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Ab initio calculation of thermal expansion with application to understanding Invar
behavior in gum metal
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A theoretical examination of the thermal expansion behavior of a variety of metals is conducted using a
combination of nonlinear elasticity theory and first-principles calculations that is suitable for high throughput
computation. Results of this method show good agreement with experimental values. This method is then used to
better understand the low thermal expansion behavior of gum metal by comparing the thermal expansion tensor
of Ti3Nb austenitic (β) and martensitic (α′′) gum metal approximants. The thermal expansion coefficient of β

is found to be in agreement with experimental results for that of annealed gum metal. The thermal expansion
tensor of the α′′ phase is shown to be highly anisotropic and exhibit negative thermal expansion along 〈110〉β . It
is demonstrated that the thermal expansion of the two-phase system, β + α′′, can be estimated using the rule of
mixing. By applying this averaging scheme and allowing a texturing along 〈110〉{001}β in tandem with the growth
of the α′′ phase, values for the thermal expansion similar to that seen in cold-rolled gum metal are calculated.
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I. INTRODUCTION

An understanding of the thermal expansion behavior of a
material is essential for any engineering application over a
range of temperatures. Thermal expansion is also of note from
a basic scientific perspective, as it arises from anharmonic
phonon contributions to the free energy [1]. In addition, the
fact that thermal expansion can be derived from the lattice
dynamics of a crystal means that the tensor can be directly
calculated from first principles. The framework for one such
approach relies on the work of Brugger and Thurston [2,3], who
showed that the Grüneisen tensor, and by extension the thermal
expansion tensor (with the application of the Debye model
[4]) could be directly derived from the second- and third-order
elastic constants (SOEC and TOEC).

The fact that this approach relies on elasticity theory is
especially intriguing considering recent work by the Materials
Project related to the development of workflows for the high-
throughput computation of SOEC [5] using density-functional
theory (DFT). This, combined with the ability to accurately cal-
culate the TOEC of a crystal of arbitrary symmetry [6], offers
the prospect of a path towards the high-throughput calculation
of the thermal expansion tensor. One such application of this
work could be in the search for materials with extreme thermal
expansion behavior.

Metals with a low thermal expansion coefficient (known as
Invar) have been known to exist since 1896 [7]. In the initial
materials studied, the Invar behavior was attributed to a second-
order magnetic transformation between a paramagnetic and
(anti-) ferromagnetic state. More recent investigations found
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that Invar behavior can be induced in shape-memory alloy
systems such as Cu-Zn-Al, Ni-Ti, and Cu-Mn-Al [8]. The low
thermal expansion tensor in these materials was found to be a
result of a martensitic transformation. In addition, cold-rolling
the material was shown to dramatically enlarge the temperature
range between martensitic start (Ms) and martensitic finish
temperatures (Mf) as well as the austenitic start (As) and finish
temperatures (Af), and as a result increase the temperature
range of Invar behavior.

Invar behavior has been observed in gum metal, a class
of Ti-Nb based alloys, as well. Along with a low thermal
expansion coefficient, gum metal displays numerous other
anomalous properties such as high ductility, a near absence
of work-hardening, Elinvar behavior (near constant elastic
modulus with respect to temperature), superelasticity, as well
as an ultrahigh strength [9]. Gum metal’s high strength has
attracted much interest due to the possibility of the material’s
plasticity being governed by the ideal shear strength [10–14].
Relatively little work, however, has concentrated on the origins
of Invar behavior in gum metal.

In the original paper on gum metal it was found that
Invar behavior was only observed after cold-working the
material (as in the case of Al-Cu-Zn [8]), in which case the
thermal expansion coefficient was reduced from 8 × 10−6 to
2 × 10−6 K−1 and remained stable from 77 K to approximately
500 K after which the thermal expansion coefficient increased
dramatically [9]. It was claimed that the low thermal expansion
coefficient was not a result of any phase transformation.
However, no other explanation was given for the anomalously
low thermal expansion. Kim et al. found similar dramatic
reductions in the thermal expansion in gum metal [15], but
found behavior similar to that of Invar-like shape memory
alloys. Cold-rolling the material resulted in a negative thermal
expansion in the rolling direction (RD), but showed no change
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in the directions transverse to rolling (TD). This anisotropy
in thermal expansion was accompanied by a large 〈110〉{001}
texture in RD. In addition, Martensitic-like nanodomains were
seen in the same orientation as the texture.

