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Nature of microscopic heat carriers in nanoporous silicon

Aleandro Antidormi,1 Xavier Cartoixà,2 and Luciano Colombo1,*

1Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
2Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

(Received 27 February 2018; revised manuscript received 12 April 2018; published 11 May 2018)

We performed a systematic analysis of the vibrational modes in nanoporous silicon for different values of
porosity, separating them into extended modes (diffusons and propagons) and localized vibrations (locons). By
calculating the density of states, the participation ratio, and the systems’ dispersion curves, the spatial character
of each mode as well as the effect of porosity on the thermal conductivity have been investigated. An increase
of porosity is shown to promote the existence of increasingly localized modes on one side, and the progressive
transformation of propagons to diffusons on the other. Finally, we provide evidence of the sizable contribution
of locons to thermal transport found in large porosity samples and discuss the mechanism of energy transfer in
terms of mode-mode autocorrelations and cross-correlations.
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I. INTRODUCTION

In the ongoing quest for good thermoelectric materials,
which can efficiently generate electricity from heat, porous
systems represent promising candidates. They generally show
a large value of the figure of merit ZT, mainly due to the pore-
induced reduction of lattice thermal conductivity κ with respect
to their crystalline counterparts [1]. Porous silicon is among
the most appealing members of this materials class, showing
a thermal conductivity up to three orders of magnitude smaller
than its bulk crystalline form [2]. It has consequently become
the object of intense investigation not only for thermoelectric
applications [1] but also in photonics [3,4] and thermal insula-
tion [5,6]. We remark that for silicon the main contribution to
thermal conductivity comes from lattice vibrations, electrons
playing just a very minor role. Accordingly, hereafter we
will refer—if not stated differently—to thermal conductivity
actually meaning lattice thermal conductivity.

Porous samples are typically obtained by anodic etching of a
monocrystalline substrate. This process is stochastic and, even
under the same etching conditions and regimes, the properties
of the resulting material can vary significantly. Therefore,
several experimental studies have been performed on thermal
conductivity, reporting a wide range of κ values, depending on
doping and on fabrication techniques [7]. The lowest values
0.04 � κ � 1.2 W m−1 K−1 have been achieved for p−- and
p+-doped samples with porosity varying from 40% to 80% [8].
Tang et al. [9] instead focused on the thermoelectric properties
of samples with cylindrical pores arranged in a hexagonal
pattern, reporting that κ is reduced by a factor of 100 with
respect to crystalline Si (c-Si), reaching a figure of merit of
ZT ≈ 0.4.

As for theoretical investigations, Lee et al. [5,10] used a
combination of classical molecular dynamics (MD) and ab
initio density functional theory to study the thermoelectric
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properties of nanoporous Si (np-Si) characterized by period-
ically arranged circular and square pores, estimating 0.6 �
κ � 2.5 W m−1 K−1 and ZT = 0.4. On the the other hand,
He et al. [1] performed MD and lattice dynamics calculations
in thin films with cylindrical pores, showing that κ could
be reduced up to a factor of 20 with respect to bulk c-Si.
Finally, a systematic study on lattice thermal conductivity in
np-Si [11] has been addressed to work out a thorough picture
of the structure-property correspondence based on atomistic
simulations. In particular, the dependence of κ on the spatial
distribution of pores (random or regular), their dimensions, and
the overall porosity has been investigated.

Although the emerging picture is successful in reproducing
the main experimental trends found for the lattice thermal
conductivity, comparatively little physical insight on the mi-
croscopic nature of heat carriers has been so far provided. In
particular, a robust link between the morphological features of
the porous sample and its vibrational modes is still missing.
Moreover, how the spatial character of such microscopic heat
carriers ultimately affects the overall κ in porous silicon is
still an untackled issue. In this study we provide a systematic
analysis of the vibrational modes in np-Si samples as a function
of porosity. Following the pioneering work by Allen and
Feldman [12] on amorphous silicon, we propose for such
modes a classification into extended modes (diffusons and
propagons) and localized vibrations (locons). The effect of
porosity on the density of states, the participation ratio, and the
intrinsic character of the vibrational modes is given. Finally,
the contribution of each single mode to the overall thermal
conductivity is calculated, highlighting the most effective
vibrations responsible for heat transport in np-Si.

