. 7 and 8.

[Sb]ss = αφβ θinf = αφβ

α β α β

T (K) k2 = 1014 m−2

350 4.60 × 10−15 −0.890 6.50 × 103 0.495
400 8.01 × 10−12 −0.901 1.24 × 103 0.490
450 6.86 × 10−9 −0.874 3.73 × 102 0.482
500 1.28 × 10−7 −1.043 1.82 × 102 0.487
T (K) k2 = 1016 m−2

350 1.12 × 10−13 −0.813 8.06 × 101 0.507
400 3.59 × 10−11 −0.914 1.54 × 101 0.498
450 2.51 × 10−8 −0.879 4.01 × 100 0.469
500 2.79 × 10−6 −0.887 1.67 × 100 0.451

It is interesting to consider further the effect of temperature
and irradiation dose rate on two parameters: the dose at
the inflection point and the steady-state solute concentration.
Starting with the latter, Fig. 7 shows that for each temperature
there exists a power law between the steady-state solute con-
centration (with respect to the nominal solute concentration)
and the irradiation flux. The coefficients of the power law
depend on temperature and on sink strength, but the exponent
is similar for each of them (between −0.91 and −0.81 except
one of them which is −1.04, see Table I). Note that the
data points used to fit this relationship all belong to the
temperature/irradiation flux region where Sb atoms increase
the fraction of recombined point defects by at least 20%.
Indeed, when φ increases further, we observe a deviation from
this power law and the steady-state solute concentration in
the solid solution appears to saturate. Upon closer inspection
of this region, the curves display in fact a flat minimum and
the value of [Sb]ss is not rigorously independent from φ in
this region. For the T = 350 K curve at k2 = 1014 m−2, this
behavior is easier to observe. At low fluxes, FR depends on
the solute concentration, which decreases over time because
of flux coupling such that the steady-state FR values are
not so high and lead to substantial solute segregation. When
φ increases, this effect is amplified simply by the fact that
the flux of vacancies to sinks is higher. Admittedly, FR also
increases with φ but it is not enough to counterbalance the
larger flux of defects, hence, the decrease of the steady-state
bulk concentration with increasing φ. Nevertheless, at higher
irradiation dose rate, FR does not depend so much on solute
concentration and remains almost constant over time, such
that the steady-state FR values get closer to 1 and the flux
of point defects to sinks stays small at steady state. Hence,
solute segregation is less important and the steady-state bulk
concentration increases again with φ.

We return now to the inflection points in the solute depletion
curves (see Fig. 6). Because the decrease of solute concentra-
tion in the solid solution is rather sharp in most cases, the
dose at which this inflection occurs θinf is representative of
the period over which the solute is efficient in maintaining a
high recombination rate of point defects. Figure 8 shows the
evolution of θinf as a function of dose rate, temperature, and
sink strength. In the regime of large flux φ, the data can be fit by
a power law and the exponents display little dependence with
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FIG. 8. Evolution of the dose at the inflection point of the curves
in Fig. 6 as a function of the dose rate φ for various temperatures and
sink strengths. At high enough irradiation flux, a power-law relation
can be fitted to these results (solid and dashed lines), with exponents
ranging from 0.45 to 0.51 depending on temperature and sink strength.

temperature and sink strength, ranging from 0.45 to 0.51 (see
Table I). Note that in Fig. 7, the power-law fit is obtained in the
low-φ region, while in Fig. 8 the fit is obtained in the high-φ
region. At this point, there are no simple physical arguments
to rationalize these power-law fits, as they result from the
complex interplay between solid solution kinetic properties
and irradiation parameters. Still, it is interesting to note that
at “high” irradiation flux (depending on temperature and sink
strength), the dose at which the solute concentration in the
solid solution does not affect the fraction of recombined point
defects at steady state roughly evolves as

√
φ.