Perhaps the simplest method to calculate the thermal expan-
sion of a crystal is by use of the quasiharmonic approximation
[16]. However, this method relies on the fact that the material
is dynamically stable at 0 K. This is not the case for many
BCC metals that are only stable at high temperature, e.g.,
Ti3Nb [17]. As a result, another method is needed to calculate
the thermal expansion coefficient. In the case of a Ti3Nb
approximation of gum metal, the G1 structure, the crystal is
elastically stable at absolute zero, but dynamically unstable,
which is driven by a soft optical phonon mode [17]. Optical
phonons, in the harmonic approximation, are related to atomic
vibration within a unit cell, but not distortion of the cell
itself. Accordingly, the present approach approximates thermal
expansion by estimating the strain dependence of acoustic
phonons using nonlinear elasticity theory and ignoring the
optical phonon contribution to the free energy.

In this paper, we show that by accurately calculating the
second- and third-order elastic constants the thermal expansion
tensor can be obtained for a range of materials. We then apply
this method to the β and α′′ phases of gum metal with the
goal of explaining the origin of Invar behavior in the material.
Further, we demonstrate that, due to the small difference in
second-order elastic constants between the two phases of gum
metal, by applying the rule of mixing to the thermal expansion
tensors, the β + α′′ composite exhibits values similar to those
found by Kim et al. after cold-rolling gum metal [15], thus
supporting the finding that the anomalous thermal expansion
of gum metal is related to a texturing effect as well as a phase
transformation to α′′, but not necessarily invalidating the pos-
sibility of Invar behavior occurring without a martensitic phase
transformation.

II. METHOD

The derivation of the thermal expansion tensor in terms
of the elastic constants begins by relating the thermodynamic
Grüneisen parameter to thermal expansion. Using pressure-
volume variables the thermodynamic Grüneisen parameter
expresses the change in pressure with respect to internal energy
[18] at constant volume

γ = V

[
∂P

∂U

]
V

. (1)

Using Maxwell relations γ can be expressed in terms of the
thermal expansion (α), the isothermal bulk modulus (K), and
the constant-volume heat capacity (CV ), as

γ = V
αK

CV

. (2)

Substituting stress-strain variables for pressure-volume vari-
ables the thermal expansion tensor can be represented in terms
of the compliance tensor (Sijkm), constant-strain heat capacity
(Cη), and thermodynamic Grüneisen tensor (TGT) (Einstein

summation is implied for all roman subscripts):

αij = Cη

V
Sijkmγkm, (3a)

γkm = V

[
∂σkm

∂U

]
V

. (3b)

It is now necessary to relate the TGT to the generalized
Grüneisen tensor (GGT). The relation between the GGT and
the elastic constants is based on the work of Brugger and
Thurston [2,3]. Specifically, the GGT is related to the change
in vibrational frequency at a particular wave vector [ωβ(q)]
with respect to the Lagrangian strain tensor (ηij ) by

γ
β

ij (q) = − 1

ωβ(q)

[
∂ωβ(q)

∂ηij

]
η′
. (4)

In the above equation, β refers to the polarization index
(β = 1,2,3) and q is the wave vector. If values of q only in
the long-wavelength limit are considered, the frequency can
be shown to depend only on the direction of the wave vector,
leading to Eq. (4) being rewritten in terms of the unit wave
vector N in the q direction. In solving for the GGT, it is helpful
to define three coordinates: a, the coordinate in the unstressed
or “natural” state; X , the coordinate in the reference stressed
state; and x, the coordinate in the current, stressed state. The
long-wavelength limit allows for the displacement (u = x −
X) to be written as a plane wave of the form

uj = Aje
iω(t− Nkak

W
), (5)

where W is the natural wave velocity, t corresponds to time and
A is an eigenvector. The natural wave velocity can be related
to the vibrational frequency by substituting the right side of
Eq. (5) into the equation of motion for an elastic continuum,

ρ0
d2uj

dt2
= ∂P̃jp

∂ap

, (6)

with P̃jp being the first Piola-Kirchhoff stress tensor relating
the configurations x and a, and ρ0 being the density of the
undeformed material. Writing P̃jp as a Taylor series expansion
with respect to the deformation gradient [3] (see Sec. A
for derivation) and combining Eqs. (5) and (6) results in an
eigenvalue problem, known as the Christoffel equation, of the
form

