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Microscopic origins of charge transport in triphenylene systems
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We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of ~9000
hexa-octyl-thio-triphenylene discotic mesogens with dimensions of 220 x 20 x 60 nm?. Ordered (columnar) and
disordered isotropic morphologies are obtained from a combination of atomistic and coarse-grained molecular-
dynamics simulations. Electronic structure codes are used to find charge hopping rates at the microscopic level.
Energetic disorder is included through the Thole model. Kinetic Monte Carlo simulations then predict charge
mobilities. We reproduce the large increase in mobility in going from an isotropic to a columnar morphology. To
understand how these mobilities depend on the morphology and hopping rates, we employ graph theory to analyze
charge trajectories by representing the film as a charge-transport network. This approach allows us to identify
spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to ensure good transport
characteristics or may otherwise act as traps. Our analysis is straightforward to implement and will be a useful
tool in linking materials to device performance, for example, to investigate the influence of local inhomogeneities
in the current density. Our mobility-field curves show an increasing mobility with field, as would be expected for

an organic semiconductor.

DOLI: 10.1103/PhysRevMaterials.2.064601

I. INTRODUCTION

Displays for smartphones, colored light sources, off-grid
solar cells, and curved television screens are examples of
applications of organic electronics. Organic semiconductors
(OSCs) offer reduced production costs, versatility of synthesis
processes, and compatibility with a vast range of substrates
including transparent glass, metals, and flexible polymeric
material. However, they cannot compete yet with their inor-
ganic counterparts in terms of charge-transport performance
[1]. Charge carriers are localized to molecules or conjugated
segments of molecules, in the case of polymers, and charge
transport is by donor-acceptor hopping [2] rather than by a band
mechanism. At room temperature, charge mobility is highly
sensitive to molecular packing arrangements due to the short
range of electronic orbital overlaps and their strong dependence
on the relative orientation and separation of donor-acceptor
pairs [3]. Detailed knowledge of material morphologies, such
as those illustrated in Fig. 1 for discotic OSCs [4—-11], is thus
essential for a proper understanding and prediction of charge
mobility.

Multiscale simulations that combine models of morphology
and charge transport are an important means of optimization
of materials and devices for OSC technology, particularly for
the screening of candidate materials [ 12—14]. While the charge
mobilities can be measured experimentally [15], synthesizing
and characterizing the films is time-consuming and costly.
Knowledge of local charge densities and conductive pathways
can be critical to understanding heat dissipation and degrada-
tion in OSCs [12]. These effects are not captured by the co-
planar dimer model commonly used for prescreening organic
molecules [16]. Local current density variations can cause
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self-heating that in turn may lead to higher local conductivity
and thereby creates more current flow, leading to a positive
feedback loop [17]. However, variations in charge dynamics
at atomistic length scales are hard to study experimentally.
Localized current flow can be studied by the cumbersome
process of introducing an emissive interlayer into the material
and measuring the light emitted [18]. This procedure has a
resolution of 2-3 nm and introduces errors due to interfacial
interactions with the emissive layer.

A common method to describe charge mobilities is to use
the Gaussian disorder model (GDM) [19,20]. This approach
assumes a spatially random distribution of sites where the
localization length, a, is the relevant length scale compared
to site separations [21,22]. Using a lattice model to describe
transport introduces an error if the lattice parameter is far from
the localization length [23].

We investigate the charge-transport properties of hexa-
octyl-thio-triphenylene (HOTT, or 8H-TT) molecules whose
chemical structure and coarse-grained shape are shown in
Fig. 1. From Fig. 1(a) we see that HOTT is a planar molecule,
consisting of three benzene rings surrounding a central ben-
zenic ring. The lower panels come from a preliminary atomistic
simulation of HOTT used for parametrization of the coarse-
grained model. The semiconducting properties of discotic
molecules in OSC devices have been studied both theoretically
and experimentally [24]. The high aspect ratio of discotic
molecules allows us to examine the role of shape anisotropy
and structure in charge-transport processes [7]. Systems of
these molecules possess a columnar phase and a disordered
phase [5-7,25-29]. The drastic change in structure across the
phase transition means that it would be impossible to describe
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FIG. 1. Top panels: top (left) and side (right) views of the
2,3,6,7,10,11-hexahexyl thiotriphenylene (HHTT) molecule (R =
octyl) corresponding to the central core of HOTT with the chains
replaced by hydrogen. The oblate Gay-Berne ellipsoid for coarse-
grained simulations is also shown. The radius of an HHTT molecule
in the x-y plane, r; ~ 0.653 nm, and radial height, r; ~ 0.172 nm.
Bottom panels: views along (left) and across (right) the column axis
direction from atomistic packing simulations.

both phase systems using the same lattice model. Experimental
studies [30] have shown that the mobility suddenly increases
as the system goes from isotropic to columnar to crystal
phases, while within a given phase it gradually decreases with
temperature. Discotics possess a strongly anisotropic charge
mobility in their columnar phase, much larger along the column
axis than perpendicular to it [9,31,32]. We compare charge
transport in the columnar phase at 7 = 280 K and in the
disordered phase at T = 400 K.

