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Self-organized multigrain patterning with special grain boundaries produced
by phase transformation cycling
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In crystalline solids, grain boundaries (GBs) play a significant role in determining a large number of material
properties. The design and synthesis of special GBs has been a long-standing challenge in materials science
and engineering. Here we demonstrate a mechanism to produce special GBs. Unique multigrain structures
can be obtained through cyclic, diffusionless phase transformations under external fields, with all GBs being
coherent special GBs. The crystallographic character of the GBs produced in this way is dictated by the
broken symmetry during the phase transformations, while the topology of the GB network is determined by the
geometric compatibility and self-organization of the multigrain structures. Such a mechanism not only suggests
an alternative method of GB engineering, but also reveals a fundamental relationship between special GBs and
phase transformations from a crystallographic point of view.
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I. INTRODUCTION

In materials science and engineering, extensive attention has
been given to grain boundaries (GBs) because of their critical
importance in determining material properties [1–6]. As a
consequence, a number of processing techniques have been
developed to tailor material properties through GB engineer-
ing. For example, grain refinement is one of the most efficient
ways of strengthening according to the Hall-Petch equation
[7,8], which leads to an excellent combination of strength
and ductility. Special thermodynamic and kinetic phenomena
are also widely observed near GBs, e.g., GB segregation
(including segregation transition) [9] and GB diffusion, which
are exclusively contained in GBs and do not exist in the bulk.
In the emerging field of GB engineering, GBs are optimized
for desired material properties. Two basic characters of GBs
considered in GB engineering are (1) the crystallographic and
geometric features of GBs, e.g., misorientation and inclination,
and (2) the topology of the GB network [2–4,10]. As discovered
in experiments, unique properties can be associated with the
so-called special GBs [1,11]. From a crystallographic point
of view, special GBs (also called � GBs sometimes) usually
feature specific values of misorientation that allow atomic sites
from neighboring lattices of adjacent grains to coincide, and
the reciprocal density of coinciding sites is designated as �.
For a given misorientation, a special GB can be either coherent
if the boundary plane is low index (i.e., all lattice planes are
continuous from one grain to the other across the GB), or
incoherent if the boundary plane is irrational (usually high
index in experiments). Coherent special GBs can exhibit sharp
extrema for a number of orientation-dependent properties.
These properties, including GB energy and mobility, fracture
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toughness, diffusivity, defect migration rate, and corrosion
resistance, are usually distinctive at various types of coherent
special GBs [11].

The topology of a GB network (or GB network con-
nectivity) is another critical factor not only determining the
thermodynamic stability and the evolution of GB network but
also affecting several material properties [4,10]. For example,
the branching features of the network (i.e., grain junctions
and nodes) control diffusion, corrosion, and oxidation behav-
ior, and environment-assisted intergranular crack propagation
caused by transport along GBs. In addition, as reported in
the literature, a reasonable balance of strength and ductility
can be achieved by introducing ultrafine isolated grains into
a matrix grain, which also suggests a critical link between
unique topology of a GB network and material properties [12].
However, despite their importance, the above two characters
are usually difficult to control precisely in GB engineering. One
conventional technique of GB engineering is the production of
annealing twins through iterative cold working and annealing,
where the proportion of special twin boundaries could be over
60% including both coherent and incoherent twin boundaries.
Another technique is pulsed electrodeposition, which can
produce lamellar structures with a large amount of �3 coherent
twin boundaries [13]. However, most of the existing GB
engineering techniques can only be applied to the coherent
�3 GB in face-centered-cubic (FCC) crystals, because the
grain boundary energy of this specific type is much lower
than those of other candidate GBs in FCC. To the best of
our knowledge, a general approach to precisely design other
coherent GBs (e.g., �5 and �7) in FCC materials or coherent
special GBs in other crystal systems, e.g., body-centered cubic
(BCC) and hexagonal close-packed (HCP) structures, is still
unavailable.