ρ0W
2Uj = 
jkUk, (7a)


jk = Np[δjktpm + (δqk + 2ηqk)Cpjqm]Nm, (7b)

with tpm being the second Piola-Kirchhoff stress tensor at X
and U being an eigenvector related to displacement (see Ap-
pendix A), and Cpjqm being the second-order elastic constants
at X . Knowing Eqs. (4) and (7), the GGT can be derived in
terms of the second- and third-order elastic constants, C0

ijmn
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and C0
ijmuvn (see Appendix B for the derivation),

γ
β

ij (N) = −2
β(N)Uβ

i U
β

j + (
C0

ijmn + C0
ijmuvnU

β
u Uβ

v

)
NmNn

2
β(N)
,

(8a)


β(N) = NiU
β

j C0
ijkmU

β

k Nm, (8b)

with U
β

i being normalized vectors corresponding to polariza-
tion.

The TGT can be calculated from the GGT by taking the
weighted average of n GGT modes with respect to the heat
capacity Cβ(Nξ ) [4,19]

γij =
∑n

ξ=1

∑3
β=1 Cβ(Nξ )γ β

ij (Nξ )∑n
ξ=1

∑3
β=1 Cβ(Nξ )

, (9)

with the heat capacity of a given mode being represented as
[20]

Cβ(N) = kB

(
h̄ωβ(N)

kBT

)2 exp(h̄ωβ(N)/kBT )

[exp(h̄ωβ(N)/kBT ) − 1]2
. (10)

In the high-temperature limit, the heat capacity becomes
constant, which simplifies Eq. (9) to

γij = 1

3n

n∑
ξ=1

3∑
β=1

γ
β

ij (Nξ ). (11)

For the purposes of this study, the heat capacity is approximated
using the Debye model, for which the Debye temperature,
defined as


D = h̄

kB

(
6π2

V0

)1/3

W, (12)

with V0 being the atomic volume, is calculated by approximat-
ing the crystal to be isotropic. W can be written in terms of the
averaged longitudinal and transverse wave velocities (WL and
WT , respectively) [20] as

3

W 3
= 1

W 3
L

+ 2

W 3
T

, (13a)

ρ0W
2
L = KRVH + 4

3
GRVH, (13b)

ρ0W
2
T = GRVH, (13c)

with KRVH and GRVH referring to the Reuss-Voigt-Hill average
[21] of the bulk modulus and shear modulus.

The effective thermal expansion tensor of a two phase
system (α∗

kl) can be written as [22]

α∗
kl = ᾱkl + Pklmn(S∗

mnij − S̄mnij )
(
α

(1)
ij − α

(2)
ij

)
, (14a)

Iklrs = Pklmn

(
S(1)

mnrs − S(2)
mnrs

)
, (14b)

Iklrs = 1

2
(δkrδls + δksδlr ), (14c)

where a bar over a quantity denotes the average of the value,
superscripts (1) and (2) refer to phase (1) and (2), respectively,
and Pklmn is defined by Eq. (14b). Equations (14) state that
in the case where the elastic constants of the two phases are
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FIG. 1. Benchmarks for coefficients of thermal expansion at
300 K calculated from second and third-order elastic constants of 16
materials. The average mean absolute error relative to the benchmark
dataset [30,31] is 1.8 × 10−6 K−1 when excluding ScF3.

equal, such as an inclusion in a matrix, the effective thermal
expansion tensor of the composite is simply a composition
average of the two components.

III. COMPUTATIONAL DETAILS

The second- and third-order elastic constants were calcu-
lated for both the β and α′′ phases by applying 21 unique
Lagrangian strain states with 9 different magnitudes ranging
from −ηmax (maximum strain) to ηmax, with ηmax = 5%. This
maximum strain was chosen as it caused the trace of the thermal
expansion tensor to converge to within 2%. The SOEC and
TOEC were determined from the second derivative of the
total energy and stress with respect to the strain parameter by
means of pseudoinversion. (For a list of the strain components
applied as well as a more in depth description of the method,
see Ref. [6]). Benchmarking calculations from Fig. 1 use a
slightly larger range of strains from −7.5% to 7.5%, and
are calculated according to a standard workflow and fitting
procedure contained in the ATOMATE [23] and PYMATGEN [24]
packages, respectively [25]. It is noted that using a maximum
strain of 7.5% for the β and α′′ phases gives results in
qualitative agreement with the 5% maximum strain results,
with the difference in the trace of the thermal expansion tensor
being 32% and 13% for the β and α′′ phases, respectively.
More information on the dependence of thermal expansion on
the maximum strain used in the elastic constants calculations is
presented in Sec. IV. It should be noted that for all calculations
in this work for which SOEC and TOEC were used as inputs,
unless otherwise state, the SOEC and TOEC calculated with
ηmax = 5% were used.