The paper is organized as follows: In Sec. II the systems
investigated and the computational methods employed will be
described. In Sec. III we will first compute the vibrational
density of states and the participation ratio. This will allow
for a classification of the modes with a clear identification of
locons and extendons. Finally, in Sec. IV we will calculate the
overall thermal conductivity of several np-Si systems providing
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information on the actual contribution of each mode to heat
transfer. Conclusions are eventually drawn in Sec. V.

II. SAMPLE PREPARATION AND COMPUTATIONAL
METHODS

In order to generate by computer np-Si samples, atoms
within spherical regions with radius R = 1 nm have been
iteratively extracted from a perfectly crystalline silicon matrix
(initially containing 32 768 atoms) with cubic shape (L =
Lx = Ly = Lz ≈ 87 Å) corresponding to a 16 × 16 × 16
replica of the c-Si unit cell. The dimension of the overall system
has been chosen large enough to properly host all the main
features of porous silicon while keeping the computational
burden at a reasonable level. The position of the pores has
been randomly chosen and overlap of different pores has been
allowed, eventually resulting in the formation of pores with a
shape other than spherical and unlike dimensions. Moreover,
the number of pores was varied in order to obtain samples with
different porosity, defined as

ϕ = Vpores

Vsystem
× 100, (1)

where Vsystem is the total volume of the simulation box and
Vpores is the volume occupied by the atoms removed from the
crystalline matrix [13]. In this study we will consider samples
with porosity varying from 5% to 40%; Fig. 1 shows the
atomistic structure of the sample with 30% porosity.

After removing atoms, each configuration has been care-
fully relaxed using the open source LAMMPS package [14].
The actual aging of the system was differently executed
depending on the kind of calculation to be performed. In
particular, as explained below we needed (i) to generate
zero-temperature configurations to build and diagonalize the
dynamical matrix, and (ii) to run finite-temperature simulations
aimed at calculating the thermal conductivity by the Green-
Kubo integral. We therefore proceeded by three separated steps
for each sample with given porosity. Step 1: After generating
the initial pore distribution, the system was equilibrated at
300 K using a Nosé-Hoover thermostat during a 10 ns run
(time step 0.5 fs); the final configuration was labeled CFG300.
Step 2: In order to accomplish task (i) above, CFG300 was
further quenched to zero temperature by a conjugated-gradient
minimization protocol. This step was aimed at relaxing the
sample to its minimum energy configuration. The resulting
structure was labeled CFG0 and used to calculate the vibra-
tional spectrum (see below). Step 3: In order to accomplish
task (ii) above, CFG300 was further aged at room temperature.
During this run the Green-Kubo integral was calculated (see
below).

Periodic boundary conditions have been applied and the
equations of motion have been integrated by the velocity-
Verlet algorithm. In all our simulations, the Si-Si interaction
has been described by the environment-dependent interatomic
potential (EDIP) [15] which has proved to be rather accurate in
describing noncrystalline forms of silicon, as required for the
present investigations. In particular, EDIP reliability has been
elsewhere established [11,16] in describing the thermal trans-
port properties of disordered silicon forms, such as amorphous
and nanocrystalline ones.

(a)

(b)

FIG. 1. Structure of the np-Si sample with 30% porosity. (a)
Three-dimensional view. (b) Cross section (width 5 Å) corresponding
to the highlighted plane. Atoms are shown as blue dots.

In order to study the vibrational properties of np-Si, we
have constructed and diagonalized the dynamical matrix of
each sample, given by

Diα,jβ = − 1√
mimj

∂Fiα

∂rjβ

, (2)

where mi is the mass of the ith atom. Hereafter we use Latin
indices for labeling atoms (i = 1,2, . . . ,N with N counting
for the total number of atoms in the simulation cell) and
Greek letters for indicating the (x,y,z) Cartesian components.
Casting such a matrix in terms of the gradients of the force
Fiα (i.e., the force on the ith atom along direction α caused
by an infinitesimal displacement of atom j along the direction
β) is a convenient formulation for a twofold reason, namely,
(i) through MD we have direct access to Fiα and (ii) by
Eq. (2) we need to evaluate just first-order derivatives. In
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particular, the task has been numerically accomplished by finite
difference with an atomic displacement as small as 5 × 10−4 Å
(different displacement amplitudes resulted in a negligibly
altered spectrum of Diα,jβ). From the diagonalization of the
dynamical matrix, eigenvectors es and eigenvalues ω2

s are
obtained, where s = 1, . . . ,3N counts eigenmodes. We used
the SLEPc library for matrix diagonalization [17–20]. For
the systems here investigated we had 19 000 � N � 33 000,
corresponding to a matrix rank in the range 104–105.

