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Distortion modes in halide perovskites: To twist or to stretch, a matter of tolerance and lone pairs
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Using first-principles calculations, we show that CsBX3 halides with B = Sn or Pb undergo octahedral rotation
distortions, while for B = Ge and Si, they undergo a ferroelectric rhombohedral distortion accompanied by a
rhombohedral stretching of the lattice. We show that these are mutually exclusive at their equilibrium volume
although different distortions may occur as functions of lattice expansion. The choice between the two distortion
modes is in part governed by the Goldschmidt tolerance factor. However, another factor explaining the difference
between Sn and Pb compared with Ge and Si is the stronger lone-pair character of Ge and Si when forced to
be divalent as is the case in these structures. The lone-pair chemistry is related to the off centering. While the
Si-based compounds have not yet been synthesized, the Ge compounds have been established experimentally. As
a final test of the importance of the tolerance factor we consider RbGeX3, which has smaller tolerance factor than
the corresponding CsGeX3 because Rb is smaller than Cs. We find that it can lower its energy by both rotations
or rhombohedral off-centering distortions but the latter lower the energy slightly more efficiently.
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I. INTRODUCTION

The cubic perovskite structure is well known from the oxide
perovksites to exhibit various possible phase transitions. These
fall in two main categories: ferroelectric distortions, in which
the B atom in ABX3 is displaced within its surrounding octahe-
dron, and antiferroelectric distortions, in which the octahedra
rotate, possibly about multiple axes. Depending on the type of
displacement, for example along a cubic axis such as [001],
or along two cubic axis or a [110] direction, or three cubic
axes, corresponding to the [111] axis, the resulting symmetry
becomes tetragonal, orthorhombic, or rhombohedral. Likewise
for the rotation type instabilities, rotation about one cubic axis
leads to a tetragonal structure; about two orthogonal axes leads
to an orthorhombic phase.

The halide perovskites with B = Pb, Sn, Ge have recently
garnered a lot of attention, mostly driven by the hybrid
organic/inorganic halides’ demonstrated potential for solar
cell applications [1–8]. In particular methyl ammonium lead
iodide [CH3NH3PbI3 or (MA)PbI3 or MAPI] and closely
related materials have reached larger than 20% efficiencies
in solar cells in a record development time frame. The in-
terplay between the dipole character and the orientation of
the organic component and the inorganic framework leads to
interesting effects on the above mentioned phase transitions
[9,10]. However, similar phase transitions also occur in the
purely inorganic CsBX3 family. While these distortions, which
are related to soft-phonon mode instabilities [11], lead to
minor changes in the band structure, related to bond angle
distortions, other phases are known in the halides, which are
far more disruptive of the band structure. These latter phases
include edge-sharing octahedra and exhibit band structures
with much wider band gaps than their perovskite counterparts
[12]. As an example, the structural phases in CsSnI3 were
studied in detail by Chung et al. [13]. They fall generally in a
set of three “black phases,” cubic, tetragonal, and orthorhom-

bic, which correspond to rotated octahedral structures, and
another orthorhombic “yellow phase,” which has 1D chains
of edge-sharing octahedra forming Sn2I2−

6 structural motifs.
It is notable that the transitions from cubic to tetragonal to
orthorhombic perovksite each time increase the density and
the yellow phase has an even higher density. The orthorhombic
γ phase is stable with respect to soft phonons, but has been
calculated to have an energy either lower [14] than or very
close [15] to that of the yellow phase.

Because the driving force for these transitions appears to
be the increasing density, the occurrence of the edge-sharing
octahedral structures, which appears to be detrimental for many
of the sought applications, may perhaps be already inferred
from the behavior of the material under octahedral rotations,
which in turn is related to the relative sizes of the ions. For
example, for the CsGeX3 compounds, the sequence of tetrag-
onal, orthorhombic octahedral rotations is not observed and, to
the best of our knowledge, no edge-sharing octahedral phase is
known to occur, although a different, monoclinic phase occurs
for the Cl members of the family. Instead of octahedral rotation
phases, a ferroelectric rhombohedral distortion is found to
occur in these materials, consisting of the displacement of the
Ge along the body diagonal of the cubic unit cell, accompanied
by a rhombohedral stretch of the unit cell.

In this paper we examine the behavior of a family of halide
perovskites computationally under both octahedral rotation
and rhombohedral ferroelectric distortions. Hence the phrase
in the title: “to rotate or to stretch.” We find that the Sn and Pb
members of the family of cubic perovskites are unstable toward
rotation of the octahedra but stable with respect to ferroelectric
distortions. In contrast, the Ge and Si based compounds show
the opposite behavior: they are unstable towards ferroelectric
distortion but are stable with respect to rotations. Furthermore,
we relate this distinct behavior to the Goldschmidt tolerance
factor [16], which provides a convenient way to summarize

2475-9953/2018/2(6)/063605(11) 063605-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.063605&domain=pdf&date_stamp=2018-06-25
https://doi.org/10.1103/PhysRevMaterials.2.063605


RADHA, BHANDARI, AND LAMBRECHT PHYSICAL REVIEW MATERIALS 2, 063605 (2018)

the relative ionic sizes. Notably, we include here the Si based
halide perovskites, which have, as far as we know, not yet been
synthesized.