Since the characters of GBs are difficult to precisely control
in the diffusional processes (e.g., annealing) discussed above,
it is natural to consider the possibility of utilizing diffusionless
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processes. In fact, it was recently reported that crystalline
defects, such as dislocations and special GBs, can be produced
by diffusionless phase transformations in which the symmetry
groups of the parent and product phases cannot be included
in a common finite group [14]. However, because such phase
transformations are beyond the reach of Landau’s classical
phase transition theory [14,15], the formation mechanism of
transformation-induced defects is still unclear due to the lack
of a mathematical tool. In particular, it has not been well
recognized that special GBs are intrinsically associated with
the broken symmetry during phase transformation cycling.
During this process, a large number of crystallographically
equivalent structural states, not confined in a single Ericksen-
Pitteri neighborhood (EPN) [14,16], can be generated through
transformation cycling, which provides plenty of fundamen-
tal building blocks for GB design. EPN is a neighborhood
surrounding a unique high symmetry structural state (e.g.,
the structural state of the parent phase) in the deformation
space (or strain space). Within the EPN, all the other states
have relatively low symmetry comparing with the high sym-
metry state [14]. In other words, considering a continuous
deformation process from the high symmetry state to any
other state in the EPN, we only expect the loss of symmetry
operations (a group-subgroup relation between the symmetry
groups of the initial and final states). Note that GBs generated
by transformation cycling are distinctively different from the
twin boundaries produced by one-way transformation, because
the latter is always confined in a single EPN while the former
could involve a few different EPNs. As will be shown in
the following, by employing a newly developed theoretical
framework, i.e., the phase transition graph (PTG) [17], we can
systematically determine the special GBs generated during
diffusionless phase transformation cycling where all of the
structural states (as well as domain states) and GBs self-
organize into a special polycrystalline aggregate.

In this work, inspired by recent experimental observations
of transformation-induced GBs and self-accommodated mul-
tidomain structures [18–20], we propose a means to design
and develop multigrain structures through diffusionless phase
transformation cycling. All GBs produced in this way are
coherent special GBs, the types of which are dictated by the
broken symmetry during the phase transformations. The topol-
ogy of a GB network is dictated by geometric compatibility
and self-organization of multigrain structures. To illustrate the
generic mechanism, a phase transformation from square lattice
to hexagonal lattice in two dimensions (2D) is analyzed first.
It is shown that the GBs generated during a transformation
cycle are �5 boundaries. Purely from a crystallographic point
of view, we demonstrate that a multigrain pattern with all
�5 boundaries and a unique topology of GB network, i.e.,
isolated small grains embedded in one matrix grain, could be
generated during a transformation cycle. A similar mechanism
is also found in Ti and Zr alloy systems undergoing the
transformation cycling between BCC and HCP, in which
the targeted multigrain structures can be controlled through
applying an external field, i.e., a stress field. By applying a
uniaxial compression during transformation cycling, we design
a unique self-organized cross-twin structure (twins within
twins) with �3 and �7 boundaries, the stability of which
is demonstrated by both crystallographic analysis and phase

FIG. 1. Construction of the phase transition graph for a square to
hexagonal transformation: (a) change of crystal structure; (b) vertices
and edges in PTG. [Blue and dark red lines in (a) represent two
independent vectors in the 2D lattices and they also indicate the lattice
correspondence among all the structural states in (b)]. The orange
shapes in (b) indicate lattice-invariant deformations of original square
lattice S1, and the corresponding new square lattices are represented
by dotted lines.

field simulations. The size of the grains produced in this way
is determined by the interplay between GB energy and elastic
interaction, which is typically at the nanometer-submicrometer
scale.

II. CONSTRUCTION OF A PHASE TRANSITION GRAPH

Mathematically, a phase transformation between two
structural states (the two states usually belong to two
phases) can be interpreted as a pairwise relation and repre-
sented conveniently by a graph. For a PTG, G(V,E), V =
{vα1, vα2, . . . , vβ1, vβ2, . . .} is a set of vertices that correspond
to different structural states of α, β, ... phases, and E is a set
of edges that connect the vertices (describes transformation
pathways among different structural states). To illustrate PTG
construction at an intuitive level, we first consider a typical
structural phase transformation in 2D between square and
hexagonal lattices with the lattice correspondence shown in
Fig. 1. According to group theory [21], the transformation from
square to hexagonal generates two variants, while that from
hexagonal to square generates three variants. By choosing a
reference state [e.g., S1 in Fig. 1(b)], all the other vertices
represent different structural states (or deformation states)
with respect to the reference and their connectivity can be
determined through linear algebraic procedures [17], leading
to the construction of a PTG [Fig. 1(b)]. This PTG is infinite
and interconnected, because the symmetry groups of the two
phases (i.e., square and hexagonal) cannot be included in
a finite common group [14]. Note that each structural state
(corresponding to a vertex in the PTG) is uniquely determined
by the associated lattice correspondence, which could be in
any orientation (parallel to the concept of objectivity or frame
indifference in continuum mechanics) [22].