III. DENSITY OF STATES AND MODES CLASSIFICATION

The vibrational density of states (VDOS) of five np-Si
systems with porosity from 5% to 40% is shown in Fig. 2, where
a normalized Lorentzian shape (with broadening parameter
0.01 THz) centered at each eigenfrequency has been added for
a better graphical presentation. No substantial changes emerge
if a different choice of the broadening parameter is made.
We present results as a function of a normalized frequency
ν∗ = ν/νmax, where νmax = 17.4 THz is the frequency of the
highest peak in c-Si VDOS (cyan in the figure) as obtained
by the adopted EDIP force field. While the overestimation of
νmax is a well-known feature of EDIP [21], casting all results
in terms of ν∗ leaves the picture emerging from the discussion
reported below unaffected by such inaccuracy.

The VDOSs present peaks which are clearly reminiscent of
the phonon bands of c-Si. The higher the porosity, the broader
the peaks which eventually merge into a continuous VDOS
without frequency gaps in the sample with ϕ = 40%. This is
the effect of the porosity-induced lattice disorder affecting the
dynamical matrix.

For a better understanding, we proceed with a classification
of the vibrational modes. Following Refs. [12,22], we compute
the participation ratio (PR) defined as [23]

PRs ≡ 1

N

( ∑N
i=1 e2

i,s

)2∑N
i=1 e4

i,s

. (3)

This quantity provides a normalized estimation of the subset
of atoms participating to the s-th vibrational mode. The spatial

FIG. 2. The VDOS for np-Si samples with different porosity.
Shaded gray areas mark the gaps separating vibrational bands. On
the horizontal axis the normalized frequency ν∗ = ν/νmax.

FIG. 3. Eigenmode participation ratio (PR) as a function of
the normalized frequency in np-Si samples with different porosity.
Shaded gray areas mark the gaps separating vibrational bands; the
blue solid line marks the mobility edge.

extension of such a subset is directly linked to the localized or
extended character of that mode: for extended modes PR ∼ 1,
whereas localized modes have progressively smaller ratio,
down to the limit PR = 1/N for a mode completely localized
on a single atom. The participation ratio for our np-Si samples
is shown in Fig. 3. We remark that the unavoidable finite
accuracy in the determination of the eigenvectors ei,s makes (i)
the PR calculation quite noisy and (ii) the maximum PR value
definitely lower than 1 in any case. This is clearly shown by
the result obtained for c-Si. All the samples considered share
the same qualitative behavior, although the maximum PR is
affected by the porosity: vibrations in samples with a larger ϕ

have (at almost all frequencies) a smaller participation ratio.
This implies that the ratio of atoms generally involved in each
single mode is limited by the porosity of the sample. Hence,
we expect that the atomic-scale architecture of the sample will
play a key role in assigning the localized/extended character
of the vibrational modes.

A. Extendons vs locons and the mobility edge

Just above ν∗ ∼ 1.0, the high-frequency behavior is charac-
terized by a dramatic change in the participation ratio for any
value of porosity considered. This marks the so-called mobility
edge, which represents the border between extended modes
(extendons), characterized by a high value of PR, and localized
modes (locons) showing small values of PR [12]. The extended
vs localized nature of the vibrational modes (or, equivalently,
their labeling as extendons or locons, respectively) can be
better appreciated when we visualize the corresponding atomic
displacement field. Figure 4 shows the atomic displacements
of a high-frequency locon (top panel) and a medium-frequency
extendon (middle panel) in the sample with 30% porosity: red
arrows superimposed to each atom denote the displacement
vector (the vectors have been amplified by the same factor
scale for better representation). While in the locon case, only
a small fraction of atoms presents a sizable displacement, in
the extendon case basically all the atoms move with respect
to their equilibrium position, yet in a generally disordered
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FIG. 4. Atomic displacements for three eigenmodes in the sample
with 30% porosity in the section highlighted in Fig. 1. Displacements
(properly scaled) are shown as red vectors superimposed on the atoms
(blue dots).

fashion. For reasons explained below this mode is referred to
as a diffuson-like extendon.