The remainder of the paper is organized as follows. The
details of our computational approach are given in Sec. II.
The relationships between the different crystal structures and
distortions to be studied are given in Sec. III. The results Sec. IV
are divided in several subsections. First, we give a qualitative
discussion in Sec. IV A establishing the different behavior of
Sn and Pb vs Si and Ge. Next, we consider full relaxations of the
rotationally distorted structures of Sn and Pb based compounds
in Sec. IV B, then the full relaxations of the rhomobohedral
structures of the Ge and Si based compounds in Sec. IV C.
In Sec. IV D we study the competition between both types of
distortion as a function of lattice expansion for the Sn and Pb
based systems. Finally, in Sec. IV E we consider the RbGeX3

compounds and end with a summary of the results in Sec. V.

II. COMPUTATIONAL METHODS

The calculations are performed within density func-
tional theory in the local density (LDA) and/or general-
ized gradient (GGA) approximations. Specifically, we use
the Perdew-Burke-Ernzerhof (PBE) form of GGA [17]. The
full-potential linearized muffin-tin orbital (FP-LMTO) band-
structure method is utilized [18,19]. Within this method, the
basis set consists of Bloch sums of atom centered spherical
waves as envelope functions, described by smoothed Hankel
functions [20], which are then augmented with solutions of
the radial Schrödinger equation inside muffin-tin spheres and
their energy derivatives. For the present calculations, a large
basis set of spdf − spd with two sets of Hankel function
decay constants κ and smoothing radii is used. Inside the
sphere, augmentation is done to an angular momentum cutoff
of lmax = 4. The Cs 5p states are treated as valence electrons.
Likewise for Rb, the semicore 4p are treated as local orbitals.
The Brillouin zone integrations are done with a 6 × 6 × 6 �-
centered mesh.

The LDA turns out to significantly underestimate the lat-
tice constants in these materials, much more than the GGA
overestimates them. Although our initial study of the rotation
or distortion patterns used the experimental lattice constants
of the cubic phase, our final full relaxation is done within
GGA-PBE.

III. CRYSTAL STRUCTURES

We start from the cubic perovskite structure. In this struc-
ture, with a simple cubic Bravais lattice, for the composition
ABX3, the B atom occurs in the center of the cubic unit cell
and is octahedrally surrounded by X atoms on the face centers.
The A atoms occupy the corners of the cubic cell. The stability
is governed among others by the Goldschmidt tolerance factor,
t = (RA + RX)/

√
2(RB + RX), where RA, RB , RX are the

ionic radii. Hence for t = 1 the ionic spheres are touching
and hence Goldschmidt’s original idea was that t should not
deviate too far from 1 for the perovskite structure to be stable.
When t < 1, the A ion is somewhat too small for the interstitial
space between the octahedra. This is what leads to the rotations,
which tighten the space for the A ion. In contrast, when t > 1,

θ

x,x+1/2

FIG. 1. Rotation of octahedra in perovskite structure; large cir-
cles: A atom; small open circle: B atom; smallest filled circle: X atom;
the black small circle corresponds to the cubic perovskite position and
the red one to the rotated one. The blue dash-dotted triangle indicates
the rotation angle θ .

the octahedral space is too large for the B ion, which might
then be expected to shift in its surroundings to make stronger
bonds with a subset of the six neighbors. On the other hand, it
is not so clear a priori whether this is related to the tolerance
factor or to the lone-pair character of the B cation.

In terms of octahedral rotations, we consider both the
in-phase and out-of-phase rotations about a single cubic axis.
These both lead to a tetragonal structure, the first one having the
space group No. 127, P 4/mbm or D5

4h, the second one space
group No. 140, I4/mcm or D18

4h. They correspond to the Glazer
tilt systems [21,22] a0a0c+ and a0a0c−, respectively. Although
other Glazer tilt systems are possible and in fact occur in
the Sn-halide perovskites [11] (a rotation about a second axis
Glazer a+b−b− leads to the orthorhombic Pnma or D16

2h γ

phase), we here are primarily concerned with the instability
either with respect to rotation of octahedra or ferroelectric
distortions and thus consider the tetrahedral rotation as the
trigger toward rotation behavior. So, we do not consider other
tilt systems. In the tetragonal P 4/mbm structure, the Wyckoff
position for theB atoms is 2a, for theA atom is 2c, and for theX

atoms, 2b and 4h. The x parameter of the 4h positions is related
to the rotation angle of the octahedron by tan θ = 1 − 4x as can
be seen in Fig. 1. In fact, the blue rectangular triangle marked
by one corner at position (x,x + 1

2 ) has sides (x − 1
4 )

√
2 and√

2/4 in units of the lattice constant a and hence their ratio
gives tan θ .