PTG is a theoretical framework to capture the connectiv-
ity of multiple structural states in different phases through
transformation pathways, and all the accessible structural
states during phase transformation cycles can be systematically
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determined. For example, starting from S1, HEX1 and HEX2
can be reached after a forward square to hexagonal transfor-
mation. During a backward transformation from hexagonal to
square, HEX1 can transform to S1/S2/S3, while HEX2 can
transform to S1/S4/S5. As a result, the structural states of S2–
S5 could be reached after one transformation cycle, and more
and more states can be reached after multiple transformation
cycles [17]. All of the S2–S5 vertices are in the square lattice,
but they are different structural states, which can be obtained by
applying different lattice-invariant deformations on S1. Note
that the description of transformation pathways in PTG is
beyond the reach of Landau’s phenomenological theory, in
which a unique high-symmetry state that has all the symmetry
elements of the low symmetry states is required. However, in
the above 2D example of the transformation between square
and hexagonal, a crystalline state having both fourfold and
sixfold symmetry is theoretically impossible. The same is
true for the FCC to BCC transformation through the Bain
path, and the BCC to HCP transformation through the Burgers
path [23,24].

III. GRAIN BOUNDARY GENERATION DURING THE
SQUARE TO HEXAGONAL TRANSFORMATION

Based on all the accessible structural states identified in
the PTG, domain and defect structures generated during the
square to hexagonal transformation can be systematically
analyzed, with the incorporation of a geometric constraint
(e.g., kinematic compatibility). For example, considering one
transformation cycle (starting with S1) from square to hexag-
onal and back to square, the deformation gradient matrices for
all the accessible states (S1–S5) can be determined, and the
possible defect structures between the states of S1 and S2 can
be predicted by solving the kinematic compatibility condition
[22,25–28].

The deformation gradient matrices for structural states of
S1, S2, and S5 are as follows [22,27,28]:

FS1 =
[

1 0
0 1

]
, FS2 =

[
1 1
0 1

]
, FS5 =

[
1 0

−1 1

]
. (1)

Considering two neighboring grains (or domains) in dif-
ferent structural states (e.g., S1 and S2), we could expect
a boundary between the two grains, and the type of the
boundary as well as the misorientation between the two grains
is dictated by the compatibility condition. For example, the
defect structures between S1 and S2 are determined by [22,25–
28]

QFS2 − FS1 = b ⊗ n, (2)

where Q is a rigid-body rotation and ⊗ is the dyadic product.
b and n are the shear vector and shear plane normal of a lattice
invariant shear. The above equation is known as the Hadamard
jump condition or invariant plane strain condition in continuum
mechanics and phase transformation crystallography [22,25–
28]. n suggests the normal of a compatible grain boundary,
while Q is the relative rotation between the two grains, which
suggests the misorientation.

FIG. 2. Multigrain structure produced through a square to hexag-
onal transformation: (a) single grain in S1 state before phase transfor-
mation; (2) a multigrain structure with S1, S2, and S5 domain states
after one forward-backward transformation cycle. See Fig. 1 for S1,
S2, and S5 structural states of the square phase.

Two solutions of Eq. (2) can be obtained,
⎧⎪⎪⎨
⎪⎪⎩

b1 =
[

1
0

]
,

n1 =
[

0
1

]
,

⎧⎪⎪⎨
⎪⎪⎩

b2 = 1
5

[−1
2

]
,

n2 =
[

2
1

]
,

(3)

which correspond to two different types of defect structures in
the square lattice. The first solution suggests dislocations with
Burgers vector of [10] on the (01) plane. The second solution
suggests a �5 GB on the (21) plane with a misorientation of
53.13°. Note that the generation of coherent special GBs rather
than general GBs could be expected because all the coherent
special GBs are associated with certain symmetry operations
in a crystal lattice, which correspond to the broken symmetry
during the phase transformation and transformation cycles.

