
PHYSICAL REVIEW MATERIALS 2, 056002 (2018)

Localization of vibrational modes leads to reduced thermal conductivity of
amorphous heterostructures

Ashutosh Giri,1,* Brian F. Donovan,2 and Patrick E. Hopkins1,3,4,†
1Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA

2Department of Physics, United States Naval Academy, Annapolis, Maryland 21042, USA
3Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA

4Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

(Received 12 February 2018; revised manuscript received 24 April 2018; published 24 May 2018)

We investigate the vibrational heat transfer mechanisms in amorphous Stillinger-Weber silicon and germanium-
based alloys and heterostructures via equilibrium and nonequilibrium molecular dynamics simulations along
with lattice dynamics calculations. We find that similar to crystalline alloys, amorphous alloys demonstrate large
size effects in thermal conductivity, while layering the constituent materials into superlattice structures leads to
length-independent thermal conductivities. The thermal conductivity of an amorphous SixGe1−x alloy reduces by
as much as ∼53% compared to the thermal conductivity of amorphous silicon; compared to the larger reduction in
crystalline phases due to alloying, we show that compositional disorder rather than structural disorder has a larger
impact on the thermal conductivity reduction. Our thermal conductivity predictions for a-Si/a-Ge superlattices
suggest that the alloy limit in amorphous SiGe-based structures can be surpassed with interface densities above
∼0.35 nm−1. We attribute the larger reduction in thermal conductivity of layered Si/Ge heterostructures to greater
localization of modes at and around the cutoff frequency of the softer layer as demonstrated via lattice dynamics
calculations and diffusivities of individual eigenmodes calculated according to the Allen-Feldman theory [P. B.
Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993)] for our amorphous SiGe-based alloys and superlattice
structures.

DOI: 10.1103/PhysRevMaterials.2.056002

I. INTRODUCTION

Usually in homogeneous crystalline solids, thermal trans-
port is adequately described by the phonon gas model in which
heat propagates through the collective oscillation of atoms
as plane waves with well-defined phase and group veloci-
ties [1–4]. The seminal work of Allen and Feldman challenged
this notion and the general applicability of the phonon gas
model in describing thermal transport across systems that
lack periodicity, i.e., for disordered and amorphous materi-
als [5,6]. The discrepancy between the conceptual description
governing the phonon gas model and the harmonic coupling
of delocalized and nonpropagating modes in amorphous solids
prompted them to introduce a new taxonomy for describing
vibrational modes. These are classified as propagons that
are delocalized (and propagating), diffusons that are delo-
calized (and nonpropagating), and locons that are localized
(and nonpropagating) [5–8]. In their theoretical description
(denoted by AF theory herein), diffusons mediate heat through
harmonic coupling while locons do not contribute to the
thermal conductivity directly in the harmonic approximation.

The contributions from these various modes to the ther-
mal conductivity were further demonstrated by Larkin and
McGaughey through normal-mode decomposition analysis
and Green-Kubo (GK) simulations, showing that propagons
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in amorphous silicon contribute substantially to the overall
thermal conductivity even though these modes make up a
small percentage of the vibrational density of states (DOS) [9].
Recently, we have also shown experimentally that size effects
are prominent for amorphous Si thin films thicker than ∼100
nm, suggesting that propagating modes with plane wave char-
acteristics can substantially increase the thermal conductivity
of these material systems [10]. In this context, nanostructures
such as nanowires and superlattices (SLs) with characteristic
dimensions smaller than the mean-free paths of these prop-
agating modes have been shown to significantly lower the
observed thermal conductivities of amorphous silicon-based
materials [11,12].

For interfaces between dissimilar crystalline solids, it is well
known that phonons readily scatter at these boundaries and
impose a thermal resistance, which is generally determined
from the differences in densities, structures, and stiffnesses
of the constituent solids [13,14]. Therefore, crystalline SLs
with high interface densities can exhibit thermal conductivities
lower than those of their constituent components through inco-
herent scattering of phonons in either material with mean-free
paths smaller than the thicknesses of the constituent materials
[15–24]. This approach to thermal conductivity reduction can
lead to the design of crystalline SLs with thermal conductivities
below their corresponding alloy limit [22,24,25]. In this regard,
while SL structures specifically target the scattering of lower-
frequency phonons, higher-frequency vibrations are scattered
due to impurities in alloys, which leads to large size effects
in their observed thermal conductivities due to pronounced
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contribution of low-frequency phonons that dictate heat trans-
port [26,27]. On the other hand, for amorphous materials where
diffusons can largely dictate the thermal conductivity [28–31],
it is still unclear what roles interfaces or impurity disorder
have on the overall thermal transport. Moreover, if locons do
not contribute to thermal conductivity in a harmonic solid, can
these vibrational modes be manipulated in order to lower the
overall thermal conductivity of amorphous materials?

So far, crystalline alloys and SLs have been studied exten-
sively; however, a systematic study investigating the under-
lying mechanisms responsible for dictating thermal transport
in amorphous alloys and superlattices is still lacking and
could potentially answer some of the questions posed above.
Therefore, in the present work, we study the mechanisms
affecting thermal transport in Si- and Ge-based amorphous
superlattices and the random alloy counterparts of the con-
stituent materials. For this purpose, we use a combination
of lattice dynamics calculations, nonequilibrium molecular
dynamics simulations (NEMD), and the Green-Kubo (GK)
formalism under the equilibrium MD simulations framework
to understand the heat transport mechanisms in amorphous
alloys and superlattices. Note that in our simulations described
in this work, we use the Stillinger-Weber potential to describe
the silicon and germanium interatomic forces [32,33], as
described in Sec. II. Thus, it is important to note that the Si-
and Ge-based structures simulated in this work are “Stillinger-
Weber” silicon-germanium. For the sake of brevity, we omit
the “Stillinger-Weber” descriptor when referring to the various
materials that we investigate in this work.