As far as the ferroelectric distortions, we only consider the
rhombohedral structure corresponding to a displacement of the
central B ion along the [111] direction. In the prototypical
ferroelectric oxide BaTiO3 this phase occurs at the lowest
temperatures, with an orthorhombic and tetragonal phase
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occurring at higher temperatures and eventually a cubic phase.
Cooling from high temperature, the displacement thus acquires
successively more components along the cubic axes which
deviate from the central position. While we presently do not
exclude these other potential phases, our choice is guided by
the CsGeX3 compounds, which have been found to exhibit this
rhombohedral phase at low temperatures and a cubic phase
at high temperatures but no other phases in between. The
rhombohedral symmetry distortion of the ion is accompanied
by a rhombohedral shear of the lattice vectors. Thus we will
study the energy as function of displacement of the ion for
varying rhombohedral strain.

The occurrence of this distortion in Ge based halides but
not in Sn or Pb based systems, which we will demonstrate
later, is not only related to the Goldschmidt ratio of ionic sizes
but is also related to the lone-pair character of the bonding.
As one goes down the column of group-IV atoms, the valence
s states become increasingly deeper relative to the valence p

states. That is why carbon has s and p orbitals of similar extent
and is extremely flexible in choosing different hybridization
schemes: sp2 in graphite, sp3 in diamond, and so on. Si
and Ge clearly prefer sp3 hybridization and thus tend to be
tetravalent, while Sn and Pb become increasingly divalent.
Nonetheless, in the halide perovskite crystal structure, it is clear
that even Ge behaves as a divalent ion. Whether Si can also be
forced to be divalent in these compounds remains to be seen.
However, the s electrons then behave as a stereochemically
active lone pair, which promotes off centering of the Ge
in its surrounding octahedron with an asymmetric bonding
configuration in which the lone pair electrons are located
opposite to the direction of the displacement of the ion [23].
The lone-pair related trends in the series Pb-Sn-Ge have been
addressed by Waghmare et al. [24] in the context of IV-VI
compounds. We will show that even in the Sn case this happens
under lattice expansion, as was previously shown by Fabini
et al. [25]. According to the latest insights into lone-pair
chemistry, the hybridization with the anion p orbitals plays
a crucial role in this. The important role of the Sn-s halogen-p
hybridization on the band structure of CsSnX3 halides was
already pointed out in our earlier work [12]. We point out here
that competition between rotation instabilities and lone-pair
off centering was previously studied in CsPbF3 by Smith et al.
[26]. Lone pair physics related to Pb also occurs when Pb is
the A cation in oxide perovskites [27,28].

Finally, we should mention that the tolerance factor depends
on the choice of ionic radii. Usually we use the Shannon [29]
ionic radii for this purpose. However, these are themselves
based on an analysis of bonding in different coordinations and
for example do not give us any information on the behavior
under hydrostatic pressure. One might conceivably think of the
relative ion sizes to change with pressure or wish to include
other aspects than pure ionic size to predict structural stability
[30,31]. With these precautions, we used the Shannon ionic
radii calculated tolerance factors as a guide to our study. They
are summarized in Table I. We note that our goal with the
tolerance factor is not so much to predict structural maps in the
sense of separating perovskite versus nonperovskite forming
compounds but rather the type of structural distortion occurring
within the perovskite. Also, because Shannon only provides
ionic radii for Pb(II) in the divalent state, but not for Sn,

TABLE I. Shannon ionic radii (Ri) and tolerance factors (t)
of cubic perovksites. The last column indicates whether the cubic
structure is unstable toward octahedron rotation.

Ion Ri (Å)

Cs 1.88
Rb 1.52
Si 0.4
Ge 0.53
Sn 0.69
Pb 0.775
Cl 1.81
Br 1.96
I 2.2
Compound t Rotations
CsSiI3 1.10 No
CsGeI3 1.057 No
CsSnI3 0.998 Yes
CsPbI3 0.970 Yes
CsSiBr3 1.151 No
CsGeBr3 1.090 No
CsSnBr3 1.025 Yes
CsPbBr3 0.993 Yes
CsSiCl3 1.181 No
CsGeCl3 1.115 No
CsSnCl2 1.044 Yes
CsPbCl3 1.009 Yes
RbGeCl3 1.006 Yes
RbGeBr3 0.988 Yes
RbGeI3 0.964 Yes

Ge, or Si, we used instead the tetravalent radii for octahedral
environment. This may seem to contradict the fact that in these
structures the B ion is supposed to be divalent. On the other
hand, we should recognize that the bonding is partially covalent
anyway. We find that within each group of a given anion, the
tolerance factor decreases along the sequence Si-Ge-Sn-Pb.
The dividing critical value between octahedral rotations being
favored or not depends actually on which anion (a similar point
was also made by Travis et al. [31]), but is close to 1 for all the
Cs compounds. For the Cl compounds, it would be between
1.115 and 1.044. For Rb, which has a smaller radius, the value
1.006 is thus definitely on the small side and hence predicts
rotations to occur.

Our goal in this paper is to study the instability of the cubic
structure to these two types of distortion as functions of the
B atom and to correlate them with the tolerance factors in the
above Table I.