Total energy calculations for both the benchmarks and Ti-
Nb calculations were performed using the projector augmented
wave method as implemented in the Vienna ab initio simulation
package [26,27]. The exchange-correlation functional was
calculated using the Perdew, Burke, and Ernzerhof generalized
gradient approximation [28]. Stress was calculated using the
Hellman-Feynman theorem. The elastic constants of the β

phase were determined with a 21 × 21 × 21 
-centered grid.
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TABLE I. Comparison of lattice parameters for β and α′′ phases
between the current work (CW) with values from literature, both
experimental (E) and theoretical (T) for Ti3Nb. In the case of β

the lattice parameter corresponds to a = (2V0)1/3, with V0 being the
volume per atom of the relaxed cell.

Phase a (Å) b (Å) c (Å)

β (CW) 3.25
β (T) [17] 3.26
β (E) [15] 3.29
α′′ (CW) 3.34 4.75 4.39
α′′ (T) [17] 3.34 4.77 4.41
α′′ (E) [15] 3.19 4.80 4.65
α′′ (T) [37] 3.30 4.76 4.43

In the case of α′′, a 25 × 17 × 19 
-centered grid was used.
The first-order Methfessel-Paxton smearing scheme [29] was
employed with a smearing parameter of 0.05 eV. The total
energy was converged to within 1 × 10−10 eV/atom, while
ionic relaxations were performed until the magnitudes of all
residual forces were less than 5 meV/Å. The plane-wave
energy cutoff was set to 600 eV for the α′′ and β phases,
as all TOEC in the β phase were converged to within 0.5%
when compared to using a plane-wave energy cutoff of 700 eV.
The benchmark calculations were done using a plane-wave
energy cutoff of 700 eV in accordance with the standard elastic
constants workflow used by the Materials Project [5].

IV. RESULTS

Benchmarks of thermal expansion coefficients are calcu-
lated from the second- and third-order elastic constants of 17
materials (see Fig. 1). We note that these results, which include
a variety of cubic and hexagonal materials, agree well with
experimental data [30,31] (excluding ScF3) with an average
mean absolute error (MAE) of 1.8 × 10−6 K−1. The agreement
is quite good, and suggests that the approach is sound. [The
thermal expansion coefficients shown are one-third the trace
of the thermal expansion tensor in Eq. (3)].

ScF3 was included in order to test if the current model can be
accurately applied to the class of negative thermal expansion
materials containing the D09 structure [32,33]. The presence
and softening of transverse rigid unit modes at the R, X, and
M points in the phonon dispersion have been used to explain
the anomalous negative thermal expansion of these crystals
[34–36]. The failure of our method to accurately predict the
thermal expansion of ScF3 is likely a result of the fact that our
model does not directly sample these zone edge phonons that
soften locally. This is due to the fact that we only consider

TABLE III. The second-order elastic constants of β (G1) structure
for Ti3Nb. Units are in GPa.

C0
11 C0

12 C0
44 Reference

148.8 111.4 37.5 [17]
145.2 114.4 36.8 CW (ηmax = 5%)
151.9 111.1 41.9 CW (ηmax = 7.5%)

the contributions from the long wavelength phonons in our
calculation of the TGT and in using the Debye model for the
heat capacity.

The β phase of gum metal was approximated as the G1
structure described by Lazar et al. [17]. This phase was chosen
as it was found to exhibit the lowest energy of all possible 16
atom BCC cell configurations with a composition of Ti3Nb.
For the α′′ phase, a distorted L60 structure was found to be
most stable [17]. The relaxed unit cells for both phases appear
to be in good agreement with both experimental and theoretical
calculations of Ti3Nb as shown in Table I.