Finally, we would like to emphasize that Sb in Cu, and
solute additions in general, have various effects on point
defects that will all ultimately affect the solute depletion under
irradiation. In Ref. [2] we have shown that the recombined
fraction of point defects is affected by solute additions because
of two phenomena: solutes slow down point defects, but
also stabilize them in the solid solution. Following Onsager
relations, the flux of solutes to sinks is the product of transport
coefficients and chemical potential gradients [Eq. (1)]. The
transport coefficients that control the flux of vacancies are
expressed as the sum of the transport coefficients of isolated
vacancies and vacancies paired with a solute, weighted by
the probability of these configurations [Eq. (10)]. Hence, the
more attractive the interaction between solute and vacancy,
the more pairs in the system. If the solute slows down the
vacancy, then the overall vacancy population has lower trans-
port coefficients, meaning it diffuses more slowly. If the solute
does not slow vacancies significantly, the vacancy transport
coefficients increase because solute stabilizes vacancies in the
solid solution: as there are more vacancies in the system, the
flux of vacancies in response to a given driving force is larger.
These two aspects are shown in the left-hand plot of Fig. 9
in the case of CuSb. The total LV V coefficient is plotted,
normalized by the one obtained in pure Cu (where all vacancies
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FIG. 9. Left: ratio between the total LV V transport coefficient [Eq. (10)] in CuSb and in pure Cu, as a function of temperature and irradiation
rate. Right: vacancy chemical potential difference in CuSb and pure Cu solid solutions, normalized by kBT , as a function of temperature and
irradiation flux. These two plots show that solutes affect both point-defect transport coefficients and driving forces for elimination at sinks.

are isolated). At low temperature/high irradiation flux, Sb
atoms decrease the LV V coefficient because they slow down
vacancies effectively and cannot stabilize enough vacancies to
counterbalance this. At higher temperature, vacancies diffuse
at similar rates whether they are isolated or paired with solutes,
so their concentration is higher than in pure Cu since the
solutes stabilize them effectively. At first, one may think that
the driving force for point-defect elimination at sinks would be
higher in Cu-Sb. This is, however, not correct since the driving
force for elimination is not a total point-defect concentration
gradient but rather a point-defect chemical potential gradient
which, under local equilibrium conditions (needed to define
properly a chemical potential) is proportional to the isolated
point-defect concentration gradient. The vacancy chemical
potential difference normalized by kBT between Cu-Sb solid
solutions and Cu is plotted on the right-hand plot of Fig. 9.
It shows that whatever the temperature and irradiation flux
conditions, the driving force for vacancy elimination at sinks
is actually decreased by solute additions. We can also demon-
strate this analytically starting from the expressions in Ref. [2],
and assuming for simplicity that the concentration of solute
monomer is not affected by irradiation (which is true as long
as the solute concentration is much higher than the point-defect
concentration):

FR = 1 − k2a2ω0

φ

(
[V ] − [V ]eq

)
(1 + �), (17)

with � = [B]zV BLV B
V V /a2ω0. Since solute additions can

only increase FR when solutes slow down point defects,
FR(CuSb) � FR(Cu), and thus

[V ]CuSb � [V ]Cu

(
1 + �[V ]eq/[V ]Cu

1 + �

)
� [V ]Cu (18)

because � � 0 and [V ]eq � [V ]Cu. As long as a solute slows
down point defects, it will necessarily decrease the driving
force for point-defect elimination at sinks, even if it stabilizes
point defects in solid solution, thus increasing the total point-
defect concentration in the system. This situation resembles
what happens under equilibrium conditions: vacancy chemical
potential is fixed by equilibrium conditions but the total
vacancy concentration may increase upon solute additions
[54]. In the end, the flux coupling phenomenon is not a function

of the drag ratio only because solute additions will modify the
point-defect elimination flux at sinks by altering both transport
coefficients and driving forces.

VI. CONCLUSION

We have shown that in the five-frequency framework for
fcc systems, the vacancy-solute drag ratio actually depends on
two variables only. We provided compact expressions for the
full Onsager matrix in dilute binary fcc system with vacancy-
mediated diffusion, in the form of ratio of polynomial functions
of jump frequency ratios. Increasing the correlation radius
(volume of space where kinetic trajectories are accounted for)
does not change this analytic form but leads to converged
polynomial coefficients.