To provide additional characterization of the vibrational
modes, we define according to Ref. [12] the average coor-

FIG. 5. The average coordination number as a function of the
eigenmode normalized frequency. Minima are found at the band edges
(see Fig. 2). High-frequency localized modes are characterized by
very small coordination values.

dination number, as the weighted number of bonds with first
neighbors formed in a given mode. It is calculated as

n̄s = 1∑N
i=1 e2

i,s

N∑
i=1

nC,ie
2
i,s , (4)

where nC,i is the coordination number of the ith atom, and e2
i,s

is the squared modulus of its displacement vector. To compute
the nC,i we used a bond cutoff as small as 2.5 Å. Pores being
nested into a crystalline silicon matrix, the maximum value
of n̄ is 4, with smaller values obtained for atoms located in
proximity of pore surfaces.

The average coordination number as a function of frequency
is shown in Fig. 5. For extended modes n̄s is close to 4,
while high-frequency localized modes are characterized by
a comparatively much smaller value, in opposition to the
overcoordinated character of locons in a-Si. This provides
evidence that high-frequency locons are confined nearby the
boundaries of the pores. The value of n̄ is affected by porosity,
with high ϕ values implying smaller coordination numbers
throughout the frequency spectrum. We accordingly argue that
increasing porosity determines a larger amount of underco-
ordinated atoms. We remark that values n̄ < 3 indicate the
presence of very reactive atomic sites which are unlikely found
in real systems: we guess they are an artifact of the adopted
force field. Nevertheless, we remark that their number is very
limited and, therefore, the local occurrence of such underco-
ordinated atoms is not expected to affect the main picture here
presented.

B. Propagons vs diffusons

The low-frequency part of the spectrum is dominated by
vibrational modes for which it is possible to define a wave
vector, similarly to phonons in crystalline samples. Such modes
can coherently propagate through the sample for distances
larger than few interatomic spaces before being scattered by
lattice disorder. Due to this property, they are referred to
as propagons. Allen and Feldman [12] separated them from
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FIG. 6. Plot of the q-averaged F (q,ν∗) function (right scale). The contour of its maxima defines the generalized ν∗ = ν∗(q) dispersions
(left scale).

diffusons, categorized as vibrational modes which are still
extended but have no clear wave vector definition. While
propagons generally characterize the low-frequency spectrum
in amorphous materials [12], diffusons are more commonly
found at high frequency. Figure 4 (bottom) shows a propagon
at ν∗ ∼ 0.1 in a sample with 30% porosity: the existence of
a phase relationship between displacements of neighboring
atoms is graphically evident and, accordingly, a wave vector
can be defined for this mode.

In order to possibly assign a wave vector q to propagons,
we need to follow a multistep procedure. At first we calculate
the Fourier transform of the eigenvectors defined as [22]

F (q,ν∗) =
3N∑
s=1

∣∣∣∣∣
N∑

i=1

ei,s(ν
∗
s )eiq·Ri

∣∣∣∣∣δ(ν∗ − ν∗
s ). (5)

In order to accomplish this task, we evaluated Eq. (5) on a
20 × 20 × 20 grid of points in a cubic region with side 16 ×
2π/L. Next, F (q,ν∗) for each single mode of frequency ν∗ is
averaged over all possible directions of q: such a q-averaged
quantity will be hereafter referred to as F (q,ν∗) and it is shown
in Fig. 6 for three np-Si samples with porosity of 5%, 20%, and
40%, respectively. We also report the result of the calculations
performed on a sample of a-Si. This result, obtained for a cubic
cell with 8000 atoms amorphized by quench-from-the-melt
(cooling rate of 0.1 K/pS, initial temperature 2000 K), is in
perfect agreement with previous findings on amorphous-like
materials [22]. For a better visual effect we also normalize the
function in Eq. (5) by the magnitude of its maximum for each
value of ν∗.