With the knowledge of fundamental building blocks of
structural states (e.g., S1–S5) determined by the PTG and
the spatial relation among them (e.g., �5 boundary with
53.13° misorientation), self-organized multigrain patterns can
be constructed, which is parallel to the self-accommodation of
martensite domain structures in shape memory alloys [22].
The formation of a possible self-accommodated multigrain
structure is shown in Fig. 2. In Fig. 2(a), it is a single crystal in
the S1 state before the transformation, and the regions indicated
by different colors will go through different pathways during
the transformation cycle. In Fig. 2(b), different grains shown
by different colors are in different structural states or orienta-
tions. We should note the difference and connection between
structural state and orientation. A grain in a given structural
state could be in any orientation (e.g., grains colored by light
green and dark green are in S1 but different orientations), and
two grains in different structural states could be in the same
orientation (e.g., grains colored by orange and blue are in S2
and S5, respectively, but the same orientation). All the grains
are in the square lattice in Fig. 2(b), so that all the boundaries are
GBs. As shown in Fig. 2(b), there are three structural states (i.e.,
S1, S2, and S5) involved with only two different orientations.
It is interesting to find that grains in S1 can exhibit both of
the two orientations (the light green and dark green domains).
The ones colored in light green are without rotation, while the
ones colored in dark green are with 53.13° rotation. The grains
in structural states of both S2 (orange) and S5 (blue) have the
same orientation as that of the dark green grains, so that the
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boundaries among them (�1 GBs) cannot be distinguished in
terms of lattice continuity [Fig. 2(b)]. As a result, the whole
multigrain structure can be regarded as multiple isolated grains
(light green) embedded in one large matrix grain (dark green,
orange, and blue). All the small isolated grains share the same
misorientation of 53.13°, while all the GBs are �5 boundaries.
Also note that such a multigrain structure can periodically
repeat to fill the whole space in 2D without any gap or overlap,
which is critical for the formation of a compatible structure in
macroscopic materials.

Note that this multigrain structure produced through diffu-
sionless phase transformation is unique in terms of geometry
and topology. For conventional techniques in GB engineering,
e.g., iterative cold working and annealing, it is difficult to
precisely control the type of GBs, due to the high atomic
mobility at annealing temperature. A large fraction of a specific
type of GBs cannot be easily obtained unless there is an
extremely strong GB energy anisotropy. In contrast, all the
GBs produced through diffusionless phase transformation have
to be coherent special GBs, the types of which are dictated
by the broken symmetry during the phase transformation. In
addition, such a unique topology, i.e., isolated small grains
embedded in one matrix grain, is hard to obtain through
annealing, because the GB energy will drive the shrinking of
isolated small grains, when GB migration is allowed at elevated
temperature. As the size of the isolated grain becomes smaller,
the driving force (proportional to the GB curvature) becomes
larger. As a result, it is difficult to stabilize nano-sized isolated
grains at elevated temperature, even though they could lead
to distinctive material properties (e.g., strength and ductility)
[12]. However, as shown in Fig. 2(b), all the GBs are planar �5
boundaries, and the isolated grains can be stabilized due to very
low mobility of special GBs at low temperature. In addition,
because of the spatial correlation among the multigrains (i.e.,
compatibility constraint), any diffusionless motion of the GBs
will lead to the increase of either elastic energy (e.g., domain
deformation) or grain boundary energy (e.g., coherent twins
become incoherent). Given that �5 GBs are the special GBs
with the lowest � value in square lattice (suggesting the
maximal number of coincide lattice sites), the multigrain
structure shown in Fig. 2(b) is stable at low temperature
(diffusional GB migration is not allowed). Note that such a
mechanism suggests a way to produce stabilized nano-grain
structure, and the size of the isolated grains is determined by
the interplay of GB energy and elastic interaction energy (if the
GB energy is larger, the grain size becomes larger), which is
parallel to the formation of modulated nano-domain structures
during structural phase transformations [22,28].

The above example in 2D is informative to illustrate the
crystallographic origin of multigrain structures (with coherent
special GBs) generated by phase transformation cycling. It
also establishes the theoretical foundation to describe this
phenomenon. From a mathematical point of view, Fig. 2
provides a way to fill a space completely with several specific
types of building blocks without any gap or overlap. The
building blocks are associated with the nature of the phase
transformation, i.e., symmetry breaking. The way the building
blocks arrange themselves is constrained by the compatibility
among different domains, e.g., Eqs. (1)–(3), which can be
easily understood through Fig. 2.