We have chosen to study HOTT, as a typical discotic
molecule, due to the existence of previous studies that we can
compare to and build upon. Lamarra et al. [9] investigated 4000
discotic molecules with a simple Miller-Abrahams description
of electronic coupling that depends only on molecule sepa-
ration. Studies on ~1000 discotic molecules, where charge
dynamics were described by a master equation with charge-
transfer rates obtained from the Marcus expression and transfer
integrals from quantum chemical calculations, showed that
structural anisotropy leads to anisotropic charge transport [8].
Riihle et al. demonstrated a similar approach to our own [33]
in a cell of 512 molecules, where they neglected metallic
contacts. Because their system size is small, they found a single
charge-transfer channel that percolated across their entire
system. These studies demonstrated the strong dependence of
charge mobility upon structural ordering and the possibility of
charge percolation pathways, however they did not explore the
underlying causes. Herein we try to quantify the difference in

transport between the two phases in terms of the microscopic
processes and structure within.

We present a mesoscale model of charge transport in a film
of ~9000 molecules, modeling the equivalent of ~700000
atoms, starting from first principles. This simulation size
produces arelative error in the mobility due to finite-size effects
of less than 5% [34,35]. It has been shown elsewhere that a fully
atomistic or a united atom molecular-dynamics approach can
successfully predict morphologies and transition temperatures
with the accuracy of a few degrees for cyanobiphenyls [36—38]
and quinquephenyl [39]. However, these atomistic simulations
are not feasible at the mesoscale system sizes that we require
here, which are of the order of tens of nanometers [40]. For
morphologies derived from microscopic calculations, we thus
make use of coarse-grained (CG) molecular dynamics (MD)
[41,42] parametrized with the help of small-scale atomistic
simulations, as will be described in the next section.

Our methods produce a resolution at the microscopic level
by describing the charge transport between every pair of
molecules as discrete events in time so that we can identify
which structural properties lead to varying local current densi-
ties. In systems this large, with so many connected pairs, graph
theory [43] is a useful tool to analyze the simulated charge-
transport trajectories. This approach is an improvement over
trajectory plots in that it allows us to investigate correlations
between structural and dynamic properties, e.g., the electronic
coupling and the observed carrier transport between molecules.

Network analysis has been used to study organic charge-
transport networks and kinetic Monte Carlo (KMC) methods
before. Jackson efr al. used dynamic network techniques to
study how the charge-transport network changes over time
as the molecules move [44], however they did not model
the resultant charge-transport properties. Cottaar et al. used
percolation theory on a 2D lattice to describe the effects
of correlated and uncorrelated energetic disorder [45]. They
considered the percolative pathways in terms of the current
density between lattice sites forming edges. The above study
was lattice-based, and although they showed the existence of
favored charge pathways, the authors could not relate this
to any structural properties of the system, and the energetic
disorder was drawn from a chosen distribution. Graph theo-
retical approaches were also applied to KMC simulations of
chemical kinetics by Stamatakis and Vlachos [46]. This is still
a system of discrete events, and the underlying algorithm is
similar. Indeed, the use of graph theory to describe networks of
first-order events is well established in many contexts regarding
kinetics. Uniquely we take advantage of the one-to-one spatial
equivalence of the transport network with the morphology
to quantify the microscopic contributions to macroscopic
transport and describe the origins of the phenomena observed.

While other studies have combined the use of CG MD and
KMC to describe transport in molecular systems, they have
not been able to combine the system sizes and degree of detail
that we present. Furthermore, we will use the microscopic
resolution of our model to describe the nature of observed
charge transport in terms of the relationship between the
difference in site energies and transfer integrals. We explain
the prevalence of a rattling motion in OSCs due to the weak
effect of the applied field. In this manner, we go further than
measuring the charge mobility. To enable truly predictive
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modeling, one must understand the origin of the observed
transport phenomena.

In this paper, we present a methodology that allows us to
describe charge transport in disordered OSCs with microscop-
ically resolved molecular packings, transport parameters, and
charge dynamics. We do not have to resort to tuning parameters,
such as reorganization energies or coupling length scales,
and our model can describe systems with multiple molecular
species, anisotropic molecules, and structural features on all
length scales. Below, we describe the CG MD and charge-
transport models in Sec. II. We relate the microscopic proper-
ties of the system and the resultant charge transport through the
use of a directed graph representation in Sec. III. In this way,
we identify charge-transport pathways on a microscopic scale,
describe their structural features, and measure their spatial
extent and separation.

II. MODELS

A. Coarse-grained molecular dynamics

Molecular dynamics can provide a realistic structure of an
OSC system for given thermodynamic parameters, provided
there is an accurate description of the effective interparticle
potential interactions. Force fields can be developed that are
suitable for a wide range of temperatures, pressures, and
densities and can reproduce multiple phases of matter. In our
CG model, we tuned the force field for HOTT on the basis of
MD simulations for a fully atomistic model of the molecular
system [27]. CGMD has already been shown to reproduce
the phase diagram in columnar triphenylenes [27,47]. The
CG potential employed for our MD simulations is based on
the Gay-Berne (GB) potential, where anisotropic particles
are described as rigid bodies of ellipsoidal shape [9,27]. The
potential can be considered as a generalization of the Lennard-
Jones 6-12 potential, where shape and interaction anisotropies
have been introduced.