Using an available ab initio database for solute diffusion
in five fcc matrices (Al, Cu, Ni, Pd, and Pt) [39], the bulk
migration barrier and the dissociation barrier are found almost
equal for most solutes. This is an interesting approximation
since it allows to express the drag ratio as a function of two
parameters: vacancy jump frequency ratio around the solute
and far from the solute, and solute vacancy-binding energy. The
latter is conveniently recast in the form of a fraction of trapped
point defects, allowing for a systematic study of solute drag
and vacancy trapping in a large number of alloys. As expected,
most solutes that trap vacancies have a positive drag ratio, but
an important result here is that there are some solutes that are
able to trap more than half of the vacancies while having low
or negative flux coupling.

For solute with positive flux coupling, we derived a simple
model to compute the solute matrix depletion over time. This
model converts the drag ratio information computed from the
atomic scale into the time interval over which solute depletion
reaches a certain level below which the remaining solute
concentration in solution might no longer provide sufficient
trapping of point defects. The model could be used for alloy
design to determine appropriate solute concentrations and
ensure materials’ performances over a given time period. As
an example, we applied our model to a Cu-Sb solid solution
under irradiation.

For a given temperature and sink strength, the steady-state
solute concentration in the solid solution evolves as φ−β with
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the exponent slightly lower than 1 in most cases. This relation
is valid for low irradiation fluxes. At higher irradiation fluxes,
the steady-state solute concentration is roughly constant, while
the dose at which most of the solute depletion occurs evolves
as

√
φ. Further investigation is required to understand better

these trends and generalize them to other systems.
Finally, we have shown that solutes are not simply dragged

to sinks by point defects, they also directly affect the flux of
point defects to sinks by modifying both transport coefficients
and driving forces for elimination, i.e., point-defect chemical
potential. Generally, when solutes have an attractive interaction
with vacancies and slow down vacancies, they will increase the
total vacancy concentration in the system and at the same time
decrease the driving force for vacancy elimination.
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APPENDIX A: ANALYTIC EXPRESSIONS OF THE FULL
ONSAGER MATRIX FOR MATERIALS DESCRIBED

IN THE FIVE-FREQUENCY FRAMEWORK

In this appendix, we derive Eq. (5) from the self-consistent
mean field theory (SCMF). This equation is interesting because
the drag ratio is expressed as a two-variable function, this
function being a simple ratio of polynomial functions. Whereas
the application of the SCMF to a dilute fcc alloy is not new, this
convenient form of the drag ratio was not identified previously.
Therefore, we find it useful to outline the steps leading to this
expression, while the SCMF method is described in details for
instance in Refs. [12,19].

The starting point of the SCMF theory is a microscopic mas-
ter equation of out-of-equilibrium configuration probabilities:

dpn

dt
=

∑
m

pmωmn − pnωnm, (A1)

where pn is the out-of-equilibrium probability of configuration
n and ωmn is the jump rate from configuration m to configu-
ration n. Our goal is to compute transport coefficients in the
framework of the thermodynamics of irreversible processes
[Eq. (1)], therefore, we need to express a flux of species as a
function of driving forces.

The flux per site is obtained from the time derivative of
the first moment of the probability distribution p, using a
continuity equation

∑
n

nα
i

dpn

dt
= d

〈
nα

i

〉
dt

=
∑

s

jα
i→s , (A2)

where nα
i is a site occupation number (=1 if species α is on

site i and =0 otherwise) and 〈. . .〉 represents a thermodynamic
average over the out-of-equilibrium probability distribution p.