IV. DESIGN OF SELF-ORGANIZED MULTIGRAIN
STRUCTURES IN BCC CRYSTAL

As shown in the above 2D example of the square to
hexagonal transformation, a unique isolated grain structure can
be constructed by an appropriate choice of structural states
(i.e., S1, S2, and S5). Those structural states could be self-
organized due to compatibility (or elastic interaction), which
suggests a thermodynamic feasibility of the formation of such
a multigrain structure. However, we can also expect kinetic
difficulties in this process. During the transformation from
square to hexagonal, structural states of HEX1 and HEX2 are
crystallographically and energetically equivalent (Fig. 1). So,
we expect an equal probability of the formation of domains in
HEX1 and HEX2 states. During the backward transformation
from hexagonal to square, for the domains starting with HEX1,
there is an equal probability to reach S1, S2, and S3. Similarly,
the domains starting with HEX2 have an equal probability to
reach S1, S4, and S5. As a result, after a whole transformation
cycle, the final probabilities that a grain is in the structural state
of S1, S2, S3, S4, S5 could be simply estimated as 1/3, 1/6,
1/6, 1/6, 1/6, respectively (by ideal random selection without
considering the spatial correlation among multiple domains).
Considering the grain structure formed in Fig. 2, we only need
S1, S2, and S5 in particular, which could be difficult to achieve
in such a “random walk” process (random walk of the structural
state in the PTG). In other words, in order to obtain the unique
grain structure shown in Fig. 2, a strong bias preferring S2 and
S5 (over S3 and S4) should be applied. The bias could be some
kind of external field. For a general design strategy of the bias,
we will take a real material system, where the physical nature
of the phase transformation determines the type of the bias.

Real material systems in three-dimensional (3D) space
are rather complex. Five degrees of freedom of GBs in 3D
space provides more choices of special GBs during phase
transformation cycling. Here we consider a transformation
cycle between BCC and HCP through the Burgers path, which
is typically found in Ti and Zr alloy systems. Note that
the symmetry groups of BCC and HCP cannot be included
in a common finite group, because a crystalline state with
both fourfold and sixfold rotational symmetry is theoretically
impossible. As reported in the literature [21], starting from
one BCC state, twelve crystallographically equivalent HCP
states can be generated through the Burgers path, which can
be divided into six shear modes. The two HCP states within
the same shear mode have opposite internal shuffles, which
lead to different stacking sequence along [0001] direction (i.e.,
one HCP has ABAB … stacking sequence while the other
has ACAC … stacking sequences). In our following analysis,
these two HCP states within the same shear mode will not be
distinguished (described by one vertex in PTG), since they are
exactly the same in terms of both crystal orientation and shear
mode. During the reverse transformation from HCP to BCC,
three crystallographically equivalent BCC states are generated
due the loss of the threefold rotational symmetry in HCP.

The PTG for the BCC to HCP transformation is shown in
Fig. 3. Each BCC state is neighbored with six HCP states (six
shear modes), while each HCP state is neighbored with three
BCC states. Starting from B1, we can get another twelve BCC
states, i.e., B2–B13, after a transformation cycle. All of the
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FIG. 3. PTG for the BCC to HCP transformation.

BCC states can be taken as building blocks to construct a self-
accommodated multigrain structure. Here we choose four BCC
states, i.e., B2–B5, and the deformation gradient matrices for
those states are as follows (B1 is chosen as the reference state,
i.e., the identity deformation gradient matrix):

F2 =
⎡
⎣ 0.75 −0.25 −0.5

−0.25 0.75 −0.5
0.75 0.75 −0.5

⎤
⎦,

F3 =
⎡
⎣ 0.75 −0.25 0.5

−0.25 0.75 0.5
−0.75 −0.75 −0.5

⎤
⎦,

F4 =
⎡
⎣ 0.75 0.25 0.5

0.25 0.75 −0.5
−0.75 0.75 0.5

⎤
⎦,

F5 =
⎡
⎣0.75 0.25 −0.5

0.25 0.75 0.5
0.75 −0.75 0.5

⎤
⎦. (4)

Both the crystallographic analysis and the phase field
simulations suggest that grains in B2–B5 states can form a self-
accommodated cross-twin structure as shown in Fig. 4 [29].
The atomic structure is visualized using the OVITO software

FIG. 4. A cross-twin multigrain structure formed in BCC:
(a) atomic structures; (b) phase field simulation result.