In addition to the lattice parameter, it appears that the
elastic constants are well reproduced using the pseudoinversion
method for both the α′′ phase (Table II) as well as β (Table III).
This is especially true for β as the difference in values for C0

11,
C0

12, and C0
44 with the cited reference is 2.42%, 2.69%, and

1.87%, respectively.
While by no means definitive, the agreement between the

SOEC of the current work and references is an indicator of the
accuracy of the TOEC calculations, which are shown for the
two different phases in Tables IV and V. It should be noted
that the symmetry of the G1 structure is not cubic. However,
in order to approximate G1 as β, the SOEC and TOEC were
averaged to be cubic using the relations

C
sym

ijkl = 1

nG

nG∑
α=1

a
(α)
ip a

(α)
jq a

(α)
kr a

(α)
ls C0

pqrs, (15a)

C
sym

ijklmn = 1

nG

nG∑
α=1

a
(α)
ip a

(α)
jq a

(α)
kr a

(α)
ls a

(α)
mt a

(α)
nu C0

pqrstu, (15b)

with a(α) corresponding to the transformation matrix of the
αth element of the point group and nG being the number of
elements of the point group. For a BCC system, there are 48
elements of the point group.

To further test the accuracy of the TOEC calculated in this
work, the ideal tensile strength was approximated by analyzing
the symmetric Wallace tensor as a function of tensile strain
[6]. These results were then compared to ideal tensile strength
calculations of the G1 structure with a [001] orientation carried
out by Nagasako et al. [38] that found a shear instability

TABLE II. The second-order elastic constants of α′′ Ti3Nb. Units are in GPa.

C0
11 C0

22 C0
33 C0

12 C0
13 C0

23 C0
44 C0

55 C0
66 Reference

148.1 171.1 174.6 93.0 123.8 80.4 64.7 44.9 32.3 [17]
129.9 148.2 135.6 91.1 126.8 69.3 28.4 23.1 39.7 [37]
141.7 178.3 168.1 94.6 133.3 80.5 47.6 35.1 68.8 CW (ηmax = 5%)
142.7 179.0 172.8 94.9 130.2 79.8 47.0 35.0 68.1 CW (ηmax = 7.5%)
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TABLE IV. The symmetrized third-order elastic constants of β

(G1) structure for Ti3Nb. Units are in GPa.

ηmax C0
111 C0

112 C0
123 C0

144 C0
166 C0

456

5% −1207 −542.5 246.0 −256.3 −169.2 189.0
7.5% −1226 −402.9 −97.6 −309.6 −136.6 173.5

associated with C11 − C12 → 0 to occur at approximately
6% strain and at a stress of 2.5 GPa. In comparison, this
work’s ideal tensile strength calculations find the same shear
instability to occur at 5.5% strain (see Fig. 2) corresponding
to an ideal tensile strength of 2.89 GPa. This supports using
TOEC to describe the elastic anharmonicity of Ti3Nb.

Using SOEC and TOEC, the thermodynamic Grüneisen
tensor as well as the thermal expansion tensor have been
calculated for both β and α′′ approximants. Both Eqs. (9)
and (11) were used to determine γij with no difference in the
two averaging methods to the accuracy shown in Table VI.
In calculating the heat capacity a temperature of 300 K was
used. As the Debye temperature for both phases is near room
temperature (Table VI), this helps explain the correspondence
between the two averaging schemes.

The linear expansion coefficient of the β phase compares
quite well with experimental values. Saito et al. measured a
value of 8 × 10−6 K−1 for annealed gum metal [9] while Kim
et al. found a value of 7.2 × 10−6 K−1 [15]. The negative
components of the thermal expansion tensor for α′′ appear to
support the claim made by Kim et al. that the Invar properties
of gum metal are the result of a texturing effect as α22 and α33

for the orthorhombic phase correspond to 〈110〉 directions in
the β phase [15].

Work by Kim et al. [15] as well as Morris et al. [39] found
that cold-rolling gum metal caused a 〈110〉 texturing in the RD
and no such dramatic texturing in the TD. This corresponded

TABLE V. Third-order elastic constants of α′′ structure for Ti3Nb.
Units are in GPa. Elastic constants are presented for calculations using
ηmax = 5% and 7.5%.

ηmax = 5%

C0
111 C0

222 C0
333 C0

112 C0
122

−1402 −1599 −882.0 −166.6 −447.2
C0

113 C0
133 C0

223 C0
233 C0

123

−367.8 −684.0 −187.2 −418.4 −171.8
C0

144 C0
155 C0

166 C0
244 C0

255

101.9 −282.3 −334.4 −161.9 −94.0
C0

266 C0
344 C0

355 C0
366 C0

456

−240.5 −286.6 −131.0 −195.1 −14.90
ηmax = 7.5%

C0
111 C0

222 C0
333 C0

112 C0
122

−1535 −1163 −967.9 −84.47 −579.6
C0

113 C0
133 C0

223 C0
233 C0

123

−310.1 −662.5 −317.0 −395.2 −147.7
C0

144 C0
155 C0

166 C0
244 C0

255

111.7 −269.0 −316.4 −235.5 −147.7
C0

266 C0
344 C0

355 C0
366 C0

456

−280.9 −301.3 −169.2 −182.3 −2.925

FIG. 2. The eigenvalues of the symmetric Wallace tensor plotted
as a function of the Lagrangian strain, η, for a uniaxial load applied in
the [001] direction. Three of the modes correspond to shear [ 1