IV. RESULTS

A. Qualitative discussion

First, we consider the CsSnI3 compound. In Fig. 2(a) we
show its total energy as function of rotation angle θ of the
octahedra. This calculation is done at the cubic experimental
volume although we know that the observed β structure,
corresponding to the P 4/mbm space group, has higher density.
We consider both the in-phase and out-of-phase rotations. The
figure shows that their energy is almost indistinguishable. More
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FIG. 2. Left: total energy (per formula unit in meV) vs octahedral
rotation angle θ (◦) in CsSnI3 left. Here θ+ stands for out-of-phase
rotation and θ− for in-phase rotation, respectively. Right: total energy
vs displacement of Sn from body center in units of the cubic lattice
constant a.

importantly, it shows clearly that the system prefers a rotation
angle of about 6.9◦. Of course, the rotation can be either
clockwise or counterclockwise. The energy barrier between the
two is of the order of a few meV/formula unit. So, this agrees
with the well-established fact that CsSnI3 undergoes octahedral
rotations of this type, although the equilibrium optimum angle
appears to be somewhat underrestimated compared to the
experimental angle which is 9◦, corresponding to the Wyckoff
parameter x = 0.21. This is because, in this initial calculation,
we kept the cubic structure of the lattice and did not allow
yet for a full relaxation. Full relaxation results are given later
in Table II and are discussed in subsection IV B. The present
result shows that the rotation instability is already present even
at the volume of the cubic structure.

Next, we consider the behavior of CsSnI3 under the fer-
roelectric rhombohedral distortion. We do this at zero strain,

TABLE II. Structural relaxation results for rotation for the
CsSnX3 and CsPbX3 compounds: α′ means “rotated cubic” and β

means fully relaxed tetragonal. All results obtained within GGA-PBE.
Volume is per formula unit. �E is the energy barrier between the
optimum angle structure and the cubic structure at rotation angle
θ = 0.

Compound CsSnI3 CsSnBr3 CsSnCl3

structure α′ β α′ β α′ β

a (Å) 8.935 8.800 8.372 8.282 8.033 7.942
c (Å) 6.318 6.300 5.920 5.944 5.78 5.710
V (Å3) 252.19 243.92 207.47 203.84 183.25 180.10
�V/V (%) −3.28 −1.75 −1.72
θ (◦) 6.93 10.1 3.61 8.85 2.49 8.32
�E (meV) 9.9 11.2 4.6 6.6 0.7 8.9
Compound CsPbI3 CsPbBr3 CsPbCl3

structure α′ β α′ β α′ β

a (Å) 9.065 8.610 8.514 8.367 8.160 8.034
c (Å) 6.410 6.245 6.020 6.085 5.77 5.82

V (Å
3
) 263.37 231.520 218.17 213.039 192.10 187.98

�V/V (%) −12.09 −2.35 −2.15
θ (◦) 10.75 12.36 9.13 12.36 8.58 11.77
�E (meV) 33 258 22 50 17 39
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3

FIG. 3. Left: total energy vs octahedral rotation angle θ (◦) in
CsGeI3 left. Here θ+ stands for out-of-phase rotation and θ− for
in-phase rotation, respectively. Right: total energy vs displacement of
Ge from body center in units of the lattice constant a.

so keeping the cubic lattice vectors. Clearly there is only
one minimum at exactly the central position of the Sn in its
octahedral cage. So, there is no evidence for a ferroelectric
instability. Nonetheless, the curves are clearly not parabolic
but show a rather flat energy minimum region for the position
of the central atom.

In contrast, if we consider CsGeI3 [Fig. 3(a)] for its
rotational stability, we find no evidence at all of a rotational
instability. The preferred angle is zero. This is true for both
in-phase and out-of-phase rotations. On the other hand, in
Fig. 3(b) we see that now there is a clear instability against the
ferroelectric displacement. Again, it is symmetric with respect
to the central position. The displacement is given in units of
the lattice constant a of the cubic cell. The optimum position
lies between 0.52 and 0.54 or 0.46 and 0.48. In this case, we
study the optimum position and the energy barrier as function
of rhombohedral strain but initially keeping the volume fixed at
that of the cubic structure. This is quantified by the parameter
η which gives the stretch along the [111] direction (when
η > 1) and is compensated by a compression in the orthogonal
directions, which conserves the volume. Thus we applied here
a pure shear or traceless strain at fixed volume. We can see that
the optimum position varies slightly with the strain. The lowest
overall energy occurs for a strain of η = 1.03 and δu = 0.035.
A full structural relaxation within the rhombohedral symmetry
requires not only optimizing u and η but also the volume and
the results of such a full relaxation are given in Table III in
Sec. IV C.