[30]. Grains in different structural states are plotted in different
colors (blue: B2; green: B3; yellow: B4; red: B5). For this
structure, it can be found that all the GBs between different
grains are coherent special GBs. The cross-twin structure
can also be regarded as “twins within twins.” As shown in
Fig. 4, blue and green grains with �3 boundaries (also yellow
and red grains) form first-level twins, while (blue/green) and
(yellow/red) grains with �7 boundaries form second-level
twins.

Even though both the crystallographic analysis and the
phase field simulation suggest the stability of such a cross-twin
structure, an engineering design to precisely select the four
domain states (i.e., B2–B5) is still required. Since the BCC
to HCP transformation is a typical phase transformation in
response to a stress field, we expect that a biased stress could
serve the purpose. The transformation strains for the structural
states of B2–B5 can be determined through the Lagrangian
finite strain formula,

Ei = FT
i Fi − I

2
, i = 2 ∼ 5, (5)

E2 =
⎡
⎣0.09375 0.09375 0.0625

0.09375 0.09375 0.0625
0.0625 0.0625 −0.125

⎤
⎦,

E3 =
⎡
⎣0.09375 0.09375 −0.0625

0.09375 0.09375 −0.0625
−0.0625 −0.0625 −0.125

⎤
⎦,

E4 =
⎡
⎣ 0.09375 −0.09375 −0.0625

−0.09375 0.09375 0.0625
−0.0625 0.0625 −0.125

⎤
⎦,

E5 =
⎡
⎣ 0.09375 −0.09375 0.0625

−0.09375 0.09375 −0.0625
0.0625 −0.0625 −0.125

⎤
⎦, (6)

From the above transformation strains, it is clear that a
uniaxial compressive stress along the [001] direction is the
most convenient biased-load condition to make exactly the
desired four BCC states (i.e., B2–B5) energetically favorable.
And it can be easily shown that such a uniaxial stress will not
favor B6–B13.

As reported in the literature, cross-twin structures are com-
monly observed in low-symmetry phases (e.g., orthorhombic
and monoclinic) during diffusionless phase transformations,
as a result of autocatalytic nucleation and self-accommodation
[19,22,28,31]. In such cases, the structural states in low-
symmetry phases are within a single EPN. By designing a
cross-twin in a high-symmetry (i.e., BCC) phase with the
structural states in multiple EPNs involved, we also suggest a
thermomechanical process to generate the multigrain structure
in Fig. 4, i.e., a thermal transformation cycling with a uniaxial
compressive biased load. The microstructure evolution during
the transformation cycling is illustrated schematically in Fig. 5
and the atomic structures are shown in Fig. 6. Starting from
a single crystal in the B1 state at high temperature, a uniaxial
compressive biased load is applied and maintained during the
whole thermal cycling process. When the system is quenched
to low temperature, HCP becomes the stable phase. Two HCP
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FIG. 5. Schematic drawing of the formation process of a multi-
grain pattern in BCC through biased-load thermal cycling.

variants, in H1 and H2 states, are energetically favored (over
H3–H6) by the biased load, leading to a {1012} type of twin
in HCP. Thereafter, the system is heated to high temperature,
and BCC becomes the stable phase again. During the heating,
each HCP domain has three choices. It can either go back to
the initial BCC state or transform to new BCC states, e.g.,
the domain in H1 state can transform to the B1, B2, or B3
state. Since the biased load makes all the four new BCC states
(i.e., B2–B5) energetically favorable, the HCP domains would
prefer to transform to the new BCC states. As a consequence,
the {1012} type of twin boundaries in HCP becomes a special
type of GBs (�7 boundaries) in BCC, and a new type of grain
boundaries (�3 boundaries) can be generated, since the biased
load equally favors the four structural states of B2–B5. In the
ideal case, the whole process does not produce internal stress
when the designed microstructure forms (i.e., microstructures
in Fig. 5), as proved by our crystallographic analysis. During
the whole transformation cycle, the macroscopic shape of the
system changes, i.e., it elongates along [100], [010] directions
and contracts along [001] (due to the biased load), generating
the following averaged strain (if the volume fractions of all the
four kinds of domains are 25% [29]):

Eave = FT
aveFave − I

2
=

⎡
⎣0.08333 0 0

0 0.07143 0
0 0 −0.125

⎤
⎦.