2 (C11 −
C12),C66, and C44 + 1

2 σ33] while failure in cleavage corresponds to
brittle fracture. Failure occurs at a strain of 5.5% and a stress of
2.89 GPa.

to a RD thermal expansion coefficient of −0.7 × 10−6 K−1

and no change in the thermal expansion coefficient in the TD
compared to the single-crystal sample. If we assume that the
elastic constants of α′′ and β phases are the same, then we
can approximate the thermal expansion tensor using the rule of
mixing. Assuming that the thermal expansion coefficient in the
RD of α′′ is αRD(α′′) = α22(α′′)+α33(α′′)

2 and that the thermal ex-
pansion of α′′ in the TD is isotropic, αTD(α′′) = αkk(α′′)/3, at a
volume fraction of 0.172 α′′ the RD and TD thermal expansion
coefficients of the composites are αC

RD = −0.7 × 10−6 K−1

and αC
TD = 6.5 × 10−6 K−1, respectively. The volume fraction

of α′′ seems plausible as high-energy x-ray diffuse scattering
studies of the deformation of Ti-24Nb-4Zr-8Sn-0.10O (wt %),
an alloy with a composition similar to gum metal’s, show a
volume fraction of the martensitic phase to be between 0 and
0.4 while still in the elastic regime [14].

To test the assumption that the thermal expansion coefficient
of the composite can be approximated as the weighted average
of the two different phases, the effective thermal expansion
tensor of a homogeneous mixture of the β and α′′ phases was
calculated using Voigt-Reuss bounds on the elastic constants.
In the case of the Reuss average S∗

ijkl = S̄ijkl , resulting in α∗
ij =

ᾱij . For the Voigt average, isotropic elastic constants, (GV and
KV ) were calculated for both phases and then averaged by
composition. Using Eq. (14) the effective thermal expansion
tensor was calculated as a function of α′′ composition. The
results of this comparison can be seen in Fig. 3. The maximum

TABLE VI. Thermodynamic quantities derived from the elastic
constants including the nonzero components of the thermodynamic
Grüneisen tensor, the Debye temperature (K), and the thermal expan-
sion tensor (1 × 10−6 K−1). The results for αij are at 300 K. Results
for TOEC calculated using a maximum strain of 5% and 7.5% strain
are displayed.

Phase γ11 γ22 γ33 
D α11 α22 α33

β (5%) 1.25 1.25 1.25 278 8.59 8.59 8.59
β (7.5%) 0.95 0.95 0.95 282 5.81 5.81 5.81
α′′ (5%) 0.99 0.65 0.08 319 60.9 − 3.46 − 45.6
α′′ (7.5%) 1.10 0.59 0.34 327 45.2 − 4.26 − 27.6
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FIG. 3. Measure of error as a function of volume fraction between
a mixture average (Reuss average), ᾱ(x) = (1 − x)αβ + xαα′′

iso , with x

being the volume fraction of α′′, and the Voigt average of the thermal
expansion using equation (14). The error is defined as emix = |ᾱ−α∗|

α∗ .
It should be noted that the isotropic thermal expansion coefficient is
approximated for the α′′ phase and has the form αα′′

iso = 1
3 αα′′

kk .

error occurs at an α′′ volume fraction of approximately 60%
and amounts to an error of only 0.30%. This small error is a
strong indicator that the rule of mixing is accurate in describing
the thermal expansion of the two phase system.

V. DISCUSSION

The benchmark calculations of the thermal expansion coef-
ficient shown in Fig. 1 demonstrate that the method described
in this paper is capable of accurately predicting the thermal
expansion tensor for a range of crystalline materials. This
offers the possibility of a framework to perform accurate high-
throughput calculations of the thermal expansion coefficient
with a caveat. As the thermal expansion is dependent on
heat capacity, which is approximated using the Debye model,
one can only use this method for materials at temperatures
under which the Debye model applies. A notable class of
materials where this approximation is not accurate are the
D09-type crystals (e.g., ReO3 and ScF3) [32,33] that display
noticeable negative thermal expansion over a wide range of
temperatures. Negative thermal expansion in these materials
is attributed to transverse rigid unit modes at the R, X, or M

point in the phonon dispersion [34–36], which would not be
directly sampled by the approach applied within this work. The
accuracy of these benchmark calculations provides support,
however, for applying the method discussed in this paper to
more complex systems than elemental metals, such as the
two-phase approximation of gum metal.