The GB interaction potential between two particles, i and
Jj, therefore depends on their orientations, defined by the unit
vectors it i 0 j»and by their center-center separating vector, 7 jt
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TABLE I. Parameters linked to MD, vOTCA, and KMC calcula-
tions. The notation is defined in the text for this section.

Gay-Berne parameters [27]

ues = 1, xgs = 0.1948, xlz = 0.15, Eq. (7)

oo = 0.375 nm, ¢y = 1.5897 kcal/mol, Eq. (1)

Parameters deduced from VOTCA calculations

A =0.43¢eV, o, = 0.064 eV, o4 = 0.105 eV, Eq. (8)

Parameters needed for running KMC

re=2.5nm, At =5 x 10° ps, Tpay = 108 ps, Voias =2V,
€, = 2.6 [55]

where
K2, — 1
= m
is the shape anisotropy parameter, defined by the aspect ratio,

kgg- The well depth e(fii,ﬁ j,r%) is determined by the product
of two functions:

3
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while the parameter

r y/nes _
x = Non) T2~ 1 (7)
(kgg) /e 4 1

is defined in terms of the well depth anisotropy kg, i.e., the
ratio between well depths for the side-by-side and end-to-end
interactions, respectively. The form of the GB potential can
be adjusted to a specific molecule by varying the parameters
UGB, VGB, kGB» k’GB, with the exponents ugp, Vgs tuning
the orientational dependence of the energy. For kgg and kg
values smaller than unity, the potential describes disklike
mesogens (oblate ellipsoids) and their discotic and columnar
mesophases [27,48]. The Gay-Berne parameters obtained from
microscopic level simulations in [27] are shown in Table 1.

B. Charge-transport model
1. Kinetic Monte Carlo simulations

We took roughly equally sized samples from the CG
morphologies, and they were replicated periodically in the
x and y directions while metallic boundary conditions were
applied in the z direction to model electrodes. Axes with unit
vectors é,,é,,e, were defined as shown in Fig. 3.

Charge motion is calculated using kinetic Monte Carlo
(KMC) methods [49] as it allows for interactions between the
charge carriers and describes all mechanisms on a realistic
timescale. Hopping rates are determined by Marcus theory
where transfer integrals, representing electronic coupling, and
hopping site energies are derived from electronic structure
and electrostatic interactions between the charge carriers. The
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transfer integrals are highly sensitive to the relative orientations
of the orbitals and the hopping distances involved in the transfer
process [3] and thus on the local packing. The parameters
determining packing and charge hopping rates are determined
from electronic structure calculations, and there is no need
for parameters to be fitted to experiment. This feature of
off-lattice KMC means that one can quantitatively compare
charge transport properties predicted by our model across many
different materials and morphologies.

We began by defining the center of mass for each molecule
as a possible charge hopping site, with a maximum occupancy
of one free charge carrier. We used Marcus hopping rates [50]
to describe the hopping:

| [ = (AG;; + 1)?
= JESEAN g
KT T\ akgT O AnkpT ®)

where the total reorganization energy, A = Aipner + Aouter, Was
calculated for charge transport between HOTT molecules, the
same value used for all molecule pairs in the system. There
are two major contributions to the energy of free charges in
the system: the molecular orbital energy of the host molecule,
and the electrostatic energy of other free charges and any ex-
ternally applied electric field across the system. We calculated
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energy levels for each
molecule allowing for polarization of neighboring molecules
using the Thole multipole model [51]. We calculated the
transfer integral, J; j, for pairs of molecules with a separation,
rij, less than a cutoff distance, . = 2.5 nm. These quantities
were obtained using the VOTCA [33] package and molecular
orbital information calculated with GAUSSIAN [52].

Following many other models of charge transport in OSCs
[12], the change in the Gibbs free energy AG;; between pairs
of molecules comes from electrostatic interactions between
the charges in an applied bias. In a departure from standard
practice, we solved the discretized Poisson’s equation with a
cloud-in-cell method to allow for the long-range nature of the
Coulomb interactions [53],

§=-vL, ©)
€
where ¢ is the discretized electric potential and € = ege, is the
permittivity of free space multiplied by the material’s dielectric
constant, with appropriate boundary conditions describing the
applied bias. A coarse-grained charge density, p, is defined
on a grid, projecting the charges within each voxel onto the
eight voxel vertices before solving Eq. (9). Each hopping site’s
electrostatic potential then comes from mapping ¢ onto that
site. The charge-density distribution and potential profile is
recalculated after every KMC event.

The first reaction method (FRM) was used to select the next
event to be performed in the KMC simulation [54]. In brief,
the FRM method requires us to calculate the rate (v;) of every
possible event in the system, and then for each event draw a
waiting time (tg‘)) from a Poissonian distribution parametrized
by vi. At each KMC step, we perform the event with the
shortest waiting time. We note that for the given set of M
events with rates vy, ...,vy and waiting times {1, ... 1™,
the probability that the kth event is performed is given by

P(t® = min[t(), ... ,t(]), which is equivalent to

»Yw

P(k|v1,...,vM)=vk/Zv,~. (10

We ran six simulations with different random number seeds
for each morphology. The simulations were initiated with no
charge carriers present in the cell. As the simulation ran,
injection of charge carriers took place at the top electrode and
extraction at the bottom electrode. Injection was treated as a
two-step process in which the probability of a carrier being on
a random hopping site adjacent to the electrode is multiplied
by a Marcus hopping rate from the selected site to a site in
the bulk of the device. The probability of being on an adjacent
hopping site is calculated as p = min[l,e_k%], where §E is
the difference in carrier energy between the Fermi level of the
electrode and the adjacent hopping site.