In the three cases shown, well-resolved ν∗ = ν∗(q) disper-
sions are found by linking all the maxima of the F (q,ν∗)
function, in particular for the sample with 5% porosity,
where acoustic (both transverse and longitudinal) and optical
branches are clearly visible. The effect of increasing porosity is
as expected: any dispersion becomes increasingly less defined,
while blurred portions appear, a signature that the definition of
a wave vector becomes more and more questionable. Inter-
estingly enough, this effect does not depend on the frequency
range. Hence, low-porosity np-Si inherits the dispersion curves
of the crystalline matrix from which it has been derived. An

increasingly larger porosity, however, affects the background
translational invariance eventually driving the system to a
configuration where the propagon picture is no longer valid:
vibrational modes (heat carriers) do not any longer propagate
coherently but, rather, diffuse through scattering events.

The main differences between a-Si and np-Si are clear.
While in the former a definite frequency-resolved separation
among propagons and diffusons can be identified (hence, the
so-called Ioffe-Regel limit can be properly defined [24]), in
np-Si no such distinction exists in the frequency domain:
propagons dominate the whole spectrum at low ϕ values,
gradually transforming into diffusons at larger ϕ.

IV. THERMAL TRANSPORT PROPERTIES

We now calculate the thermal conductivity of np-Si and
determine the contribution of each mode (or class of modes,
e.g., extendons and locons). To this aim we will exploit the
methodology recently developed by Lv and Henry termed
Green-Kubo modal analysis (GKMA) [25], a combination
of the Green-Kubo (GK) formula with information on the
vibrational eigenmodes extracted from the dynamical matrix.
Interestingly enough, GKMA incorporates all the degrees of
anharmonicity, since MD simulations are used to obtain the
time history of the modal contributions to the heat current
operator. More specifically, the GKMA approach relies on
the projection of the anharmonic atomic trajectories onto the
eigenmodes with no previous assumptions on the nature of
the modes involved. Under this respect GKMA allows us to
compute the mode contributions to the overall heat current
operator only from the knowledge of the atomic velocity field.
It is important to note that this method describes thermal
transport in terms of correlation rather than scattering. The
method has been successfully applied to crystalline silicon,
amorphous silicon [25], and amorphous carbon [26], yield-
ing good agreement with other modal analysis methods and
experimental data. While the details of GKMA are given in
Ref. [25], here we briefly summarize its formalism to support
the interpretation of our results.
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The key GKMA quantity is the single-mode heat flux
operator Qs(t) [27], which is given by

Qs(t) = 1

�

N∑
i=1

[
Ei ẋi(s,t) +

N∑
k=1

[Fik · ẋi(s,t)]rik

]
, (6)

where Ei is the sum of the potential and kinetic energy of atom
i, � is the volume of the simulation cell, and rik is the distance
between atoms i and k. Moreover, Fik indicates the force on
the ith atom upon a displacement of the kth atom. The quantity
ẋi(s,t) represents the s-mode contribution to the velocity of the
i-th atom: it is obtained on-the-fly during a constant-energy
MD run by projecting the predicted atomic velocities onto the
basis set provided by the eigenvectors of the dynamical matrix,
i.e., ẋi(s,t) = [vi(t) · ei,s]ei,s . The thermal conductivity of the
system can be calculated by replacing the above expression for
the heat flux in the usual Green-Kubo formula

κ = �

3kBT 2

∫ ∞

0

〈
3N∑
s=1

Qs(t) ·
3N∑
s ′=1

Qs ′ (0)

〉
dt (7)

= �

3kBT 2

3N∑
s,s ′=1

∫ ∞

0
〈Qs(t) · Qs ′ (0)〉dt, (8)

where kB is the Boltzmann constant and T is the temper-
ature. These equations express the thermal conductivity as
a double summation over individual mode-mode heat flux
cross-correlation functions. They weight the contribution to κ

of any single correlation between pairs of modes. According to
this picture thermal conductivity is cast in terms of correlations
rather than scattering. One can also recast the previous equation
as a direct summation over single-mode thermal conduct-
ivities κ(s)