Probability distribution p is a priori unknown, and we
assume it can be expressed as pn = p0

nδpn, where p0 is the
(known) equilibrium probability distribution, and δp is the out-
of-equilibrium contribution. Both components are assumed to
have the same mathematical form p0

n = exp (−Fn/kBT ) and

TABLE II. Coefficients of polynomial functions (6) obtained for
a correlation radius Rcor = 4a. These coefficients are obtained from
SCMF calculations.

αj,k k = 0 k = 1 k = 2 k = 3 k = 4

j = 0 +1.0000 +1.3508 +0.56862 +0.089534 +0.0044380
j = 1 −9.4832 −6.3630 −1.0109 −0.0030132 +0.0044380
j = 2 +3.5000 +3.2364 +0.96152 +0.11299 +0.0044380
j = 3 +1631.3 +700.83 +112.12 +5.6706 +0.0044380
j = 4 +1174.0 +1653.8 +716.79 +115.10 +5.7896
j = 5 +4109.1 +3868.4 +1178.4 +142.66 +5.7896

δpn = exp (−δFn/kBT ), where Fn and δFn are free energies.
Moreover, we assume a small deviation from equilibrium
(δFn 
 kBT ) such that δpn � 1 − δFn/kBT . From detailed
balance at equilibrium, the equation can be simplified further
into ∑

s

jα
i→s =

∑
m

〈
nα

i ωmn

δFm − δFn

kBT

〉0

, (A3)

where 〈. . .〉0 denotes the thermodynamic average over the equi-
librium probability distribution p0. Because vacancy jumps
only occur with first-nearest neighbors, the sum over sites
s and the sum over configurations m are equivalent. The
quantities δFn are obtained for each symmetrically unique
configuration (in the out-of-equilibrium system) from the
stationarity of the second moment of probability distributionp0

because in the homogeneous dilute system, the configuration is
fully characterized by the vector between vacancy and solute:
〈nα

i n
β

j 〉 = 0. As a consequence, δFn is found proportional to
the driving forces, chemical potential gradients, which allows
us to identify transport coefficients.

Without going into the details, the Onsager matrix L can
be expressed in a matrix format where each matrix element
is a linear combination of quantities piωi = exp (−Ei

sp/kBT )
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FIG. 10. Convergence of polynomial coefficients αi,k as a func-
tion of the correlation radius. The relative error is computed with
respect to the value of αi,k computed at Rcor = 4a, and absolute values
are shown. Note that α1,3 is more difficult to converge than the other
coefficients, hence, it is plotted on a different scale (right-hand-side
axis).
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for i = 0, 1, 2, or 3. Because of this linearity, each jump
frequency can be factorized by ω0, making the following
matrices dependent of reduced jump frequencies Wi only:

L = a2ω0
(
L0 − 2�tT−1�

)
, (A4)

where L0 is the uncorrelated contribution while the second
term in the parentheses is the correlated part of the jumps,

represented by matrices � (nσ × 2 matrix) and T (symmetric
nσ × nσ matrix), where nσ is the number of symmetry-unique
configurations in the out-of-equilibrium system and such
that the vacancy-solute distance is lower than the correlation
distance Rcor. As an example, these matrices are given below
for Rcor = 2a, and T = Inσ

D + C + Ct (Inσ
being the identity

matrix):

L0 =
(

W2 + 4W1 + 14W3 + 121 −W2

−W2 W2

)
, (A5)

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3W3 − 2W1 − W2 W2

1 − W3 0
W3 − 1 0

2(1 − W3) 0
2(W3 − 1) 0

0 0
| |
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2W1 + 2W2 + 7W3

W3 + 11
W3 + 2

2W3 + 10
4W3 + 18

12
10
22
24
22
12
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W3 W3 −2W3 2W3 0 0 0 0 0 0 0
0 0 0 −2 2 −1 1 −2 2 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 2 0 2 −2 0 0 −1 0
0 0 0 0 0 2 0 0 −2 −2 2 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0 0 −1
0 0 0 0 0 0 0 0 2 0 −2 0
0 0 0 0 0 0 0 0 0 −2 2 0
0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