As the two phases of gum metal in question do not contain
any off-diagonal components in the thermal expansion tensor,
from Eq. (14), it can be seen that no shear components of the
compliance tensor effect the effective thermal expansion coef-

ficient. Calculating the Voigt bulk modulus, Kcubic
V = C0

11+2C0
12

3

and Kortho
V = C0

11+C0
22+C0

33+2(C0
12+C0

13+C0
23)

9 , the bulk moduli come
to 125 and 123 GPa for the cubic and orthorhombic phases,
respectively, while the Reuss average of the orthorhombic
phase is 122 GPa (the Voigt and Reuss averages are equal for a
cubic system). Considering that the Voigt-Reuss bounds have
been shown to be the upper and lower bounds on the elastic
modulus of a composite material [21], using stricter bounds for
the orthorhombic phase (such as Hashin-Shtrikman [40,41])
would not result in dramatically different bulk moduli.

The TGT for the α′′ phase is positive, but near zero for
γ22 and γ33, while γ11 is near that of the β phase. The high
anisotropy of the TGT coupled with S12 and S13 being negative
results in a negative value for α22 and α33. The fact that the
α′′ phase is calculated to show negative thermal expansion in
the 〈110〉β direction supports earlier experimental results that
found the Invar properties of gum metal to be the result of
a martensitic phase transformation. Furthermore, the fact that
the high anisotropy of the thermodynamic Grüneisen tensor
leads to negative components in the thermal expansion tensor
suggests Invar properties of gum metal could be a direct result
of the breaking of cubic symmetry.

This work demonstrates that the formation of the α′′ phase
can lead to Invar behavior in gum metal. However, an inter-
esting question that arises is what effect, if any, the softening
of the 
 − N phonon branch within the β phase has on the
thermal expansion of gum metal. This phonon is involved in
the BCC-HCP transformation [42], on which the α′′ phase can
be seen as an intermediate structure. Hanlumyuang et al. [43]
demonstrated that a softening of the 
-N phonons could lead
to diffuse scattering, resulting in a diffraction pattern similar to
that in which the α′′ phase was present. Perhaps it is possible for
gum metal to achieve Invar behavior without the formation of a
cubic symmetry breaking secondary phase due to the softening
of the 
-N phonon branch softening.

VI. CONCLUSION

A framework for efficiently estimating the thermal expan-
sion tensor of a crystal has been detailed. Comparison of the
results of this method to experimental values of the thermal
expansion coefficient demonstrates the high accuracy of this
simple model. In addition, this approach has been applied in
order to understand the origin of the Invar behavior observed
in gum metal. The thermal expansion tensor for both the β and
α′′ phases were calculated by relating the thermal expansion
tensor to the second- and third-order elastic constants of Ti3Nb
gum metal approximants of the two phases. Ideal strength
calculations using the elastic constants produced results in line
with prior work on the ideal tensile behavior of the G1 structure
of Ti3Nb.

The thermal expansion of the β phase of gum metal appears
to be well approximated by the G1 structure. In agreement with
experimental studies, the α′′ phase is shown to have a negative
thermal expansion along 〈110〉β . It is shown that the rule of
mixing is a simple and accurate approach for estimating the
thermal expansion tensor of the two phase system. This allows
for estimations of the α′′ concentration needed to reproduce
experimental findings on the thermal expansion of gum metal
after cold-rolling. The findings of this paper indicate that the
formation of the α′′ phase could be the origin of the Invar-
like behavior of gum metal, which would parallel the behavior
of known nonmagnetic Invar materials such as Al-Cu-Zn and
other shape-memory alloys, but it does not nullify completely
the idea that gum metal’s thermal expansion behavior is a direct
result of the softening of the N -point phonon.
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APPENDIX A: DERIVATION OF CHRISTOFFEL
EQUATION

In arriving at Eq. (7), it is helpful to approximate the first
Piola-Kirchhoff stress tensor as a Taylor series expansion to
the first order centered at X , of the form

P̃jp ≈ Pjp +
[

∂P̃jp

∂F̃km

]
F̃=F

(F̃km − Fkm), (A1a)