(7)

FIG. 6. Atomic structure for the formation of a multigrain pattern
in BCC during transformaiton cycling.

FIG. 7. Lattice distortions in B2 domains during transformation
cycling.

Theoretically, the volume fractions of the four kinds of
domains are adjustable with the constraint fB2 : fB3 = fB5 :
fB4, which could change the averaged strain as well.

With the deformation gradient matrix for each domain
calculated, the atomic structure during lattice distortion can
be generated using OVITO [30]. The formation mechanism of
special GBs generated by transformation cycling is shown in
Fig. 6. All the domain states refer to the structural state in
Fig. 3. Starting from a single crystal in the B1 state, a {1012}
twin forms during the BCC to HCP transformation. To satisfy
the compatibility condition, there is a rotation of 3.37° between
H1 and H2 domains, so that the twin boundary (dashed line) is
not horizontal in Fig. 6. In addition, the relaxation of a number
of atoms near the twin boundary (the green atoms near the
dashed line) will be expected, which is parallel to the local
relaxation during the formation of {1012} deformation twin
in HCP structures. A subsequent transformation from HCP
to BCC produces the cross-twin structure with �3 and �7
GBs. We also choose another convenient viewing direction (a
common 〈111〉 for B2–B5 domains), shown in the second row
of Fig. 6. Considering the difference between the initial and
final structures, the initial one is a single crystal while the final
one is a multigrain structure with a macroscopic shape change
[Eq. (7)]. Note that both the initial and the final structure can
periodically repeat to fill the whole space in 3D, without any
gap or overlap.

The change of atomic structure in a single domain is shown
in Fig. 7 to further illustrate the mechanism clearly. The domain
undergoes a B1 to H1 to B2 transformation cycle (refer to
the structural state in Fig. 3). The viewing directions for the
upper and lower rows are [001̄] and [1̄10], respectively, in
B1 index. In the H1 state (second column), there is a sixfold
rotational symmetry with a rotation axis of [0001]H1/[1̄10]B1.
B1 and B2 are two crystallographically equivalent structural
states with respect to H1, and they can be connected by a
lattice-invariant deformation. As a result, the macroscopic
shape of this domain changes during the transformation cycle.
In general, all the domains should have cooperative shape
changes (or self-accommodation) to avoid internal stress and
the generation of dislocations.

The {1012} type of twin structures formed during the BCC
to HCP transformation have been widely observed in experi-
ments, with a typical domain size of hundreds of nanometers

073402-6



SELF-ORGANIZED MULTIGRAIN PATTERNING WITH … PHYSICAL REVIEW MATERIALS 2, 073402 (2018)

[32]. In addition, coherent special GBs, e.g., �3 and �11
(characteristic GBs between domain states of B1 and B2), are
also observed during the BCC to HCP transformation cycling
in Ti alloys and theα to ε transformation in Fe alloys induced by
either temperature or stress [33–37]. With the above necessary
pieces, the formation of cross-twin structures should also be
expected with an elaborated processing design. Up to now,
there has been no direct experiment with the thermomechanical
processing as we suggest, so the cross-twin structure in BCC
has not been observed yet. Since the mechanism we propose
requires an interdisciplinary knowledge of crystallography and
phase transformation within a new mathematical framework
(beyond the reach of Landau’s theory), PTG, it is rather difficult
to elucidate without a theoretical guideline. Also note that
the energetic competition between GBs and dislocations is
not considered in the above, which is beyond the scope of
crystallography analysis. As observed in experiments, both
dislocations and GBs can be generated by transformation
cycling [18,20,33]. We have a few suggestions regarding this
competition from a crystallographic point of view. First, when
the symmetry of the product phase is reduced, e.g., HCP
is reduced to orthorhombic (orthorhombic is a subgroup of
BCC), twinning could become dominant over dislocations.
In experiments, the HCP phase in Ti can change to α′′
(orthorhombic) by introducing alloy additions (e.g., Mo, Nb,
etc.), which lead to twin-dominant microstructures during the
transformation [32]. A similar phenomenon of twin/dislocation
competition is also reported in Fe alloys with carbon addi-
tion (i.e., steels). A relatively low temperature is preferred,
which kinetically favors twinning over dislocation. Second,
the geometric features of the cross-twin structure (e.g., all
compatible boundaries and spatial periodicity) are critical for
the nucleation, growth, and the self-organization of multiple
domains [29], because of the macroscopic shape change. As
reported in the literature, the cross-twin domain structures
are widely observed in experiments as a self-accommodated
microstructure [19,22,28,31], which strongly suggests the
feasibility of such a self-organization process. In addition,
a volume change as small as possible (e.g., <1%) during
the transformation is also required. Otherwise, dislocations
will be induced inevitably during the transformation. Third,
a low level of biased load during the forward transformation is
preferred, which assists the pathway selection but does not acti-
vate the possible symmetry-dictated non-phase-transformation
pathway [17,18]. In contrast, a relatively high level of biased
load is required during the backward transformation to drive
the domains to new structural states rather than the original.
However, the biased-load stress should be always lower than
the yield strength of either the parent or the product phase.
Fourth, the same mechanism shown in Fig. 5 will not be limited
to BCC-HCP transformation. For example, the transformation
between γ (BCC) and α (face-centered orthorhombic) in
uranium alloys shares similar broken symmetry. As a result,
the cross-twin structure with �3 and �7 (Fig. 4) can also be
expected during the transformation cycling in uranium alloys.
Theoretically, {1012} type deformation twins in HCP (similar
to the structure in the middle of Fig. 5) could also produce
the cross-twin structure after a transformation to BCC (with
appropriate biased load), which is a one-way transformation
rather than cycling.