We find that similar to crystalline alloys, amorphous alloys
demonstrate large size effects in thermal conductivity, while
layering the constituent materials in SL structures leads to
size-independent thermal conductivities. In comparison to
crystalline Si0.5Ge0.5 alloys with ∼95% reduction in thermal
conductivity (with respect to the thermal conductivity of crys-
talline Si, as reported in Ref. [27] via first-principles calcu-
lations), a-Si0.5Ge0.5 alloys demonstrate a ∼53% reduction
in thermal conductivity compared to that of a-Si. However
our thermal conductivity predictions for a-Si/a-Ge SLs suggest
that this alloy limit can be surpassed with interface densities
above ∼0.35 nm−1. By calculating the inverse participation
ratios (IPRs) and diffusivities according to the AF theory for
individual eigenmodes in the alloys and SLs, we attribute
the larger reduction in thermal conductivity of SL structures
to greater localization of modes at and around the cutoff
frequency of the softer layer in comparison to the disordered
alloy counterparts. We utilize this approach to reducing the
thermal conductivity in layered materials by constructing
amorphous SLs that demonstrate large reductions in diffusivi-
ties for certain eigenmodes in the spectrum as described in the
Appendix. Doing so leads to higher anisotropies in thermal
conductivity of silicon-based amorphous SL structures.

II. METHODOLOGY

Our amorphous structures were created using the melt-
quench technique [35], and the subsequent MD simulations
were performed via the LAMMPS package with a 0.5 fs time
step throughout all simulations [36]. Starting with a diamond
cubic lattice, we heat the domains at a temperature of 8000 K

until the atoms lose memory of their initial positions. Rapid
quenching is then applied to cool the systems at a constant
volume followed by annealing the systems at 1100 K for a
total of 10 ns to remove metastabilities as evidenced from
the plateau of the potential energy for systems during this
process [9,37]. The systems were then equilibrated at 500 K
for a total of 1 ns under the isothermal-isobaric ensemble
with the number of particles, pressure, and temperature of
the system held constant at 0 bar pressure. Throughout the
equilibration process, periodic boundary conditions were ap-
plied in all three principal directions and atomic densities
and atomic coordinations were monitored to ensure no voids
were formed. Our SL structures were initially prepared from
a single species with the melt-quench technique described
above. Depending on the position in the computational cell, the
atoms are then varied in order to create layered SL structures.
Examples of the computational domains for our a-Si0.5Ge0.5

alloy and a-Si/a-Ge SL are shown in Fig. 1(a). To determine the
thermal conductivities, NEMD and/or GK frameworks were
implemented on the equilibrated structures. The main purpose
for using NEMD simulations is to highlight size effects or
the lack thereof in thermal conductivity predictions for the
different systems studied in this work. The GK approach is used
as a check to ensure convergent results for our NEMD predic-
tions, and also due to the fact that in comparison to NEMD
simulations, GK simulations require smaller domain sizes
for accurate predictions of thermal conductivities [38], which
can substantially lower the computational costs. Furthermore,
GK simulations also provide the capability of simultaneously
calculating the thermal conductivities in the in-plane and
cross-plane directions, which will be useful in predicting the
anisotropy in thermal conductivity for our SL structures.

For the NEMD simulations, a steady-state temperature
gradient was established by creating a fixed wall at either
side of the domain (in the z direction) and adding a fixed
amount of energy per time step to a heat bath at one end of
the computational domain, while removing an equal amount
of heat from a cold bath at the other end of the domain.
Depending on the length of the domain, energy is added and
removed at a specified rate (for example, energy is added and
removed at a rate of 0.25 eV ps−1 for the shortest domain
length of 16 nm) under the microcanonical ensemble where
the number of atoms (N), volume (V), and energy (E) of the
system are held constant. For all NEMD simulations, the cross
sections of the computational domains are set to 10a0 × 10a0

with a0 specified by the silicon lattice constant of 5.43 Å.
The temperature profile along the z direction is obtained by
averaging the temperature of the atoms along equally spaced
bins in the applied heat flux direction for a total of 10 ns.
As the systems take time to reach steady state, the initial
3 ns of data are ignored to create time-averaged steady-state
temperature profiles from which the thermal conductivity for
our structures is calculated via Fourier’s law. As domain
lengths can have a significant influence on the predicted
thermal conductivity [38], we calculate thermal conductivities
for different domain lengths to accurately predict the thermal
conductivity for a bulk system. For this purpose, the inverse of
thermal conductivity, 1/κ , vs the inverse of the computational
domain length, 1/d, which shows a linear trend, is extrapolated
to 1/d = 0 [39]. This approach has been used to predict
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FIG. 1. (a) Schematics of the 55 × 55 × 160 Å
3

computational domains for an a-Si0.5Ge0.5 structure (top panel) and an a-Si/a-Ge superlattice
with an interface density of 0.64 nm−1 (bottom panel). (b) NEMD-predicted inverse of size-dependent thermal conductivities vs inverse of the
computational domain length in the applied heat flux direction for a-Si (hollow blue squares), a-Ge (hollow red squares), and a-Si0.5Ge0.5 (solid
green squares). The linear dependence of the MD results suggests that pronounced size effects are observed in the apparent thermal conductivities.
The extrapolation of the linear fits to 1/d → 0 predicts the thermal conductivity of an infinite system, assuming that the minimum system size
used in these NEMD simulations is comparable to or larger than the largest mean-free paths of the delocalized modes that dominate the thermal
transport in these amorphous systems [34]. (c) Heat current autocorrelation function (HCACF) vs time for a-Si, which shows that the HCACF
decays to zero within a picosecond. (d) Converged value of the thermal conductivity obtained from the integral of the HCACF for a-Si0.5Ge0.5

and a-Si at 300 K.