Once the dynamics reached steady state with respect to
charge injection and extraction, measurements of the mean-
square displacement, (r>(t)), were taken at intervals of At =
5 x 103 ps. If At is too short, (r%(7)) is dominated by charge
transfer back and forth within a strongly coupled pair, in a
rattling motion. Our choice of At ensured that we measure
charge motion that contributes to charge flow across the
device. To measure the charge-carrier motion, we calculated
the mean-square distance displacement of free charge carriers
as a function of time 7,

Mo N
(r’(0) =) = Q) In@ + A —ri@pP, (1D
; ~ 2:; j )
where M is the number of time steps. The maximum simulation
time Ty was set at 108 ps. Continuous measurements, such as
the mean-squared displacement, were averaged over all KMC
trajectories. The mobility was measured using

2
D=Lim_." f”, (12)

'u:kB_T’

where kp is the Boltzmann constant.

2. Network analysis

To investigate the role of a given pair of molecules in charge
transport, as compared to properties of the entire system, we
need to use a description that treats pairs, rather than individual
molecules, as the simplestindividual object. To achieve this, we
used tools from graph theory [43] that explicitly consider the
connections between objects as entities in their own right. We
mapped the transfer integrals onto a transportation network,
called a graph, that consists of nodes linked by edges; an
example is illustrated in Fig. 2. In this case, nodes are the
HOTT molecules and edges are links between a molecule and
all other molecules within the transfer cutoff r..

To probe charge transport, we use the charge trajectories
to find the elements of a traffic matrix T, an order N square
matrix with rows and columns each linked to molecules i = 1
to N. Its diagonal elements are zero. Its off-diagonal elements,
T;;, are equal to the number of charges that hopped between
site i and site j, i.e., the traffic from site i to j.

We also define the linked traffic, T,- j» of an edge as the
average traffic of the set of neighboring edges in a given
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FIG. 2. Schematic illustration of the network. Nodes are the
molecules shown as ellipses. For each pair of molecules separated
by less than r, there are two edges whose directions are shown by the
arrows joining the nodes. The node labels show how the linked traffic
T ; is calculated from Eq. (13).

direction. For an edge from i to j, this set includes all edges
that end at i or start from j, excluding the reverse edge from j

to i. We can write T},

L1 (ZhThi— /z) (Zk Jjk — )

where M; (M;) is the number of neighboring nodes to node
i (j), and h (k) is an index over this set. The sums are over
neighboring edges, so the first (second) sum on the right-hand
side is over all edges that begin at site i (j) and end at site j (7).
Given that the traffic T;; is an extensive measurement in time,
all traffic measurements are made for the same simulation time
Tmax. There is a net flux,

f?ij = (Tij - Tji)zij/'[max, (14)

where ¢;; is the unit vector linking sites i and j. Note that the
flux matrix is skew-symmetric.

III. RESULTS

We simulated two morphologies of HOTT molecules at two
different temperatures, 9011 molecules at 280 K and 8968
molecules at 400 K, with the CG MD method described in
Sec. [T A. We used these two systems to investigate the effects
of structural ordering on the distribution of charge-transfer
integrals J;; as well as the long-range transport properties
of the systems. Finally, we use the microscopic information
embedded in the morphologies and KMC simulation to explain
the trends in both short- and long-range charge transport.

The planar shape of the benzene rings allows molecules to
form a -7 stacking arrangement with little steric hindrance.
Figure 3 shows the morphologies of the HOTT systems
generated by back-mapping the coarse-grained morphologies
into atomic coordinates. At the lower temperature, there is
a clear long-range ordering of the molecules into columns.
This ordering is destroyed at higher temperatures with no clear
structure visible.

The peaks in Fig. 4 correspond to separations in a column of
HOTT molecules with r (Fig. 1) parallel to the column axis,
as well as regular separations between columns in the radial
plane. In the disordered phase, there is no ordering beyond first
neighbors along r| and a broad correlation around 2.0 nm.

FIG. 3. HOTT morphologies after back-mapping to atomic co-
ordinates. (a) Disordered morphology generated at 7 = 280 K,
system size is 15.67 x 15.67 x 52.85 nm. (b) Columnar morphology
generated at T = 400 K, system size is 16.32 x 16.32 x 65.36 nm.

Figure 5 shows the square of the transfer integrals between
pairs of molecules, needed for the hopping rates in Eq. (8),
against the spatial separation,

AF = Axeé, + Ayé, + Azé, 5)

using axes shown in Fig. 3. The distribution of J? in the
columnar phase shows spatial ordering of the transfer integrals
in all three dimensions. Although the Ax and Ay distributions
are similar for Figs. 5(a) and 5(b) apart from where J? ~
1 x 107'2, the Az distribution is markedly different. In the
z direction, there are islands with large values of J 2 from
coupling to the nearest and second-nearest molecules in the
same column. Higher-order neighbors in the same column
follow the same trend, although J? are of the same magnitude
as for intercolumn transfer.