We thus see a mutually exclusive behavior of the two types
of distortion modes. Either the material is unstable under
rotations or it is unstable under the ferroelectric distortion but
not both. We found that these structural instabilities already
occur at the cubic structure equilibrium volume but, once the
distortion takes place and full relaxation is allowed, a new
equilibrium is found. We should remember though that the mu-
tual exclusivity corresponds to the experimental volume. This
might change as function of pressure. For example, in SrTiO3,
Zhong and Vanderbilt [32] predict an interplay between the
two types of distortions, leading eventually to a complex phase
diagram as function of pressure and temperature. We will
discuss the distortion behavior for CsSnI3 as function of lattice
constant later.
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TABLE III. Optimized cubic and rhomobohedral structures for
CsBX3 with B = Ge, Si. The �E are the barriers between the cubic
structure with δu = 0 and η = 1 and the optimized rhombohedral
structure each at their own equilibrim volume.

Compound CsGeCl3 CsGeBr3 CsGeI3

Cubic V GGA (Å
3
) 155.72 177.50 216.00

Cubic V Expt. (Å
3
) 163.67 184.22 221.44

Rhombohedral V (Å
3
) 168.19 189.11 228.46

Rhombohedral a (Å) GGA 5.52 5.74 6.11
Rhombohedral a (Å) Expt. 5.434 5.635 5.983
δu 0.027 0.026 0.028
δ1 0.015 0.011 0.008
δ2 0.022 0.013 0.004
η 1.014 1.023 1.024
α GGA 89.17 88.64 88.61
α Expt. 89.72 88.74 88.61
�E (meV) 75 65 56
Eg (eV) GGA 2.01 1.31 1.05
Compound CsSiCl3 CsSiBr3 CsSiI3

Cubic V 145.531 166.375 203.297

Rhombohedral V (Å
3
) 170.53 187.06 222.91

Rhombohedral a (Å) 5.54 5.71 6.06
δu 0.038 0.029 0.052
δ1 0.007 0.010 0.007
δ2 −0.057 0.033 0.018
η 1.021 1.016 1.034
α 88.79 89.05 88.00
�E (meV) 357 235 142
Eg (eV) GGA 2.02 1.31 0.605

Having established the basic two types of behavior, we now
consider the variation with anion. In the CsSnBr3 and CsSnCl3

cases, we again find the structure to be stable against ferro-
electric distortion, but unstable toward rotations. The energies
as function of rotation angle are given in the Supplemental
Material [33]. For the CsGeBr3 and CsGeCl3 cases, we find
the structures to be stable under rotation as expected but we
do find a ferroelectric distortion in both cases [33]. Next we
show that Pb behaves similar to Sn and Si behaves similar to
Ge [33]. For the Si case, where no experimental results are
known, we initially used the LDA optimized lattice constants
for the cubic CsSiX3 case but in the next section, for our fully
relaxed structures, we use GGA-PBE for improved accuracy.

B. Full structural relaxation for Sn and Pb based rotations

In this section we study the fully relaxed tetragonal
P 4/mbm structure corresponding to the rotational distortions.
The optimum rotation angles are summarized in Table II.
Because we found LDA to underestimate the lattice constants
more than GGA overstimates them, we performed the full
structural relaxations in GGA-PBE. In Table II we show
both the results for the rotation angle when fixing the lattice
constants to be “rotated cubic” and fully relaxing the tetragonal
structure, i.e., also relaxing c/a. By rotated cubic we mean we
consider a

√
2 × √

2 superlattice in which the octahedrons can
rotate as shown in Fig. 1 but keep the c/a ratio exactly at a
factor

√
2 and keep the volume at the cubic volume. These

results are also presented in Fig. 4 to visualize the trends with
halogen.

For CsSnI3, there are two sets of experimental results, by
Yamada et al. [34] and by Chung et al. [13]. Yamada et al.

give a = 8.772 Å, c = 6.261 Å, and V = 240.815 Å
3

for the

β structure and a = 6.219 Å and V = 240.526 Å
3

for the
cubic structure, in other words, almost the same volume. In
contrast, Chung et al. [13] give a = 8.7182 Å, c = 6.1908

Å, and V = 235.27 Å
3

for the tetragonal and a = 6.2057

Å and V = 238.99 Å
3

for the cubic structure. These results
correspond to 500 and 380 K, respectively, and clearly show
a smaller volume for the tetragonal structure. Our calculated
results agree qualitatively better with those of Chung et al. [13]
in finding a volume reduction induced by the α → β transition.
Our GGA calculations overestimate the experimental volumes
by about 5.6% and 3.6% for the cubic and tetragonal structures
compared to Chung et al. [13]. We find systematically the same
trend in volumes for the other compounds. We may note that
the optimum rotation angle depends strongly on volume. It
is typically larger in the relaxed tetragonal β structure than
if we keep the volume fixed at the cubic volume. We may
also note that it decreases with decreasing volume along the
series CsSnI3, CsSnBr3, and CsSnCl3 and similarly in the
Pb-based series. The rotation angles are larger in the Pb-based
compounds than in the Sn-based compounds. This means
the smaller the tolerance factor, the larger the rotation. Our
optimum angle of octahedral rotation for CsSnI3 agrees well
with the experimental value of 9.09◦ [34].