convergent values of thermal conductivities of infinite systems
for different materials [38–42]. Figure 1(b) shows examples
of this approach to calculate the thermal conductivity of a-Si,
a-Ge, and a-Si0.5Ge0.5, which agree very well with predictions
from our GK approach (as explained in detail below), as well
as with previously reported values for a-Si and a-Ge. This
suggests that the extrapolation method used in our NEMD
simulations is valid for our SW-based systems as the minimum
system size used is comparable to or larger than the largest
mean-free paths of the delocalized modes that dominate ther-
mal transport in these amorphous systems [34].

The GK method under the equilibrium MD simulation
framework has been utilized to predict the thermal conductivity
of crystalline and amorphous systems alike [43–46]. In this
method, the thermal conductivity in the αth direction (either
in-plane or out-of-plane) is given by

κα = 1

kBV T 2

∫ ∞

0
〈Sα(t)Sα(0)〉dt, (1)

where t is the time, T and V are the temperature and volume of
the system under consideration, respectively, and 〈Sα(t)Sα(0)〉
is the αth component of the heat current autocorrelation func-
tion (HCACF). All the GK thermal conductivity predictions
are carried out under the NVE ensemble for a total of 10 ns.
The heat current is calculated every 10 time steps during
the data collection period and the integration is carried out
until the HCACF completely decays to zero. An example of
the calculated HCACF as a function of time for a-Si0.5Ge0.5

is shown in Fig. 1(c) where the HCACF decays to zero by
the first picosecond. The corresponding thermal conductivity
calculation from the integral of the HCACF is shown in
Fig. 1(d), where the data are averaged from 2 to 5 picoseconds
to accurately predict the thermal conductivity of the various

systems. For comparison, we also include the thermal con-
ductivity calculated for a-Si from the corresponding integral
of the HCACF. As domain sizes can alter the calculated
thermal conductivities even under equilibrium MD simulations
if all the available vibrational modes are not included in the
simulation cell [9], we check for computational domain size
effects by conducting GK simulations on domain sizes of

55 × 55 × 55 Å
3

and 92 × 92 × 92 Å
3
. The GK predictions

for these two domain sizes with 8000 and 39 304 atoms produce
statistically invariant thermal conductivities of 1.51 ± 0.13 W
m−1 K−1 and 1.55 ± 0.16 W m−1 K−1, respectively. To assess
statistical uncertainties for our MD-predicted thermal conduc-
tivities, we perform 3 to 5 different simulations with vary-
ing initial conditions for our NEMD and EMD simulations,
respectively.

III. RESULTS AND DISCUSSION

A. Thermal conductivity of amorphous SiGe alloys
and superlattices

Figure 2(a) shows the thermal conductivities of a-Si, a-Ge,
and the a-SixGe1−x alloys (red squares) as a function of
alloy concentration calculated via the NEMD approach, which
extrapolates to an infinite domain size from results for compu-
tational domain lengths ranging from 9 to 45 nm. As stated
earlier, smaller domain lengths in general can significantly
reduce the observed thermal conductivity since modes with
long mean-free paths can scatter at the domain boundaries and
heat baths. The linear dependence of 1/κ vs 1/d as shown in
Fig. 1(b) suggests that propagating modes contribute consid-
erably to the thermal conductivities of a-Si, a-Ge, and their
alloys. This is in line with the recent results from He et al. [42]
and Larkin et al. [47] where they have shown that a significant
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FIG. 2. (a) Thermal conductivity as a function of alloy concentration for a-SixGe1−x . The solid squares represent simulations with differences
in the MD potential for Si-Si, Si-Ge, and Ge-Ge bonds, whereas the hollow squares represent simulations with only mass mismatch between
silicon and germanium atoms in the alloys. The agreement between the two sets of data suggests that mass disorder controls thermal conductivity
in amorphous SiGe alloys. (b) Vibrational density of states for a-Si, a-Ge, and a-Si0.5Ge0.5. (c) NEMD-predicted thermal conductivities of
amorphous Si/Ge superlattices plotted as a function of interface densities. Hollow square symbols are data from simulations with domain size
of 16 nm, solid square symbols are data with a domain size of 32 nm, and solid circle symbol is the data for a domain size of 46 nm. The
agreement between the data for all three domain sizes suggests that size effects and, therefore, propagating modes in the amorphous superlattice
Si/Ge structures do not significantly affect the thermal conductivity, which is in contrast to the results for the homogeneous a-Si, a-Ge, and
a-SixGe1−x structures. A thermal circuit model predicts a very high conductance (low resistance, RK ) across an individual a-Si/a-Ge interface,
shown by the red solid line. For comparison, the thermal conductivity of our a-Si0.5Ge0.5 is shown by the dash-dotted line.