All possible hops are affected in the same way by an
increase in temperature through Eq. (8), so if there is any
favored set of hops (e.g., in columns), they would be favored
at all temperatures. Thus the reason any particular coupling is
more or less favored is not due to a global parameter such as

8 \ ‘ ‘ \
— Columnar 1
— - Disordered
6,
g ar
2 L
%

r(nm)

FIG. 4. Pair correlation function g vs molecular separation r (nm)
or HOTT molecules in columnar and disordered phases. For the
former, the first peak is at 0.43 nm and represents the intracolumn
vertical separation, the second peak is at 0.904 nm, while the first
minimum is at 0.74 nm. The first peak in the disordered phase is at
0.515 nm.
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FIG. 5. The distribution of hole transfer integrals Jii. between
pairs of molecules with respect to the Cartesian components of
the pair separation, according to r}; = Ax}, + Ay}, + Az}, (nm). (a)
Columnar phase. The dashed red line illustrates the variation of J?2

when moving along a column. (b) Disordered phase.

temperature, but rather the local morphology. The distribution
of smaller J? values that correspond to intercolumn hopping in
the z direction in the columnar phase is broad and continuous
in both phases, falling off exponentially with Az, shown by the
dashed line in Fig. 5(a). Comparing the value of Az at which
J? is large in Fig. 5(a) to the molecular dimensions given in
Fig. 1, the most significant charge-transfer path corresponds
to hopping between molecules separated by roughly 2rj—
directly above or below one another.

J? variations in the x-y plane shown in Fig. 5(a) distinguish
between intra- and intercolumn hopping. The clustering of
Ax and Ay around Ar = 0 and Ar = 0.4 nm shows that the
largest transfer integrals correspond to charge transfer within
the same column. Intercolumn transfer occurs at Ax ~ 1.9 nm.
Given that the column separation distances are much larger
than r., there are few transfer integrals between molecules
beyond nearest-neighbor columns. Figure 5(b) shows that the
distribution of JZ at T = 400 K is isotropic, as would be ex-
pected for a disordered morphology, and decays exponentially
with Ar. The range of J? values is comparable to the ordered
system, suggesting that the origin of large J? is the same at
both temperatures: a pair of molecules arranged in a 7 -stacking
configuration.

Looking at Figs. 4 and 5, we can see that although the
nearest-neighbor separation is similar in both the columnar
and isotropic phases, the distribution of pair separations in
Cartesian directions and the distribution of transfer integrals

1)(10_ S B
I —— Columnar
1><10'9? — Disordered
Svac” (E—
/E:( 11 — - -_—— ;
o 1x10 IR
1x10"° SN
0 5 L 1 5 L 6:
1><10-13 P R L, w0 sl 0]
0 2x10° 4x10° 6x10° 8x10°  1x10°
©(ps)

FIG. 6. Charge mean-squared displacement (r2) (solid lines) and
(zf) (dotted lines) vs simulation time t (ps) for columnar and
disordered phases. Inset: a subsample of the same data on a linear
scale.

are very different. One could not use a single lattice model to
recreate both of these systems: the lattice would have to be
a fine cubic mesh in the isotropic phase, while it would be a
coarser stacked hexagonal lattice in the ordered phase. Even
with different shaped lattices, one would need to describe the
anisotropic coupling between molecules accurately. We stress
that our model can describe all phases of a system accurately,
and we will show below how the same methodology can be
applied to both ordered and disordered systems.

A useful measure of charge transport is the mean-square
distance traveled in a given time. Figure 6 shows that in
the columnar phase, the ratio (z%)/(r?) is nearly constant
at 0.9 and motion along columns is strongly favored. By
comparison, the charge transport in the disordered phase is
isotropic, with transport parallel to the columns contributing a
third of the total movement. That the motion is isotropic despite
an applied voltage of 2.0 V shows that the change in energy
due to movement parallel to the field is small compared to the
intrinsic disorder and transfer integrals. In the columnar phase,
the mobility . = 4.782 x 107 (cm? V~!s7!), and in the
disordered phase its valueis i, = 7.938 x 1077 (cm? V' s71)
(see the supplemental material for further details).

The highly directional nature of the MSD in the colum-
nar system suggests filamentary transport. It is known that
one-dimensional transport depends upon the system size and
eventually fails as a single defect severs the chain. Even if the
transport chain is not severed, the link with the lowest rate will
still be the rate-determining step with respect to long-range
transport. To investigate this effect, we modified the hopping
networks to halve the systems’ effective height and changed
the voltage to keep the field consistent. This should increase
the observed mobility as the number of weak links should
be reduced. The ratio of the halved system mobility to the
original mobility, k = ,u/z/ W;, 1s a measure of both the extent
of filamentary transport and the density of weak connections in
the filaments. In the columnar system, « = 1.420, while in the
amorphous system, k = 1.019. These measurements reinforce
the quantitative difference in the transport mechanisms: the
columnar system is reducible to a set of separate conducting
filaments, while the amorphous system is truly isotropic.
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FIG. 7. Simulation cells where 0 < x < Xmax, 0 < ¥ < Yinax, 0 <
Z < Zmax> a0d Xmax, Ymax» Zmax are given in the caption to Fig. 3. (a) and
(b) Edges with transfer integrals |J;; |? > 107° eV shown as arrows;
(c) and (d) traffic T between pairs (lines); (e) and (f) the extensive

flux Fr,, integrated over 7, in columnar and disordered phases.
The grids are to guide the reader’s eye.