Finally we may note that, for the larger cubic volumes, the
rotation angle for the Sn-based compounds becomes rather
small. Below, in Sec. IV D, we show that under lattice constant
expansion it actually goes to zero, and, at some critical volume,
the ferroelectric distortion becomes preferable instead.

The energy barriers �E between the tetragonal energy
minimum and the cubic unrotated structure are seen to be sig-
nificantly larger for the Pb compounds than the Sn compounds
and within each family decrease from I to Br to Cl, except for
the fully relaxed CsSnBr3 and CsSnCl3.

C. Full structural relaxation for Ge and Si based
rhombohedral distortions

In this section we further study the fully relaxed rhom-
bohedrally distorted structures. In Table III we first give the
optimum GGA volume of the cubic structure. It is compared
with the experimental values at elevated temperature where that
phase is stable, from Thiele et al. [35], at 170, 270, and 300 ◦C
respectively for the Cl, Br, and I cases. Clearly these values
are larger than our GGA because of the lattice expansion at
elevated temperature. Next, we applied a rhombohedral strain
along the cubic structure, allowed the central Ge atom to go
off center by a displacement δu, and allowed the volume to
relax. The strain η = 1 + 2ε is applied along the [111] cubic
direction while, perpendicular to it, the distances are multiplied
by 1/

√
η ≈ 1 − ε, thus maintaining the volume. The strain

tensor can be written to linear order:

ε =
⎛
⎝

0 ε ε

ε 0 ε

ε ε 0

⎞
⎠.
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FIG. 4. Optimized volume and rotation angle as function of halogen in CsSnX3 and CsPbX3.

The cubic lattice vectors a[1,0,0] are thus distorted into vectors
of a(1,2ε,2ε) with length a

√
1 + 2ε2, which to first order

in ε means they stay unchanged. The results for the Ge-
and Si-based compounds are given in Table III. We can see
that for the Br and I cases, our relaxed lattice constant for
the rhombohedral phase in GGA slightly overestimates the
experimental value, even though the latter is measured at 20 ◦C,
while our calculated volume is in principle at 0 K. For the Cl
case the calculated lattice constant is slightly underestimated.

The displacement from the 0.5 value is almost the same in
all cases. The rhombohedral angle extracted from the shear η

using cos α = ηmin − 1 to linear order in strain agrees well with
the experimental values. For the Si compounds, all values are
obtained within GGA and no experimental values are available
to compare with.

The full relaxation also requires the anions to move. For
example, the anion which in the cubic case is located at (0.5,
0, 0.5) moves to (0.5 − δ1, − δ2,0.5 + δ1); in other words, it
moves inward toward the displaced Ge as shown in Fig. 5.
The motion of the other anions is similarly determined by
symmetry. The corresponding parameters are given in Table III.
Table IV shows that the B-X bond lengths are shortened upon
relaxation in spite of the overall volume being expanded in the
rhombohedral distortion.

The energy differences �E between the cubic undistorted
structure and the rhombohedral optimized structure each at

their own equilibrium volume are also shown in Table III. They
indicate an increase from Cl to Br to I and much larger values
for the Si than the Ge based compounds.

The band gaps, which must be underestimates because of the
GGA, are also included in Table III and show the expected trend
of decreasing from Cl to Br to I, in other words, decreasing
with decreasing ionicity. They are also smaller in the Si than
the Ge compounds. The gaps in the GW approximation at
the experimental rhombohedral structures for the CsGeX3

compounds were given in Ref. [14] and are 4.304, 2.654,
and 1.619 eV for the Cl, Br, and I cases, respectively. For
the Si-based compounds, they remain to be determined but,

TABLE IV. B-X bond length (in Å) compared between the perfect
cubic structure and the relaxed structure, where B = Ge,Si and X =
Cl,Br,I.

Compound Cubic Relaxed % change

CsGeCl3 2.69 2.49 −7.88%
CsGeBr3 2.81 2.65 −5.93%
CsGeI3 3 2.86 −4.77%
CsSiCl3 2.63 2.31 −13.91%
CsSiBr3 2.75 2.50 −9.80%
CsSiI3 2.94 2.68 −9.62%
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FIG. 5. Unit cell of the relaxed structure of CsSiCl3 with the
colored atoms at the relaxed positions and the gray atoms at the
unrelaxed cubic positions. Green pink and violet spheres represent
Cs, Cl, and Si, respectively.

assuming a similar gap correction, we can already see that both
CsSiI3 and CsSiBr3 may have gaps suitable for photovoltaics.
The trends of the data in Table III are visualized in Fig. 6.