portion of the thermal conductivity in a-Si is due to vibrations
that are propagating and delocalized modes (propagons). The
NEMD-predicted thermal conductivities for our a-Si and a-Ge
are 1.50 ± 0.13 and 0.94 ± 0.08 W m−1 K−1, respectively,
which are consistent with previous results [48,49]. The effect of
alloying is seen to reduce the thermal conductivities by as much
as ∼53% relative to the thermal conductivity of a-Si [Fig. 2(a)].
It is also interesting to note that the decrease in thermal
conductivity to the minimum value achievable in this binary
system occurs at ∼25% germanium concentration, while in
crystalline SixGe1−x alloys, the drop in thermal conductivity
is much more drastic with the minimum realized at almost
∼12% Ge concentration [50]; similar results are obtained
for crystalline SiGe alloys from density functional theory
calculations [27]. Furthermore, crystalline Si0.5Ge0.5 alloys
show a more pronounced reduction in thermal conductivity
(∼95% reduction compared to the thermal conductivity of
crystalline Si), suggesting that compositional disorder has a
larger impact on thermal conductivity reduction relative to
structural disorder. It is also interesting to note that the mini-
mum in thermal conductivity of the alloy is ∼18% lower than of
a-Ge, while for crystalline systems, the minimum in thermal
conductivity of the alloy can be as low as ∼92% compared
to the thermal conductivity of crystalline Ge [50]. Moreover,
in crystalline systems the minimum thermal conductivity is
much lower than that of the parent materials; however, for the
amorphous systems, the minimum is much closer to the a-Ge
system.

In terms of the vibrational properties, the crystalline and
amorphous phases of both silicon and germanium show similar
bandwidths in their respective DOSs [11]. Figure 2(b) shows
the vibrational DOS calculated from the Fourier transform of
the velocity autocorrelation function (details of the calculation
procedure are given in Refs. [51,52]) for a-Si, a-Ge, and a-
Si0.5Ge0.5 domains. Similarly to crystalline alloys, the DOSs
of the high-frequency vibrations are severely reduced while

the DOSs for the low-frequency vibrations are increased in
a-Si0.5Ge0.5 relative to that of a-Si.

For crystalline SiGe alloys, density functional theory cal-
culations in Ref. [27] have shown that ∼87% of the heat
is conducted by phonons below 2 THz. This enhanced low-
frequency contribution has been attributed to the fact that
higher-frequency vibrations are scattered due to lattice im-
perfections more so than low-frequency vibrations as the
scattering rate is given by τ−1

imp = Aω4 with A = δ3�/(4πv3),
where δ3 is the atomic volume, v is the velocity, and � is the
scattering cross section [53].

For alloys, the overall strength of scattering is determined
by the mismatch in the host and the impurity atom’s masses,
the stiffness ratio between the host and the impurity atoms, and
the impurity atom concentration. To investigate the influence
of mass scattering on the thermal conductivity of a-SixGe1−x

alloys, we perform simulations on computational domains with
silicon and germanium atoms described by the same interaction
parameters for silicon alone and differentiated by only their
mass mismatch. The thermal conductivity predictions for these
systems are shown in Fig. 2(a) (hollow squares) along with
those of a-SixGe1−x alloys described by both mass mismatch
and differences in Si-Si, Si-Ge, and Ge-Ge bonds. As is evident
in the plot, the thermal conductivities of the mass-mismatched
and the mass and bond mismatched systems demonstrate
similar thermal conductivities and follow the same alloy-
concentration trend. This suggests that the thermal conductivi-
ties of the alloys are mainly driven by mass-impurity scattering
as opposed to any significant role from the bond disorder; this
result might not be that surprising considering the fact that
the radial distribution functions for silicon and germanium are
almost identical [54]. Similar conclusions have been drawn
experimentally for crystalline SiGe alloys [55,56] where the
authors show good agreement between their thermal conduc-
tivity measurements via time-domain thermoreflectance and a
theoretical model based on Klemen’s perturbation theory [53],
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which only considers reduction in thermal conductivity due
to impurity-mass scattering. However, we note that for binary
alloys with a relatively small mass ratio such as in PbTe and
PbSe, the bond disorder has been shown to be relatively more
important in comparison to the mass disorder while consider-
ing the strength of disorder-scattering in those alloys [57].

To investigate whether the disordered alloy marks the mini-
mum achievable thermal conductivity in SiGe heterostructures,
we run additional simulations on a-Si/a-Ge SL structures.
Figure 2(c) shows the NEMD-predicted thermal conductivities
for our a-Si/a-Ge SLs. In contrast to the a-Si, a-Ge, and a-
SixGe1−x alloys, the SLs do not show a statistically significant
change in the predicted thermal conductivities for the different
domain sizes as shown in Fig. 2(c). This can be attributed to
the fact that the period thicknesses in the SLs are in the regime
where propagons do not contribute significantly to heat con-
duction and the dominant heat carriers are diffusons; similar
conclusions have been drawn for Stillinger-Weber based SLs
of a-Si and mass-heavy Si in our previous work [11]. The
monotonic decrease in thermal conductivity with increasing
interface density suggests that with high interface densities, the
thermal conductivity of these materials can be lowered below
the theoretical minimum limit, which is generally attributed
to the amorphous phases of materials where the “mean-free
paths” of vibrations are limited to half the period spacing
between the atoms [29]. In comparison to the thermal conduc-
tivity of the a-Si0.5Ge0.5 alloy [κSi0.5Ge0.5 = 0.77 W m−1 K−1,
as shown by the dash-dotted line in Fig. 2(c)], the thermal
conductivity of the SL structure can be lowered by as much as
∼30% for an interface density of ∼1.28 nm−1.