Our large system size allows us to look at spatial variations
in charge transport. Figure 7(a) shows that in the columnar
phase, the highest charge-transfer rates are between sites in the
same column, while transfers between columns are typically
much weaker, consistent with Fig. 5. The dark blue regions
within columns indicate continuous chains of transfers. In the
disordered system, Fig. 7(b) shows there is no spatial ordering
of strongly coupled molecule pairs. Comparing Figs. 7(a) and
7(b) does not explain the difference in transport properties
between the columnar and disordered systems, nor the extent
of rattling motion. For both phases, we can see from Figs. 7(c)
and 7(d) that very few pairs of molecules exchange free charge
carriers. In the columnar phase, there is clear spatial ordering
of charge hops along columns. In the disordered phase, even
fewer pairs of molecules exchange carriers, and those that do
are clustered in small groups of three or four hopping sites,
although measures of transport should be evenly spread across
the film.

Figures 7(c) and 7(d) show the number of hops along
edges as colored arrows; edges where there are no hops are
omitted. Dark blue edges that carry a noticeable level of
traffic are clustered in small chains. The pink edges that carry
exceptionally high traffic are isolated and have no obvious
spatial distribution. From the applied color scale, we can see
that the maximum observed numbers of hops in an edge are
comparable in the two morphologies, although the number of
edges that carry a noticeable level of traffic is smaller in the
disordered system than the ordered system.

In graph theory, the disconnected clusters in Figs. 7(c) and
7(d) are called subgraphs. Using T;;, we identified the number
of sites in each subgraph as well as their length, i.e., the
maximum extent of the subgraph parallel to the z axis in Fig. 8.
In the ordered system, the clusters are filamentary. Their length
scales linearly with the number of sites that are stacked in a
column with a fixed pair separation of 6.5 nm. Intercolumn
connections in the x-y plane do not play a role in charge
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FIG. 8. Cluster size vs cluster length along the z axis (the direction
of an applied bias of 2 V) for the columnar phase at simulation times
of 10° (blue diamonds) and 107 ps (circles) and for the disordered
phase at 107 ps (red squares).

transport. In the disordered morphology, the cluster size scales

as N7 as can be seen in the figure. For a smaller simulation
cell, the charge-transport length would be directly comparable
to the percolation length, and there may only appear to be one
or two favored pathways. The ability to simulate a large system
means we can study the density and growth of these pathways.

It is known that one-dimensional transport will eventually
fail as only a single fault will completely disrupt the entire
transport network. In the system sizes presented, the columnar
ordering percolates the system, thus we cannot describe the
effect of dislocations to the charge transport. However, the
study of the amorphous system shows that if two columnar
regions are separated by a small amorphous region (a 1D
crystal defect), transport will still occur, albeit slowly and
isotropically. The regions between columns would effectively
transport charge an order of magnitude more slowly than the
columns; they would be the limiting factor to the overall
performance of the device.

Figure 9 shows that the columnar phase exhibits a bimodal
distribution with very few values of J;; around 1076 eV,
consistent with Fig. 5(a). This minimum corresponds to the
first minimum in g(r) at » = 0.74 nm. At this molecular
separation, there are very few molecule pairs that have the
correct alignment for J;; to exceed its cutoff value (Fig. 4). The
columnar morphology has more edges with large J;; than the
disordered morphology, although the maximum observed J;;
are comparable. These large J;; occur between particles that are
at closest approach, equivalent to neighboring molecules that
are parallel to the x-y plane. The large number of connected
particle pairs explains the faster charge transport shown in
Fig. 6. In the disordered system, the distribution of particle
separations is smoother and thus the distribution of J;; is
smoother, too. As the strength of the coupling decreases
with increasing pair separation, the two distributions have
mirror symmetry. The dashed line in Fig. 9 shows that for
the distribution of J;; over a smaller range of separations, the
larger peak corresponds to the shoulder in the distribution of
pair separations (see the figure inset); the shoulder in P(J;;)
also has a counterpart in the separation distribution. Averaged
over a large number of configurations, we would expect that

064601-7



IAN R. THOMPSON et al.

PHYSICAL REVIEW MATERIALS 2, 064601 (2018)

1><104g’ — Columnar
A — Disordered
Ix10°F [ E
P(J;) Bl
Ix10°F F E
i 0 ‘ .
r,(m) K
1 s [ y A [ [
DA 107 %102 1x10° 1x10° 1x10°
JeV)

FIG. 9. Distribution of J;; in the columnar and disordered phases.
For the former there is a clear bimodal distribution due to the high
spatial and orientational ordering of the molecules. For the latter, the
distribution is flatter. The solid line is the distribution taken over all
molecule pairs up to 2.5 nm apart; the dashed line is for pairs up to 1
nm. Inset: the distribution of pair separations in the two phases.

the distribution of J;; at a fixed value of r;;, or a range small
enough to only include nearest-neighbor pairs, would become
Gaussian due to the central limit theorem.