F̃km = ∂xk

∂am

, (A1b)

Fkm = ∂Xk

∂am

, (A1c)

with Pjp representing the first Piola-Kirchhoff stress tensor
at X . To find the right-hand side of Eq. (6) one can take the
derivative of the Taylor series with respect to a, which gives

∂P̃jp

∂ap

≈
[

∂P̃jp

∂F̃km

]
F̃=F

∂2uk

∂am∂ap

. (A2)

By substituting (5) into (A2), the equation of motion is now of
the form

ρ0W
2uj =

[
∂P̃jp

∂F̃km

]
F̃=F

NmNpuk. (A3)

∂P̃jp

∂F̃km
can be further evaluated by taking into account that

P̃jp = F̃jq t̃pq , t̃pq being the second Piola-Kirchhoff stress
tensor. Using this relation the chain rule can be applied to

express ∂P̃jp

∂F̃km
as

∂P̃jp

∂F̃km

= ∂

∂F̃km

(F̃jq t̃pq), (A4a)

∂P̃jp

∂F̃km

= δjk t̃pm + F̃jq

∂ t̃pq

∂η̃st

∂η̃st

∂F̃km

. (A4b)

with η̃st being the Lagrangian strain relating x and a. As the
Lagrangian strain is related to the deformation gradient by
η̃ij = 1

2 (F̃ki F̃kj − δij ) (A4) can be written as

∂P̃jp

∂F̃km

= δjk t̃pm + F̃jq F̃kt C̃pqmt , (A5)

where C̃ are the elastic constants in configuration x and obey
Voigt symmetry. Substituting (A5) into (A3) results in

ρ0W
2uj = (δjktpm + FjqFktCpqmt )NmNpuk, (A6)

with t and C being the second Piola-Kirchhoff stress tensor
and elastic constants in the configuration X . Finally, it is
helpful to write the displacement with respect to the reference
configuration as uj = FjsUs . Applying this relation to (A6)
gives

ρ0W
2Ur = (δrs tpm + FktFksCprmt )NmNpUs. (A7)

Because of the definition of the Lagrangian strain, the term
FktFks = 2ηts + δts , which results in (7).

APPENDIX B: DERIVATIVE OF ρ0W 2 WITH RESPECT
TO STRAIN

In applying the Debye model, the phonon frequency of a
particular mode, ωp(q) is proportional to the unstrained wave
speed

ωp(q) ∝ Wp(N)/L0, (B1)

with L0 being the dimension of the unstrained crystal. Substi-
tuting (B1) into the definition of the GGT (4) yields

γ
β

ij (N) = − 1

Wβ(N)

[
∂Wβ(N)

∂ηij

]
η′
. (B2)

Using the relation

∂

∂ηjk

(Wβ(N)2) = 2Wβ(N)
∂Wβ(N)

∂ηjk

, (B3)

the GGT can be rewritten as

γ
β

ij (N) = − 1

2ρ0Wβ(N)2

[
∂(ρ0Wβ(N)2)

∂ηij

]
η′
. (B4)

The above equation can be further evaluated with the help

of (7). To obtain [ ∂(ρ0Wβ (N)2)
∂ηpq

]
η′ , one can differentiate both sides

of equation (7) by ηpq . This results in

∂

∂ηpq

(ρ0W
2)Uj + ρ0W

2 ∂Uj

∂ηpq

= ∂
jk

∂ηpq

Uk + 
jk

∂Uk

∂ηpq

.

(B5)

Since U is a unit vector (UjUj = 1), meaning that Uj
∂Uj

∂ηpq
= 0.

If each side of equation (B5) is dotted with Uj this yields

∂

∂ηpq

(ρ0W
2) = Uj

∂
jk

∂ηpq

Uk + Uj
jk

∂Uk

∂ηpq

. (B6)

Due to the symmetry inherent to the elastic tensor, � is
symmetric (
jk = 
kj ). By rewriting Eq. (7a) as ρ0W

2Uj =

jkUk , the second term in Eq. (B6) becomes

Uj
jk

∂Uk

∂ηpq

= ρ0W
2Uk

∂Uk

∂ηpq

, (B7)

which must be equal to zero. This leaves

∂

∂ηpq

(ρ0W
2) = Uj

∂
jk

∂ηpq

Uk. (B8)

If Eq. (7b) is combined with (B4) and (B8) and evaluated at
η = 0 one is left with Eq. (8).
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