Assuming that the NEMD-predicted thermal conductivities
in each layer of the a-Si or a-Ge in the SLs are invariant with
decreasing period thicknesses, we determine a resistance of
RK = 0.72 m2 K GW−1 for a single a-Si/a-Ge interface. Re-
cently, Gordiz and Henry have reported a resistance of 0.94 m2

K GW−1 for an a-Si/a-Ge interface; however, this resistance
also includes contributions from the scattering of propagating
modes. They show that propagons contribute 54.7% of the
total conductance across a-Si/a-Ge interfaces [58], whereas
the resistance that we report is strictly due to delocalized and
nonpropagating modes since our period thicknesses are much
smaller than the wavelengths associated with propagating
modes. As such, the resistance that we report is not the intrinsic
resistance associated with an a-Si/a-Ge interface. We further
note that the resistance reported in this work is assuming
that the thermal conductivities of the layers do not vary with
increasing interface densities; however, as we show in the
following discussion, this approximation does not hold for SLs
with small period thicknesses since the vibrational eigenmodes
of the layers are severely affected by the inclusion of a-Si/a-Ge
interfaces.

B. Diffusivities and participation ratios of
individual eigenmodes

To investigate the effect of introducing Ge atoms and layers
on the individual eigenmodes in a-SiGe alloys and a-Si/a-Ge
SLs, respectively, we calculate the inverse participation ratio
(IPR). To this effect, we perform lattice dynamics calculations
to determine the eigenvectors of the vibrational modes. These
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calculations are carried out with the General Utility Lattice
Program (GULP) [59]. From the eigenvectors, we calculate
the inverse participation ratio, which is defined as [6]

1

pn

=
∑

i

[∑
α

εiα,nε
∗
iα,n

]2

, (2)

where εiα,n is the eigenvector component in the αth direction
for mode n. If the vibrational mode is distributed equally over
all the atoms, then the 1

pn
value would be 1/N , whereas if

the mode is localized on a single atom, the value would be 1.
Therefore, 1

pn
measures the number of atoms vibrating with

significant amplitude of the nth mode [6]. In other words, for
delocalized modes 1

pn
tends to zero while for localized modes

1
pn

has a nonzero value.
Figures 3 shows the IPR calculated for a-Si (a), a-Si/a-Ge SL

with a period thickness of 2.7 nm (b), and a-Si0.5Ge0.5 (c) struc-
tures. As mentioned above, delocalized modes have smaller
IPR since they involve many atoms that vibrate collectively.
However, locons are localized and involve very few atoms,
and therefore exhibit larger IPR values. Consistent with prior
works [6,49], the localized nature of vibrational eigenmodes
in a-Si is observed for frequencies >16 THz [Fig. 3(a)].
For the SL structures, pronounced localized modes appear
in the mid-frequency region between 10–13 THz as shown
by the arrow in Fig. 3(b), which marks the cutoff frequency
for the softer germanium layers [11], whereas in the case of
a-Si0.5Ge0.5 [Fig. 3(c)], these modes show comparatively lower
IPR values, while higher IPR values are observed for localized
modes towards the latter end of the spectrum. This suggests
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FIG. 4. Mode diffusivities calculations from the Allen and Feldman theory for (a) a-Si and a-Si/a-Ge structure, (b) a-Si and a-Si0.5Ge0.5,
and (c) Lennard-Jones (LJ) argon, LJ-based superlattices with mass mismatch. In comparison to the diffusivities for a-Si and a-Si0.5Ge0.5, the
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layer. However, this pronounced decrease is not observed in a-LJ-based superlattice structures. Insets: Density of states predicted via lattice
dynamics calculations for (a) a-Si and a-Si/a-Ge structure, (b) a-Si0.5Ge0.5 along with the density of states for pure amorphous silicon, and
(c) a-LJ Ar/mass-heavy a-LJ Ar along with density of states for pure a-LJ argon.

that the reduction in thermal conductivity observed for SL
structures in Fig. 2(c) derives from the localized nature of
vibrations in the 10–13 THz, while the reduction in thermal
conductivity for the disordered alloys is mainly due to lower
contributions to thermal conductivity from modes beyond the
cutoff frequency of the softer solid in the binary alloy.

To show this more quantitatively, we calculate the thermal
conductivity contributions based on the diffusivities of the
eigenmodes in a-Si, a-Si/a-Ge, and a-Si0.5Ge0.5 structures.
In this regard, to calculate the lower limit to the thermal
conductivity contribution from each mode, we utilize the AF
theory, which computes the contribution from diffusive and
nonpropagating modes as [5,47]

κAF =
∑

diffusons

= kB

V
DAF,n(ωn), (3)

where ωn is the frequency of the nth diffuson and DAF,n under
the harmonic approximation is calculated as

DAF,n(ωn) = πV 2

h̄2ω2
n

∑
m�=n

|Snm|2δ(ωn − ωm), (4)

where |Snm| is the heat current operator for the harmonic
modes. The Lorentzian broadening of the delta function must
be several times greater than the average mode spacing, δavg.
For our calculations, we set the broadening to 5δavg to satisfy
this criteria; note, perturbing the Lorentzian broadening has
negligible influence on the AF-predicted thermal conductivi-
ties (for example, changing the broadening by 20% changes the
AF-predicted thermal conductivity for a-Si by ∼0.5%). Note
that metastabilities in our relaxed structure result in imaginary
frequencies, which have been neglected in our calculations
and therefore do not affect the modal diffusivities. For a-Si,
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FIG. 5. Spatial components of the two-dimensional eigenvectors for 13.32 THz frequency modes in (a) a-Si, (b) a-Si/a-Ge, and (c) a-Si0.5Ge0.5

calculated via lattice dynamics calculations. The blue and red circles represent silicon and germanium atoms, respectively. In contrast to the
spatial distribution of these modes throughout the a-Si and a-Si0.5Ge0.5 structures, these modes predominantly reside in the a-Si layer for the
a-Si/a-Ge structure.
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lattice dynamics calculations for (a) a-Ge and a-Si/a-Ge structure, and
(b) a-Si0.5Ge0.5 along with the density of states for pure amorphous
germanium.

annealing for 10 ns at 1000 K results in 0.7% of the vibrational
frequency that are imaginary, whereas an unannealed compu-
tational domain results in 1.5% of the vibrational frequency
that are imaginary.