κ =
3N∑
s=1

�

3kBT 2

∫ ∞

0
〈Qs(t) · Q(0)〉dt =

3N∑
s=1

κ(s), (9)

where Q(0) = ∑3N
s=1 Qs(0). It is important to acknowledge

that such a decomposition of κ into single-mode terms is by
no means unique and other ways could be as well adopted.
Nonetheless, we will hereafter consider only decomposition
in Eq. (9), since it has proved to faithfully reproduce the
modal contribution in c-Si [25]. We remark that, by their very
definition, single-mode contributions can be either positive or
negative.

In order to deal with systems at temperature lower than
the Debye temperature, we modified Eq. (9) by applying
quantum heat capacity corrections, i.e., replacing the classical
Dulong-Petit specific heat cDP (ω) = kB/� by its quantum
counterpart cq(ω) = kBx2 exp(x)

�[exp(x)−1]2 , where x = hω/(kBT ) [28].
Hence, we multiplied each term in Eq. (9) by the quantity
cq(ω)/cDP (ω) [26].

As a sanity check of the present procedure adopted for
predicting κ , we first show in Fig. 7 the result of thermal
conductivity calculation for np-Si at 300 K as a function of
ϕ. An exponential decrease of κ is observed, highlighting
how porosity detrimentally affects thermal transport. The trend
that we obtained is in good agreement with other calculations
on analogous systems [11] using the same empirical EDIP
potential. Present results are compared to an effective model
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FIG. 7. Calculated thermal conductivity of the np-Si systems at
T = 300 K as a function of porosity: linear scale in blue, logarithmic
scale in red solid lines. The blue dashed line is the effective thermal
conductivity κeff predicted in Ref. [11] by solely taking into account
the reduction in the atom number.

taking solely into account the effect of number of modes
reduction due to the removal of atoms from the simulation cell
(dashed blue line in Fig. 7): we argue that such an observed
large difference clearly indicates that pores affect the overall
thermal conductivity to a much larger extent than that due to the
decrease in the number of modes alone. Moreover, the value
of κ for c-Si (160 W m−1 K−1) shows excellent agreement
with the one reported in Ref. [29], although as already known
it is larger than the experimental one (140 W m−1 K−1),
a feature attributed to the EDIP potential. To calculate the
Green-Kubo integral in Eq. (9), equilibrium MD simulations
were performed: after equilibrating the systems previously
generated (see Sec. II) for 2 ns at T = 300 K (with 0.5 fs
time step), correlations of the heat fluxes in Eq. (9) have been
sampled during a 10-ns-long simulation. The maximum value
chosen for the correlation time was 1 ns. In order to improve the
statistics, we averaged over three different trajectories, where
different initial conditions for the atomic velocity distributions
were imposed.

As a first result, we present the normalized thermal conduc-
tivity accumulation function for our np-Si systems (Fig. 8).
The resulting integral values increase almost monotonically
along all the frequency spectrum, allowing us to assign a
specific contribution to all different kinds of modes. In this
respect, we focus on the contributions of extendons (dom-
inating the low-frequency spectrum) and locons, since we
have already provided evidence that in np-Si no frequency-
resolved distinction among diffusons and propagons can be
made and, furthermore, large porosities imply the existence
of diffusons rather than propagons. For all porosity values,
extended modes determine the large part of the overall thermal
conductivity. However, the most striking feature of Fig. 8 is
the non-negligible contribution associated with locons, which
are responsible for up to 10% of the thermal conductivity in
the 40% porosity sample. This result does not support the
intuitive picture that locons carry small contributions due to
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FIG. 8. Normalized cumulative κ for the systems with different
porosity as function of frequency. The vertical solid line denotes the
mobility edge: extended modes lie on the left, high-frequency modes
on the right. In the inset, the percentage contribution of extendons
(orange) and locons (gray) in the overall κ as a function of porosity
is shown.

their restricted spatial extent. It is important to acknowledge
that an unexpectedly sizable locon contribution was recently
found also in a-SiO2 [30]. Interestingly, in our np-Si systems
the locon contribution increases with porosity, ranging from
1% in the 10% porosity sample to 10% in 40% porosity one (see
inset of Fig. 8). We argue that this is primarily due to the fact
that locons constitute an increasing portion of the vibrational
spectrum of the system when increasing porosity. Specifically,
locons represent the 0.1% of the total number of modes at a
10% porosity, increasing up to 4% in the 40% sample.