Although the energy barriers increase from Cl to Br to I, they
do not show a clear correlation with the transition temperatures,
which are 277–283 ◦C, 238–242 ◦C, and 155 ◦C respectively
for CsGeI3, CsGeBr3, and CsGeCl3. The problem here is
that our calculations consider a homogeneous transformation,
which is forced to be the same in each unit cell. In the actual
phase transition, there is a competition between the interaction
energies of atoms in neighboring cells and the double-well
anharmonic potential well in each unit cell. The phase transi-
tion could be either displacive or order-disorder type [36]. In
the former case, corresponding to a large interaction energy
between neighboring cells, the positions of the atoms vibrate
about an average near the barrier maximum (corresponding to
the cubic structure) at high temperature and settle into one
or the other minimum below the transition temperature. A
nucleation process occurs where groups of neighboring atoms
settle into one of the two local minima. In contrast in the
order-disorder model, corresponding to a strong double well
potential but weaker intercellular interactions, the atoms are
always in one of the two minima but at high temperature; they
are equally likely to be in the left or right well. From our

FIG. 6. Trends in structural relaxation parameters for the CsGeX3 and CsSiX3 halides corresponding to the data in Table III.
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present calculations, we do not have access to the intercell
energies in such a model and thus we cannot draw conclusions
about the nature of the phase transition. Experimentally, it was
established by Thiele et al. [35] that for CsGeBr3 and CsGeI3

the phase transition is first order, while for the Cl case it is
second order. This would indicate a displacive transition for
the latter case but an order-disorder type for the former.

D. Rotation and rhombohedral distortion under
volume expansion

As we already mentioned, the tendency toward octahedral
rotation in the Sn and Pb halides decreases, that is to say
the rotation angle decreases, with increasing volume for a
given material. We therefore further studied the behavior under
lattice expansion and compression, which one might think of
as occurring by thermal expansion and under high pressure,
respectively. First, we show the energy curves for CsSnI3 as
function of rotation angle for various lattice expansions in
Fig. 7. Even without volume expansion, we see that the curves
show two local minima, one at zero angle and one at about 7◦.
As we increase the volume, the local minimum corresponding
to the finite rotation moves up in relative energy and eventually,
beyond 3% expansion of the lattice constants, it disappears, at
which point the curve becomes very flat. Although they still
show a very shallow finite angle minimum, we may essentially
consider this as a sign that the rotation is no longer preferred.
On the other hand, under compression, the local minimum
appears to shift toward smaller angle and becomes deeper
relative to the unrotated structure.

The optimum angle of rotation is shown as the red curve as
function of lattice expansion in Fig. 8. The increasing values
for lattice expansion actually correspond to a very low energy

FIG. 7. Relative energy as function of rotation angle at various
lattice expansions for CsSnI3 as % expansions in lattice constant. The
energies are considered relative to the un-rotated energy at each lattice
parameter.

FIG. 8. Percentage lattice-constant expansion vs angle of rotation
and distance of Sn from [0.5,0.5,0.5] for CsSnI3. The size and darkness
of the rotation markers (circular ones) represent the size of energy
barrier with respect to the perfect cubic perovskite structure.

barrier, as is indicated by the small sign of the symbols marking
each point and may to first approximation be ignored. Under
compression, the rotation angle clearly is reduced and the
barrier increases, meaning the energy of the rotated minimum
becomes deeper.

Next, we examine the possibility of off centering of the Sn
atom as function of lattice expansion. As we can see in Fig. 8
in the blue dashed curve, the off-centering displacement stays
zero until 1% expansion at which point it starts increasing
linearly. Eventually it collapses again beyond 6% expansion.
Similar results are also obtained for the other halogens and for
the Pb compounds as shown in Fig. 9. In summary, we find
that beyond a given lattice expansion the CsSnX3 and CsPbX3

materials undergo a rhombohedral distortion with off centering
of the Sn (or Pb) rather than the octahedral rotation.

This type of behavior was reported earlier for CsSnBr3 by
Fabini et al. [25] and related to the active lone-pair behavior
of the s electrons which was studied in detail. We thus see

FIG. 9. Displacement of Sn/Pb from the center [0.5,0.5,0.5] for
CsSnI3, CsSnCl3, CsSnBr3, and CsPbI3 as functions of lattice constant
expansion.
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TABLE V. Energy barrier and angle of rigidly rotated RbGeX3

with X = Cl, Br, I. The energy barrier is the barrier between the cubic
structure with 0◦ and local/global minimum at the given angle.

Compound RbGeCl3 RbGeBr3 RbGeI3

Angle (θ ) 4.71 6.93 10.21
Energy barrier (meV) −70.0 13.5 36.4

that there is indeed a competition between the two types of
distortion behavior, rotation or rhombohedral off centering.
The lone pair character promotes the off centering and is
strongest for Ge and Si if the latter are required, as in this
structure, to behave divalent but it also occurs in Sn and to a
smaller degree in Pb. However, in Sn and Pb this mechanism
of distortion is in competition with rotations, while in Ge
and Si it is not. Finally, it should be pointed out that the off
centering in CsSnBr3 was experimentally observed by Fabini
et al. [25] but occurs dynamically. It was observed only through
analysis of the pair distribution functions. In other words, it
does not occur coherently throughout the sample, which means
that a rhombohedral crystallographic phase is not found for
this compound. Instead it is hidden in the cubic phase but
is apparent from the large atomic displacements which are
coherent only on a local scale. This is an important difference
from Ge where the rhombohedral phase is the actual observed
equilibrium crystal structure.