Figure 4 shows the spectral diffusivities for a-Si [Figs. 4(a)
and 4(b); red squares], a-Si0.5Ge0.5 [Fig. 4(a); blue squares],
and the a-Si/a-Ge SL [Fig. 4(b); blue squares]. While the
diffusivity of modes <7 THz are similar for a-Si and the a-
Si/a-Ge SLs, there is a large reduction in the diffusivity of ∼10
THz vibrations in the a-Si/a-Ge SL, which supports the findings
from the IPR calculations. However, the diffusivities of modes
<7 THz are similar for the two cases. This is in contrast to the
results for a-Si0.5Ge0.5 as shown in Fig. 4(b) where the whole
spectrum of frequencies in a-Si0.5Ge0.5 has lower diffusivities
as compared to that in a-Si. The lower diffusivity around ∼10
THz in the SL structure compared to the alloy suggests that
localization of these modes can result in comparatively lower
thermal conductivities of the SL structures [see Fig. 2(a) and
Fig. 2(c)]. Similar results have been shown for structures of
amorphous SiGe nanocomposites with Ge clusters imbedded
in a Si host matrix [48]. In the insets of Figs. 4(a) and 4(b),
we show the DOS from the lattice dynamics calculations for
a-Si/a-Ge and a-Si0.5Ge0.5 structures, respectively. As is clear,
the DOS peak at the cutoff frequency of a-Ge is pronounced
for the case of the layered structure, whereas most of the
high-frequency modes in a-Si0.5Ge0.5 show reduced DOS due
to alloy scattering. For comparison, we also calculate the
diffusivities for our homogeneous a-Ge structure, which are
shown in Fig. 6. The dip in diffusivities at ∼10 THz for the
a-Si/a-Ge SL matches with the dip in diffusivities for the a-Ge
structure (that is at and around the frequency cutoff for a-Ge).
Also, the calculated diffusivities of modes for the a-Si0.5Ge0.5

structure is more similar to the modal diffusivities in a-Ge
than in a-Si, which might explain the minimum in thermal
conductivity of the alloy structures being comparatively closer
to the thermal conductivity of a-Ge as shown in Fig. 2(a).
Note that the DOSs calculated by taking the Fourier transform
of the velocities in our MD simulations matches very well
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FIG. 7. Radial distribution functions (RDFs) for the crys-
talline and amorphous phases of (a) the Lennard-Jones argon and
(b) Stillinger-Weber silicon systems. In contrast to that of the argon
system, the second peak in the RDFs for silicon coincides for the
amorphous and crystalline phases.

with the DOS from our lattice dynamics calculations, further
solidifying our treatment of lattice dynamics to explain our
MD results.

The results in Figs. 4(a) and 4(b) give rise to the question
of whether the enhanced localization of modes in the SL
structures at and around the cutoff frequency of the softer
layer is applicable to any generic amorphous multilayers. To
answer this question, we calculate the thermal diffusivities for
Lennard-Jones (LJ) based amorphous multilayers (with LJ-
Ar/heavy LJ-Ar structures). Figure 4(c) shows the diffusivity
for amorphous LJ-Ar (red square) and multilayers of a-LJ-Ar
and mass-heavy LJ-Ar. As expected, increasing the mass of the
alternating layer from 2mAr to 3mAr, the spectral diffusivities
decrease. However, pronounced decrease in diffusivities at the
cutoff frequency of the softer solid is not observed for these
structures. This finding suggests that the mode localization for
the a-Si/a-Ge SLs cannot be generalized for other amorphous
multilayers. One reason for this phenomenon could potentially
be due to the intrinsic differences in the DOSs for those of
the silicon-based multilayers and that for the generic LJ-based
multilayers. The inset of Fig. 4(c) shows the DOSs from
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FIG. 8. Spatial components of the two-dimensional eigenvectors
for 19.9 THz and 20.0 THz frequency modes in a-Si calculated via
lattice dynamics calculations. The lack of spatial overlap between the
eigenvectors of the modes suggests that these are locons.