Even for the ordered morphology, the transport is poor.
To get an estimate of how few edges contribute to charge
transport, we can compare N,, the number of edges where
T;; > 0, to the total number of edges N,. Atabias of 2'V in the
columnar phase, the ratio N, /N, = 1.17 x 1073 is an indicator
of the variability in transport behavior between molecules.
In the disordered system, the ratio is an order of magnitude
smaller, and carrier hops are more localized along fewer edges.
This suggests that the distribution of transfer rates is more
sparse. To quantify the degree of rattling motion, we calculate
]Vhops = % > |F;;l, the number of carrier hops that contribute
to a flux. The ratio of Nhops to the total number of recorded
hops is small, of the order 10~ in the columnar phase and an
order of magnitude smaller in the disordered phase, suggesting
that most carrier hops represent rattling motion. More precise
values of these quantities are included in the supplemental
material [56].

The effect of the transfer integral distribution in the colum-
nar phase is that hops between columns are very unlikely
despite the change in Gibbs free energy, AG;;, being roughly
equal for intra- and intercolumn edges. Although the transfer
integrals limit charge motion to the z axis, they do not dictate
whether charges hop up or down columns, hence any net
transport must be driven by energetic considerations. This
means that a requirement for long-range transport is for the
set of edges with AG;; ~ —A to be asymmetrically distributed
around Az = 0. Changes in site energies due to energetic
disorder are in general much larger than the electrostatic
energy changes when moving between nearest neighbors. The
weakness of the asymmetry is critical to understanding why
the number of edges that contribute to flux is so small. We
can visualize this argument from Fig. 1 of the supplemental
material (SM) [56].

o Columnar ]

1x10°

FIG. 10. The traffic between two molecular sites vs the linked
traffic of that pair as defined in Eq. (13). Both measures of the traffic
are more tightly distributed in the ordered system.

Due to the low asymmetry of AG;; with respect to Az;j,
few edges contribute to the carrier flux matrix F. The closer —A
is to the bottom edge of the distribution of AG;;, or the larger
the optimal transfer integral separation, the weaker the applied
bias needs to be. Figure 10 shows the traffic along a given edge,
T;;, plotted against the linked traffic of the edge, T, . There is
little correlation between the traffic of an edge and the average
traffic of its neighbors. However, in the ordered morphology
the distribution of both traffic measures is narrower and closer
to equality between the two measures. This result suggests that
in the ordered system, the flow along edges is more uniform
and the transport environment around an edge is similar to that
of the edge concerned. We can relate the strong correlation
between structural ordering and electronic coupling to the
dynamics of long-range charge transport: structural ordering
means less variation in local structural environment (see Fig. 4)
and corresponds to m-stacking in this system. The stacking
results in a relatively narrow distribution of transfer integrals
(see Fig. 9), affecting the dynamic behavior, and the traffic
along edges is distributed relatively narrowly around equality
between (T,‘j) = T,'j.

The edges that host most charge-hopping events occur for
AG;; ~ —A\. Outside this range, the rate of a hop is at least
107 times smaller. Comparing two hopping events with such
large differences in rates, we can see that when v; > v,, using
Eq. (10) the probability that the waiting times satisfy 7{!) <
t® =v;/(v; +v2) ~ 1. Recall that in the FRM we perform
the event with the smallest waiting time at each iteration. Thus
only hopping events with rates close to the maximum rate will
occur, and so only those events with AG;; close to —A are
relevant for transport. This limitation of charge transport to a
narrow range of AG;; explains why so few edges carry any
traffic. If an OSC had a reorganization energy close to the
typical difference in energy between pairs, determined by the
disorder in HOMO/LUMO energies, then many more edges
would be involved in transport.

If the transfer integral dominates in Eq. (8), then charge
hopping is not spatially confined, and despite the differences
in AG;;, many edges are equally likely to carry traffic. In
practice, the exponential factor dominates, so despite many
edges having similar transfer integrals, those with AG;; closest
to —A carry almost all the traffic. We suggest that to identify
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FIG. 11. Poole-Frenkel mobility-field plot for columnar and dis-
ordered phases. The mobility increases with increasing applied field in
both systems, although the response is much stronger in the columnar
system. The weak dependence upon the applied field in the amorphous
system is consistent with Figs. 5 and 6; the field is more effective when
aligned to the coupling topology.

high transfer rate edges, it is more useful to consider that high
transfer integrals select from the set of edges with AG;; ~ —A,
than favorable values of AG;; select from the set of all edges
with high J2. This selective pressure explains why so few edges
in the 400 K morphology carry traffic despite the isotropic
nature of the transfer integrals. For predictive power, one must
know the distribution of AG;, or at least AG;; in the absence
of charges, in the system as well as {J;;} to identify favored
traffic directions.