When actually inverting matrix T, we provide analytic formulas for transport coefficients in the five-frequency framework,
written concisely using fourth-order polynomial functions of W3 [see Eq. (6)], whose coefficients are provided in Table II. We
define LV

V V = a2ω0[V ]/�, the transport coefficient (in m−1 s−1) of an isolated vacancy in a bulk system. Let us remind that Wi

is a function of the saddle-point energy of jump i, not a function of migration energies. With these notations, we provide the
aforementioned expressions for Rcor = 4a:

LV B = LBV = κLV
V V W2(W1P0 + W3P1), (A9)

LBB = κLV
V V W2(W1P0 + W3P2), (A10)

LV V = LV
V V [1 + κ(W2(1174 + W1P0 + W3P3) + W1P4 + W3P5)], (A11)

κ = 1024[B]

(W1 + W2)P0 + W3P2
. (A12)
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FIG. 11. Convergence of the drag ratio with respect to Rcor. The top plots show the relative error on drag ratio with respect to calculations
done at Rcor = 4a. It is seen from the right-hand-side plot that most drag ratios are converged within less than a few percent at Rcor = 3a. For
drag ratios that are close to zero, the relative error seems higher (because it is divided by a small quantity), hence the bright colors corresponding
to maximum relative error near the zero contour. The bottom plots show the absolute error on the drag ratio, showing that systems with low
or negative (E3

m − E1
m)/kBT are usually harder to converge. At Rcor = 3a, the drag ratio is already converged to at least one decimal for any

system.

Looking at Eqs. (A9) and (A10), we find that the drag ratio
is independent of the vacancy-solute exchange frequency ω2

[Eq. (5)].

APPENDIX B: CONVERGENCE OF TRANSPORT
COEFFICIENTS WITH Rcor

When increasing the correlation radius, which parametrizes
the extent of the volume where kinetic trajectories are taken
into account, the mathematical form of Eqs. (A9) to (A12) does
not change, only the numerical coefficients of the polynomial
functions are affected. In Eq. (A5), only coefficient “121” is
changed to a higher value. Some lines are added to matrix � but
the coefficients are all zeros. However, the coefficients in the
lines (and columns) added to D and C are integer numerical
values. As Rcor increases, so does the size of matrix T and
the required computational effort to solve the problem, but
it leads to more precise values of polynomial coefficients
αj,k . Trajectories involving configurations where V and B

are farther apart have a lower thermodynamic weight, such
that αj,k coefficients, and more generally speaking transport
coefficients, converge with respect to Rcor. The αj,k values used
in this work are given in Table II, and the convergence behavior

is shown in Fig. 10. The relative error that is plotted in Fig. 10
is defined as |1 − αj,k(Rcor)/αj,k(4a)|. These relative errors
decay according to an exponential law γj,k exp (−λj,kRcor)
with 0.97 < γj,k < 5.36 and 1.34 < λj,k < 1.74. There are
two exceptions: γ1,3 = 43.4 and λ1,2 = 2.85. It is interesting
to note that all these coefficients follow a similar law of
decay, even though the physical or mathematical origin of this
observation is not yet understood.

From Fig. 11, we see that the convergence of the drag ratio,
which is the quantity of interest in this study, is faster than the
convergence of individual αj,k polynomial coefficients, and
confirms that the physical quantities that are discussed in this
paper are well converged with respect to Rcor. Indeed, Fig. 11
shows the relative error in the drag ratio map of Fig. 2 when Rcor

is set to 2a or 3a (with respect to the calculation done at Rcor =
4a). The same contours as in Fig. 2 are shown. It is interesting
to note that for (E0

m + Eb − E3
m) � 0 positive drag ratios are

underestimated by lower Rcor values and negative drag ratio or
overestimated. The opposite applies for (E0

m + Eb − E3
m) � 0.

This demonstrates that even for a simple description of the
system such as the one adopted here, the convergence of the
drag ratio, and more generally of transport coefficients, is not
straightforward to anticipate from jump rates.
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