056002-7



GIRI, DONOVAN, AND HOPKINS PHYSICAL REVIEW MATERIALS 2, 056002 (2018)

0 5 10 15 20 25

0

5

10

15

20

25

z
(Å
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FIG. 9. Spatial components of the two-dimensional eigenvectors for a-Si/a-Ge structure in the 12–21 THz frequency range calculated via
lattice dynamics calculations. The blue and red circles represent silicon and germanium atoms, respectively. These frequencies are above the
cutoff frequency of the softer solid (germanium) and are therefore mostly confined to the a-Si layers.

the lattice dynamics calculations for amorphous LJ-Ar/heavy
LJ-Ar structure where the heavier solid has three times the mass
of LJ-Ar. The most apparent observation is that, contrary to the
silicon-based structures, these LJ-based structures do not show
a pronounced peak at the cutoff frequency of the softer solid
(∼1.5 THz). Similar findings have been shown in Ref. [60]
where large interfacial DOSs appear at the cutoff frequency
of the softer side in silicon-based materials, whereas this large
increase is not observed for the generic LJ-based interfaces.
Another potential reason for the lack of pronounced mode
localization at the cutoff frequency for LJ-based SLs might be
due to the differences in their internal structure as compared to
that of the silicon-based structures. The two structures possess
varying radial distribution functions [9,46] (RDFs) signifying
differing local environments (as shown in Fig. 7); while a-Si

and a-Ge structures show a fourfold coordination on average,
the intrinsic structure for LJ-based solids is composed of 12
nearest neighbors (as in their crystalline phase). Moreover,
comparing the RDFs between the respective amorphous and
crystalline phases of the two structures, the second peak in the
RDF coincides for the SW-based solid, whereas the second
peak for the amorphous phase in LJ-argon is further away as
compared to that in the crystalline phase.

According to the AF theory, the diffusivity of the delocal-
ized modes depends on the spatial overlap (i.e., how much
the eigenvectors overlap) as well as the energetic overlap (i.e.,
how close the frequencies are to each other). For example, the
eigenvectors of the two closest frequency modes in the a-Si
are shown in Fig. 8; we only plot the two-dimensional (x and
z components) of the eigenvectors for clarity. As is clear, the
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FIG. 10. Spatial components of the two-dimensional eigenvectors for (a) 0.84 THz and (b) 1.51 THz low-frequency modes in a-Si, a-Si/a-Ge,
and a-Si0.5Ge0.5 structures. The blue and red circles represent silicon and germanium atoms, respectively. These low-frequency modes show
preferred direction and similar magnitudes in their eigenvectors for a-Si and a-Si0.5Ge0.5 structures. However, layering in the a-Si/a-Ge structure
disrupts this behavior.

spatial separation and localization of each of the two closest
modes suggests that they are locons. Therefore, the lack of
spatial overlap, even though these modes have very similar
frequencies, prevents them from coupling with each other
according to the AF theory. In this regard, the eigenvectors
of the modes at and around the cutoff frequency of germanium
predominantly reside in the silicon layers in the a-Si/a-Ge
SLs. To demonstrate this, we plot the eigenvectors for 13.32
THz in a-Si, a-Si/a-Ge, and a-Si0.5Ge0.5 in Figs. 5(a), 5(b)
and 5(c), respectively. The silicon atoms are represented by
blue circles and the germanium atoms are represented by
red circles. In the case of a-Si and a-Si0.5Ge0.5, these modes
spread throughout the entire structure; however, for the the
case of a-Si/a-Ge SLs, these modes primarily reside on the
silicon layers. Therefore, the SL structures essentially limit the
spatial overlap of delocalized modes over the entire amorphous
structure, which in turn can lead to significantly reduced
thermal conductivities even below the alloy limit as shown in
Fig. 2(c). Furthermore, the eigenvectors of modes greater than
the modes with the large reduction in diffusivities in the SL
structure reside in the a-Si layers. This is clearly shown in Fig. 9
where we plot the two-dimensional eigenvectors for modes
>11 THz in an interval of ∼1 THz. This again points to the
fact that layering can create a spatial separation for some of the
eigenmodes, which cannot be achieved in the alloy structures
as shown in Figs. 5(b) and 5(c) for the representative case of
eigenvectors with 13.32 THz frequency.

For homogeneous a-Si, Self and Henry [61] have shown
plane-wave-like character for modes below ∼2 THz by
quantitatively measuring the degree of spatial periodicity for

each mode. Furthermore, they show that these modes do not
exhibit clear randomness in the magnitude and direction of
their eigenvectors despite the structural disorder. Indeed, both
experimental and computational works have demonstrated that
these propagating modes with plane-wave character contribute
substantially to the thermal conductivity in homogeneous a-
Si [62,63]. We do not attempt to separate the contributions
from propagating and nonpropagating modes in this work
and readers are referred to Refs. [10,61–63] for a rigorous
treatment of this topic. However, to visualize the effect of
layering on the velocity field of the propagating modes, we
plot the eigenvectors for modes at 0.84 THz and 1.51 THz for
a-Si, a-Si0.5Ge0.5, and a-Si/a-Ge in Fig. 10. These eigenmodes
in a-Si and a-Si0.5Ge0.5 show similarity in their direction and
magnitudes illustrating their propagating nature. However, for
the a-Si/a-Ge structure, we observe that layering disrupts the
motions of atoms that repeat spatially throughout the whole
structure as signified by the lack of preferred direction or
periodicity in the eigenvectors for the atoms.

The results and discussions presented in the preceding
paragraphs demonstrate that in amorphous SiGe SLs, inter-
faces between amorphous silicon and amorphous germanium
layers can be utilized to specifically lower the diffusivities and
increase the localization of certain modes, which can lead to
reduced thermal conductivities in the cross-plane direction.
We utilize this approach to reducing the thermal conductivity
in layered materials to amorphous SLs with three differing
layers that demonstrate large reductions in diffusivities for
certain eigenmodes in the phonon spectrum as described
in the Appendix. Doing so leads to higher anisotropies
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in thermal conductivity of silicon-based amorphous SL
structures.