The disordered morphology, which exhibits slower long-
range charge transport, contains molecule pairs that exchange
~10% holes during the simulation. Figures 7(b) and 7(d) show
that high traffic edges are isolated and the connected edges
are not strong, either with respect to the transfer integral or
the observed traffic. This lack of connectedness leads to a
relatively small contribution to transport despite high coupling
and traffic.

The difference in energy between two sites is composed of
the inherent energetic disorder and electrostatic contributions.
As the applied field is increased, it becomes relatively large
compared to the disorder and AG,; becomes correlated with
Az;;. The gradient of Fig. 11 is positive since the application
of a field breaks the symmetry of AG;; about Az = 0. The
population of edges with Az < 0 moves closer to AG;; ~=
A while those with Az;; > 0 move farther away. A drift
component parallel to the field is therefore superimposed on
the the random motion of charges. Beyond an optimum bias,
the typical hopping rate would decrease due to the inverted
region of the Marcus equation dominating when AG;; <= A.
In the ordered system, the most highly connected edges are
already parallel to the field so the effect is amplified, while in
the disordered system an increasing field will only favor those
edges that are aligned correctly. No electric field dependence
was observed by Kwiatkowski et al. [14], suggesting that the
origin of such a dependence is more subtle than simply the
presence of energetic disorder. We suggest that the topology of
the electronic transport network, defined by transfer integrals,
plays a role in the electric-field dependence of the mobility.

IV. CONCLUSIONS

We compared the charge-transport properties of an organic
semiconductor discotic system in two distinct structural phases
using explicitly calculated electronic transfer integrals and
orbital energies in a kinetic Monte Carlo simulation. The
ordered columnar phase exhibits much higher charge-carrier
mobility parallel to the column axis, while transport between
columns is very rare. Intercolumn transport is restricted by
weak transfer integrals, and the change in free energy both
along and between columns is roughly equal due to energetic
disorder.

Discrete charge transport via hopping mechanisms maps
well to graph theory methods and discussion of edges and
nodes. Metrics that can describe paths of arbitrary length
across the system and measures of robustness help identify
good charge-transport criteria. If efficient charge transport is
more reliant on the collective behavior of a series of hops,
on pathways rather than pairs, then graph theory is a natural
expression. In the future, it would be interesting to see if
this approach could be used to define which sites in the
system contribute to charge flux and which can be described as
dynamic traps. These sites are likely to be important for light
emission and recombination in optoelectronic devices.

Although the energetic term dominates the Marcus rate
equation, it is still important to calculate the transfer integrals
explicitly. If we only consider hopping due to energetic terms,
we would expect to see as many hops between columns as along
columns, although symmetry would lead to (Ax) = (Ay) = 0.
Instead we see no hops between columns at all, due to the
much weaker electronic coupling between columns, as shown
inFig. 5. By calculating the transfer integrals between each pair
of molecules, we reproduced the strong coupling caused by
coplanar aromatic rings. However, the distribution of transfer
integrals does not promote net charge transport along columns
either; the distribution is symmetric with respect to Az.

The distribution of AG;; is weakly asymmetric with respect
to Az—it is this asymmetry that leads to net flow of charge
carriers. The asymmetry caused by the change in energy due
to the applied field between molecules i and j is gA¢ =
—qF - F;j, where F is the local field and 7;; is the displacement
between the molecules. The exponential decay of the transfer
integrals with separation means that increasing the asymmetry
by increasing the nearest-neighbor separations is not possible,
but increasing the applied field does increase the mobility.
The largest transfer integrals inside columns are linked to an
intermolecular separation d = 0.4 nm parallel to the field with
an applied bias of 2 V |¢ F (F;;)| = 0.585kgT. Comparing the
thermal energy to the driving field energy, we can see why
charge flux is so small and why rattling motion dominates at
low applied fields.

We used the KMC trajectories to define a measure of locally
correlated charge flow and thus to identify edges (directed
molecular pairs as shown in Fig. 2) that carry high traffic
but contribute little to flow, and conversely edges that carry
relatively little traffic but are well connected in terms of flow.
More important to particle flux is the connectedness of edges
with large transfer integrals to create a pathway. We see that
the disordered system has the same range of transfer integrals
compared to the ordered system, yet the charge transport is
slower. The lack of spatial correlations between edges with
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good transport properties means that it is unlikely that carriers
will reach good edges, and if they do they are unlikely to
move far away. This resolved the paradox that the disordered
phase contains edges that carry an order of magnitude more
traffic than the columnar phase, yet it performs worse with
respect to overall charge transport. To achieve efficient charge
transport over device length scales, it is necessary to have
a continuous chain of hops, all with reasonable electronic
coupling. Furthermore, the weighting of any single edge is
a poor indicator of how effective that edge is in terms of
long-range transport. There is little correlation between edge
traffic and the average traffic of its neighbors. Assuming
that the structural order of a system is compatible with high
electronic coupling, as in m-stacked systems, we can directly
correlate structural ordering to the motion of charges.

The hop with the slowest rate is the most critical hop
with respect to the overall transport time along the chain,
both in terms of being the slowest hop forward but also
increasing the relative probability of a reverse hop back along
the chain. Reducing the variance in edge weights means that
the probability of one pathological molecule pair in a chain
is reduced. This leads to improved charge transport across
the entire chain. Isolated high-weight edges host high traffic
without longer-range flow.
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