E. Rb instead of Cs

In this section we consider the RbGeX3 compounds com-
pared with the CsGeX3 compounds. From Table I we expect
that because of the smaller size of the Rb ion, these compounds
would be unstable toward octahedral rotation. The results for
rotation in Table V show indeed that octahedral rotation lowers
the energy for a finite rotation angle for I and Br but not for

TABLE VI. Optimized cubic and rhomobohedral structures for
RbGeX3 with X = Cl, Br, I. The �E are the barriers between the cu-
bic structure with δu = 0 and η = 1 and the optimized rhombohedral
structure each at their own equilibrium volume.

Compound RbGeCl3 RbGeBr3 RbGeI3

Cubic a (Å) GGA 5.345 5.57 5.97

Cubic V (Å
3
) 152.70 172.80 212.77

Cubic bond length (Å) 2.67 2.78 2.98

Rhombohedral a (Å
3
) 5.44 5.65 5.99

Rhombohedral V (Å
3
) 161.27 180.44 214.98

Rhombohedral bond length (Å) 2.31 2.46 2.69
�V/V (%) 5.31% 4.23% 1.02%
Change in bond length (%) −13.37% −11.55% −9.84%
δu 0.035 0.038 0.036
δ1 0.001 0.002 0.001
δ2 0.011 0.025 0.014
η 1.026 1.052 1.039
α 88.47 87.00 87.71
�E (meV) GGA 455.8 367.2 304.7
Band gap (eV) GGA 1.72 1.05 0.43

FIG. 10. Total valence charge density for the relaxed distorted
RbGeCl3 shown as a superposition of eight isosurfaces with values
ranging frm 0.058 to 0.071e/a3

0 . Each isosorface is shown as a mesh
of different color. One can clearly distinguish the Ge-s like lobe in
the direction opposite to the displacement. The pink sphere is Rb, the
blue one Ge, and the green ones Cl.

Cl. In the latter case, there is still a local minimum at a finite
angle but its energy is actually higher than at the zero angle
rotation. The energy lowering is comparable and even larger
than for the corresponding CsSnX3 compounds and the angle
of rotation is larger for I than for Br.

On the other hand, from the previous sections, it is also
clear that, from the point of view of lone-pair physics, Ge is
prone to off centering. Therefore, we also study the possibility
of lowering the energy by the rhombohedral distortion. The
results are shown in Table VI. This shows that the off cen-

0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

E
le
ct
ro
n
de
ns
ity
(e
a 0
-3
)

Distance along [1,1,1] (a)

0.5

FIG. 11. Plot of the valence charge density along the [111] body
diagonal. One can see the asymmetry of the charge density near the
Ge position, at a position larger than 0.5, again reflecting the lone-pair
character.
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tering and related rhombohedral distortion lowers the energy
significantly more efficiently than the octahedral rotation. For
RbGeCl3 the rotation actually does not lower the energy, while
the distortion does. For RbGeBr3 and RbGeI3, the energy
lowering by the off centering is significantly larger than by
rotation of the octahedra. Thus comparing to the Cs case, this
indicates that the off centering of Ge is not so much determined
by the tolerance factor but rather by the lone-pair physics. The
relaxation parameters, barriers, and energy gaps in GGA for
these compounds are given in Table VI in the same way as for
the other compounds.

Finally, we illustrate the lone-pair character in this case by
plotting the charge density for this in Figs. 10 and 11. The first
one shows a 3D view of isosurfaces; the second one shows the
valence charge density along the body diagonal.

V. CONCLUSIONS

In this paper we have explored the stability of inorganic
halide perovskites ABX3 with X a halogen (Cl, Br, I), A a large
alkali-metal ion (Cs or Rb), and B a group IV element (Si, Ge,
Sn, Pb), under two types of distortion: an antiferroelectric dis-
tortion corresponding to octahedral rotation and a ferroelectric
off centering of the central IV ion inside its halogen octahedron.
At first, we find that there is a clear trend that the Pb and
Sn cases prefer rotation, while Ge and Si prefer ferroelectric
distortion. We also find that the rotation, when fully optimizing

the structures, is accompanied by a reduction of the volume.
The off centering is accompanied by rhombohedral distortion
and volume increase. The tendency toward rotation is clearly
related to the Goldschmidt tolerance factor. On the other hand,
we find that, upon volume expansion, the rotation angle de-
creases and beyond a certain expansion off centering becomes
favorable even for Sn and Pb based compounds. The origin of
the off centering is thus more related to the lone-pair physics.
The Ge and Si based compounds, in which Ge and/or Si are
forced to behave as a divalent ion, strongly favor lone-pair
induced off centering or ferroelectric distortion. In the Rb
case, both distortion modes tend to lower the energy (except
for the Cl case) but the ferroelectric distortion nonetheless
lowers the energy significantly more efficiently. Thus the lone-
pair physics dominates the RbGeX3 based compounds rather
than the tolerance factor related rotation. The two distortion
mechanisms can thus be in competition with each other and
the off centering for the Si and Ge cases occurs even if the
tolerance factor would allow for rotations as a mechanism to
lower the energy.
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