IV. CONCLUSIONS

We investigated the vibrational thermal transport mecha-
nisms responsible for the reduced thermal conductivities in
silicon and germanium heterostructures. Through NEMD sim-
ulations, we showed that pronounced size effects are apparent
in a-Si, a-Ge, and a-SiGe alloys, whereas SL structures of
the constituent materials leads to size-independent thermal
conductivities. Contrary to their crystalline counterparts, we
found that the GK-predicted and NEMD-predicted thermal
conductivities of these materials are similar, which suggests
that the minimum system sizes used in our NEMD simulations
are comparable to or larger than the mean-free paths of the
dominant heat-carrying vibrations in their respective systems.
With respect to the thermal conductivity of amorphous silicon,
amorphous Si0.5Ge0.5 demonstrates ∼53% reduction in ther-
mal conductivity and our thermal conductivity predictions for
a-Si/a-Ge SLs suggested that this alloy limit can be surpassed
with interface densities above ∼0.35 nm−1. By calculating the
inverse participation ratios (IPRs) and diffusivities according to
the AF theory for individual eigenmodes in the alloys and SLs,
we attributed the larger reduction in thermal conductivity of SL
structures in comparison to their disordered alloy counterparts
to greater localization of modes at and around the cutoff
frequency of the amorphous germanium layer.
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APPENDIX: LARGE ANISOTROPIES THROUGH
LOCALIZATION OF EIGENMODES

We examine SL structures with three species of alternating
layers of amorphous silicon, amorphous germanium, and
mass-heavy amorphous silicon atoms with 5 times the mass
of silicon (a-Si/a-Ge/a-h-Si) in an attempt to give rise to
more localized modes in the frequency mode spectrum. We
utilize equilibrium MD simulations under the GK formalism
to predict the thermal conductivities of these SLs in the in-plane
and cross-plane directions simultaneously. Figure 11(a) shows
the GK-predicted thermal conductivities in the in-plane and
cross-plane directions for the two-layer-period a-Si/a-Ge SLs
(considering only mass mismatch) and for the three-layer-
period a-Si/a-Ge/h-Si SLs as a function of interface density.
Consistently with our previous NEMD results, the thermal con-
ductivities monotonically decrease with increasing interface
densities for the two SLs. As expected, the three-layered SL
structures demonstrate lower thermal conductivities compared
to the two-layered SLs due to the inclusion of the relatively
softer and heavier layer (with mh−Si = 5mSi). Along with the
cross-plane thermal conductivities, we also plot the in-plane
thermal conductivity predictions for these structures. Note that
the reduction in thermal conductivity with interface density is
not so obvious in the in-plane direction.
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FIG. 11. (a) GK-predicted thermal conductivities of the three-
layered a-Si/a-Ge/h-Si SLs and the two-layered a-Si/a-Ge SLs as a
function of interface. Both the cross-plane and in-plane components
of the thermal conductivity for these structures are shown for com-
parison. (b) Comparison between the anisotropy in the in-plane (ip)
and cross-plane (cp) thermal conductivities for the two-layered and
three-layered SLs as a function of interface densities. The lines are to
guide the eye.

In Fig. 11(b) we plot the percentage of anisotropy defined
as (κip − κcp)/κip × 100%, between the in-plane and cross-
plane thermal conductivities for the two- and three-layered
SLs. At moderate interface densities, both the structures show
similar anisotropic increase in thermal conductivity; how-
ever, at higher interface densities, the three-layered structures
demonstrate significantly higher thermal anisotropies—up to
35% in anisotropy in thermal conductivity is observed for
three-layered SLs as compared to ∼26% in two-layered SLs.
This suggests that the three-layered structures are better in
reducing the relative thermal conductivities in the cross-plane
direction as compared to the in-plane direction.

The pronounced localized modes associated with SiGe
interfaces at the cutoff frequency of Ge appears at lower
frequency modes for the a-Si/a-Ge/a-h-Si structures due to
the relatively lower cutoff frequency of the softer a-h-Si
layers as highlighted in Fig. 12(a), which shows our IPR
calculations for the three-layered structure. We also calculate
the diffusivities of the three-layered structure in Fig. 12(b)
(green squares) where we compare the calculations with that
for the two-layered a-Si/a-Ge structure (pink squares). As
is evident, the diffusivities of the entire spectrum of modes
are drastically reduced due to the inclusion of the heavier
h-Si layers. Consistently with the two-layered structures, the
diffusivities of the modes at and around the cutoff frequencies
of the softer solids are reduced significantly. The inclusion of
the a-h-Si layer also leads to the localization of modes between
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FIG. 12. (a) Spectral IPR for the three-layered a-Si/a-Ge/a-h-Si structure showing the pronounced localization of modes at and near the cutoff
frequencies of the softer solids. (b) Comparison of mode diffusivities between the two-layered a-Si/a-Ge and three-layered a-Si/a-Ge/a-h-Si
structures as predicted via Eq. (4). Spatial components of the two-dimensional eigenvectors for (c) 10.63 THz and (d) 12.05 THz modes for the
three-layered system. The blue, red, and green circles represent silicon, germanium, and 5×heavy-silicon atoms, respectively.

the cutoff frequency of a-h-Si and germanium as shown by the
two-dimensional plot of the eigenvectors for the a-Si/a-Ge/a-h-
Si system in Fig. 12(b) for a 10.63 THz frequency mode. These
modes reside predominantly in the silicon and germanium

layers. Furthermore, similarly to the two-layered structures,
the modes greater than the cutoff frequency of germanium
reside in the silicon layers as shown by the eigenvectors for
the 12.05 THz eigenmode in Fig. 12(c).
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