Further insight can be gained by investigating the transport
mechanism by means of which each mode contributes to κ .
To this aim, we consider the contributions to κ arising from
mode-mode autocorrelations and cross-correlations, corre-
sponding to the s = s ′ and s �= s ′ cases in Eq. (7), respectively.
Specifically, it has been argued that strong mode-mode cross-
correlations suggest that the two modes somehow interact
strongly, frequently, or for long periods of time, and possibly
in collaboration with other modes [25]. On the contrary, large
autocorrelations denote a strong capability of a mode to au-
tonomously contribute toκ . In Fig. 9 we show the accumulation
thermal conductivity function due to autocorrelation terms
only (the value is normalized to the absolute value of κ).
For each value of porosity, autocorrelations are responsible
for the largest part of thermal conductivity, up to 90% in
the low-porosity samples. Furthermore, the autocorrelations
of extended modes (falling below the mobility edge) are
clearly larger than those of locons, as it is expected. The
most important result is, however, the fact that the overall
autocorrelation contributions to κ decrease with porosity: from
90% when ϕ = 10% to 75% when ϕ = 40%. This points to
an increasing contribution to κ due to cross-correlation terms
and a consequently poorer capacity of modes to autocorrelate
effectively when porosity increases. In particular, since the
increase of porosity determines a mode character transforma-
tion from propagon-like to diffuson-like, this leads us to argue

FIG. 9. Normalized thermal conductivity accumulation function
due to mode-mode autocorrelations only for systems with different
porosity as function of frequency. The vertical solid line denotes the
mobility edge.

that diffusons autocorrelate at a smaller extent with respect to
propagons.

The accumulation thermal conductivity function due to
mode-mode cross-correlations is shown in Fig. 10. Cross-
correlations assume both positive and negative values (in
particular, we remark on the strong negative terms found
for the sample with ϕ = 40%), eventually summing up to
a positive value when accumulation throughout the full fre-
quency spectrum is considered. The total cross-correlation
contributions of extended modes are evidently smaller than
the corresponding autocorrelations for each value of porosity;
this implies that their spatial delocalized character generally
allows them to effectively contribute to thermal conductivity on
their own. From Fig. 10 it is also possible to notice how locon
(modes above the mobility edge) cross-correlations increase
with porosity: the larger ϕ the stronger the cross-correlation

FIG. 10. Normalized thermal conductivity accumulation function
due to mode-mode cross-correlations only for systems with different
porosity as a function of frequency. The vertical solid line denotes the
mobility edge.
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contributions to κ . Moreover, their cross-correlations generally
overcome the corresponding autocorrelation terms. Such a
feature clarifies the fundamental mechanism by which locons
contribute to thermal transport: locons serve as bridges for
other modes, thus helping the process of energy transfer from
one side to the other of the material.

V. CONCLUSIONS

We performed a detailed analysis of the vibrational modes
of np-Si samples for different values of porosity. Starting
from the knowledge of the eigenmodes and eigenfrequencies
of the dynamical matrix of each system, we calculated the
vibrational densities of states and characterized the modes of
vibration in terms of their spatial extension. By calculating the
Fourier transform of the modal atomic displacements, we also
show how in porous systems propagons gradually transform
into diffusons when increasing porosity. The differences with
a-Si are evidenced and the impossibility to properly define

a frequency separating propagons from diffusons in np-Si is
discussed. Finally, we computed the contributions of each
mode of vibration to the thermal conductivity, showing that
porosity is responsible for a non-negligible contribution of
locons (up to 10%) for systems with large porosity. Moreover,
while extended modes mostly contribute to κ by correlating
with themselves, locon contributions are essentially due to their
interaction and correlation with other modes. This mechanism
allows them to non-negligibly affect thermal transport, espe-
cially in high-porosity samples.
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