Besides the system of the BCC to HCP transformation pre-
sented above, a few general strategies to select other material
systems to produce special GBs can also be suggested. A
reconstructive phase transformation (the symmetry groups of
the parent and product phases cannot be included in a common
finite group) is required to generate multiple structural states,
which are the necessary building blocks to generate multiple
grains as well as GBs among them. A self-accommodated
multigrain structure is also required for vanishing elastic strain
and internal stress, which are critical to prevent plastic yielding
and dislocation generation. A self-accommodated structure is
related to the symmetry change, while a volume change as
small as possible during the phase transformation is another
critical factor to reduce internal stress and prevent dislocation
plasticity. An energy-based model should be required to quan-
tify the competition between GBs and dislocations. However,
it is beyond the scope of our current crystallographic analysis.
Theoretically, the conventional Landau phase transition theory
cannot capture the nature of the mechanism we propose. In-
stead, order parameters associated with translational symmetry
[38–41] should be employed to describe the cycling process of
reconstructive phase transformations.

Here we summarize the major procedures in designing and
synthesizing unique multigrain structures and special GBs
through diffusionless phase transformation cycling:

(1) Select a material system with a structural phase trans-
formation, in which the symmetry groups of the parent and
product phases cannot be included in a common finite group.

(2) Construct the PTG and identify possible structural
states during transformation and transformation cycles (similar
to Fig. 3).

(3) By utilizing the structural states in the PTG as building
blocks, construct a self-accommodated multigrain (i.e., poly-
crystalline) structure with coherent special GBs (similar to
Fig. 4).

(4) Select an appropriate external field to make the neces-
sary structural states (or building blocks) energetically favor-
able.

(5) Suggest a formation process of the multigrain structure
according to the transformation pathways in the PTG (similar
to Fig. 5).

V. CONCLUSION

We propose a mechanism to produce special grain bound-
aries through diffusionless phase transformation cycling. Both
the geometric character of grain boundaries and the topology
of the grain boundary network produced in this way are unique,
which could lead to favorable material properties. Comparing
with conventional methods in grain boundary engineering, the
following distinctions of the method presented in this work
should be noted:

(1) All the grain boundaries are coherent special grain
boundaries, the types of which are dictated by the broken
symmetry during the phase transformations.

(2) The topology of the grain boundary network is deter-
mined by the spatial correlation of the multigrain structure,
which can be precisely designed and controlled by applying
external fields during the phase transformations.
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(3) The multigrain structures are free of internal stress (in
the ideal case).

(4) An advanced theoretical framework, the phase transi-
tion graph, is employed to investigate the generation of grain
boundaries during phase transformations, which is beyond the
reach of Landau’s phase transition theory.

(5) The work suggests a methodology for a precise design
and synthesis of coherent special grain boundaries, with a grain
size at the nanometer-submicrometer scale.
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